Measures

Let $(\mathcal{X}, \mathbb{E})$ be a measurabel space.

Definition: A measure on $(\mathcal{X}, \mathbb{E})$ is a set-function $\mu : \mathbb{E} \to [0, \infty]$ satisfying

•
$$\mu(\emptyset) = 0.$$

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

The high-point is the existence of the Lebesgue measure, m, on the measurable space (\mathbb{R}, \mathbb{B}) – where \mathbb{B} is the Borel-algebra. The Lebesgue measure is uniquely determined by the specification that

$$m((a,b)) = b - a \quad a < b.$$

Lemma: With $(\mathbb{E}_i)_{i \in I}$ a family of σ -algebras on \mathcal{X} then

$$\mathbb{G} = igcap_{i \in I} \mathbb{E}_i$$

is a σ -algebra – the "minimum" of the σ -algebras \mathbb{E}_i , $i \in I$.

Observation: The sigma-algebra generated by \mathbb{D} is denoted $\sigma(\mathbb{D})$ and is defined as the smallest σ -algebra containing \mathbb{D} – the "minimum" of all σ -algebras containing the paving \mathbb{D} .

Let \mathbb{O}_k denote the paving of open sets in \mathbb{R}^k . Definition: The Borel-algebra, \mathbb{B}_k , on \mathbb{R}^k is the smallest σ -algebra containing the open sets, that is, $\mathbb{B}_k = \sigma(\mathbb{O}_k)$.

Example 1.19

If $\mathbb D$ is a paving on $\mathcal X$ define

$$\mathbb{D}' = \{ D' \in \mathbb{P}(\mathcal{X}) \mid D' = D^c \text{ for } D \in \mathbb{D} \}.$$

Then $\sigma(\mathbb{D}) = \sigma(\mathbb{D}')$.

 \mathbb{O}'_k is the paving of closed sets in \mathbb{R}^k , then $\mathbb{B}_k = \sigma(\mathbb{O}'_k)$, that is, the Borel-algebra is also generated by the closed sets.

Actually, the Borel-algebra is generated by virtually any sensible paving. Theorem 1.24 (and 1.22 for k = 1): The Borel-algebra, \mathbb{B}_k , is generated by the open boxes, \mathbb{I}^k , (the intervals for k = 1)

 $(a_1, b_1) \times \ldots \times (a_k, b_k).$

In fact, \mathbb{B}_k , is generated by the open boxes with rational corners, \mathbb{I}_0^k .

Open sets are covered by \mathbb{I}_0^k



For any open set $G \subset \mathbb{R}^k$ and any point $x \in G$, there is an ordinary ball of radius r > 0 and center x such that $B(x, r) \subset G$.

There exists an $y \in \mathbb{Q}^k$ and an open box

$$x \in (y_1 - q, y_1 + q) \times \ldots \times (y_k - q, y_k + q) \subset B(x, r)$$

for some $q < r/(2\sqrt{k})$. Hence

$$G = \bigcup_{J \in \mathbb{I}_0^k, J \subset G} J.$$

Definition: The enlargement of the paving $\mathbb D$ on $\mathcal X$ is

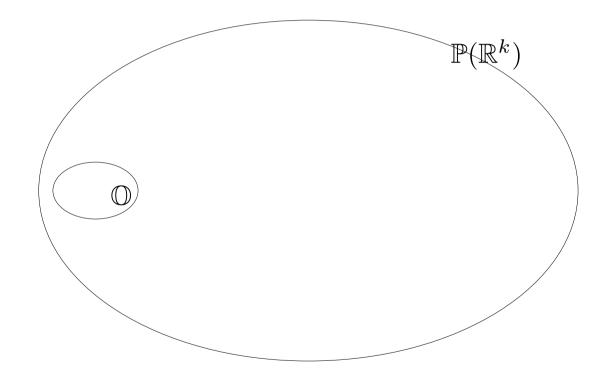
$$\mathbb{D}^{\diamond} = \{ D \in \mathbb{P}(\mathcal{X}) \mid D = A^c \text{ or } D = \bigcup_n A_n \text{ for } A, A_1, A_2, \ldots \in \mathbb{D} \}.$$

 $\mathbb{D}^{\diamond n} = (\mathbb{D}^{\diamond (n-1)})^{\diamond}$, but $\mathbb{D}^{\diamond n}$ does not need to be a σ -algebra. Definition: The constructable sets are $\bigcup_{n=1}^{\infty} \mathbb{D}^{\diamond n}$.

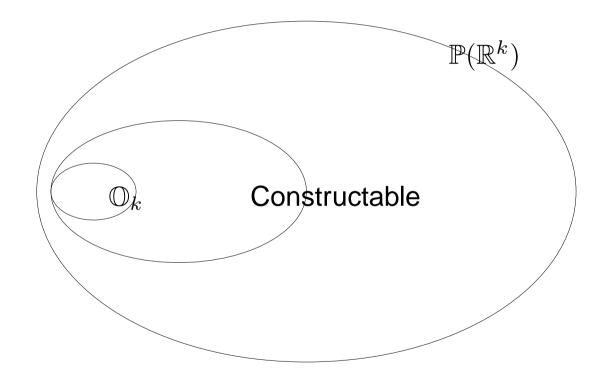
Bad news: Obviously $\cup_{n=1}^{\infty} \mathbb{I}_0^{\diamond n} \subset \mathbb{B}$ but in fact

$$\cup_{n=1}^{\infty} \mathbb{I}_{0}^{\diamond n} \neq \mathbb{B}.$$

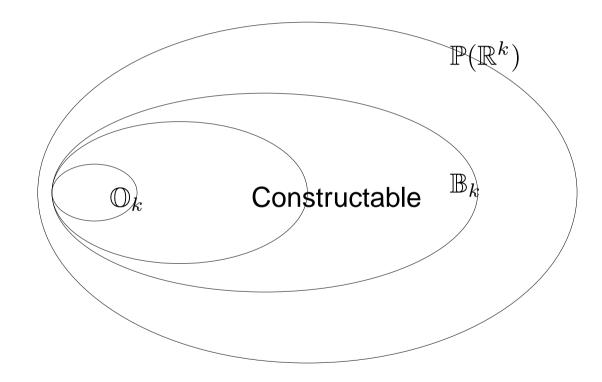
Sets outside of the constructable sets are far outside of what we can possibly imagine!



The Borel-algebra on \mathbb{R}^k



The Borel-algebra on \mathbb{R}^k



Measures

Let $(\mathcal{X}, \mathbb{E})$ be a measurabel space.

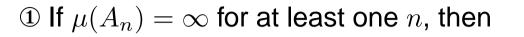
Definition: A measure on $(\mathcal{X}, \mathbb{E})$ is a set-function $\mu : \mathbb{E} \to [0, \infty]$ satisfying

•
$$\mu(\emptyset) = 0.$$

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

The Lebesgue measure, m_k , on the measurable space $(\mathbb{R}^k, \mathbb{B}_k)$ is uniquely specified by requiring that for for $a_i < b_i$, i = 1, ..., k,

$$m_k((a_1, b_1) \times \ldots \times (a_k, b_k)) = \prod_{i=1}^k (b_i - a_i).$$



$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \infty.$$

② If $\mu(A_n) < \infty$ for all n while $\mu(\bigcup_{n=1}^{\infty} A_n) = \infty$, then

$$\sum_{n=1}^{N} \mu(A_n) \to \infty \quad \text{for } N \to \infty.$$

3 If $\mu(A_n) < \infty$ for all n while $\mu(\bigcup_{n=1}^{\infty} A_n) < \infty$, then

$$\sum_{n=1}^{N} \mu(A_n) \to \mu\left(\bigcup_{n=1}^{\infty} A_n\right) \quad \text{for } N \to \infty.$$

Let \mathcal{X} be a finite set with the σ -algebra $\mathbb{P}(\mathcal{X})$.

Let $p: \mathcal{X} \to [0,\infty]$ be a function and define

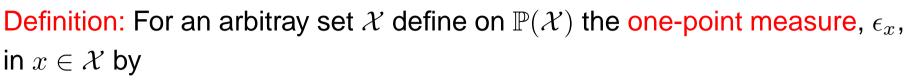
$$\mu(A) = \sum_{x \in A} p(x) \qquad \text{for } A \subset \mathcal{X}$$

Then μ is finitely additive,

$$\mu(A \cup B) = \sum_{x \in A \cup B} p(x) = \sum_{x \in A} p(x) + \sum_{x \in B} p(x) = \mu(A) + \mu(B)$$

if $A \cap B = \emptyset$.

Since \mathcal{X} is finite, finite additivity and σ -additivity is the same – any infinite sequence of disjoint sets are from some point necessarily empty.



$$\epsilon_x(A) = \begin{cases} 1 & \text{hvis } x \in A \\ \\ 0 & \text{hvis } x \notin A \end{cases}$$

Then ϵ_x is a measure.

Definition: The empirical measure, $\epsilon_{x_1,...,x_n}$, in $x_1,...,x_n \in \mathcal{X}$ is defined as

$$\epsilon_{x_1,\dots,x_n}(A) = \frac{1}{n} \sum_{i=1}^n \epsilon_{x_i}(A)$$

for $A \in \mathbb{P}(\mathcal{X})$. An empirical measure is a Probability measure since

$$\epsilon_{x_1,...,x_n}(\mathcal{X}) = \frac{1}{n} \sum_{i=1}^n 1 = 1.$$

. – p.12/25

More examples

Definition: For an arbitrary set \mathcal{X} we define the counting measure (tællemålet) τ on $\mathbb{P}(\mathcal{X})$ by

 $\tau(A) =$ number of elements in A

The Lebesgue measure, m_k , on the measurable space $(\mathbb{R}^k, \mathbb{B}_k)$ is uniquely specified by requiring that

$$m_k((a_1, b_1) \times \ldots \times (a_k, b_k)) = \prod_{i=1}^k (b_i - a_i)$$

for $a_i < b_i$, i = 1, ..., k, any finite real numbers.

Existence of m_k : A little hard and lengthy – not this course.

Uniqueness of m_k : Proved next week.

Lebesgue measure

Lemma: For all $x \in \mathbb{R}^k$

 $m_k\left(\{x\}\right) = 0$

Proof for k = 1: Observe that

$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x + \frac{1}{n}\right).$$

Then downward continuity implies that

$$m\left(\{x\}\right) = \lim_{n \to \infty} m\left(\left(x - \frac{1}{n}, x + \frac{1}{n}\right)\right) = \lim_{n \to \infty} \frac{2}{n} = 0$$

Consequence: All intervals

$$(a,b)$$
 $[a,b)$ $(a,b]$ $[a,b]$

have the same Lebesgue measure.

Consider a measure μ on $(\mathcal{X}, \mathbb{E})$.

Definition: A set $A \subset \mathcal{X}$ is a μ -nullset if there is a $B \in \mathbb{E}$ such that

$$A \subset B$$
, $\mu(B) = 0$

Definition: A set $A \subset \mathcal{X}$ is μ -almost everywhere if A^c is a μ -nullset.

Lemma: Let μ be a measure on $(\mathcal{X}, \mathbb{E})$. If A_1, A_2, \ldots is a sequence of μ -nullsets the $\bigcup_{n=1}^{\infty} A_n$ is a μ -nullset.

Proof: For any A_n we have $B_n \in \mathbb{E}$ such that $A_n \subset B_n$ and $\mu(B_n) = 0$. Hence

$$\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} B_n$$

According to Boole's inequality

$$\mu\left(\bigcup_{n=1}^{\infty} B_n\right) \le \sum_{n=1}^{\infty} \mu(B_n) = 0.$$

 \mathbb{Q}^k is a m_k -nullset. **Proof:** Let $\mathbb{Q}^k = \{x_1, x_2, \dots, \}$. Using Boole's inequality

$$m_k(\mathbb{Q}^k) = m_k\left(\bigcup_{n=1}^{\infty} \{x_n\}\right) \le \sum_{n=1}^{\infty} m_k(\{x_n\}) = 0.$$

All lower-dimensional sets in \mathbb{R}^k have Lebesgue measure 0.

Closed and open boxes have the same m_k -measure;

$$m_k([a_1, b_1] \times \ldots \times [a_k, b_k]) = \prod_{i=1}^k (b_i - a_i)$$

and so do all semi-closed boxes.

- Divide a closed interval the unit interval [0, 1], say into three equal parts.
- Remove the central open part.
- Repeat the procedure on the remaining two intervals.
- Continue forever.

The Cantor set C is what is left when we are done.

-- -- -- -- -- --

....

In the *n*'th step we have a collection of 2^{n-1} disjoint, closed intervals each of length $3^{-(n-1)}$.

Let C_n denote the union of these intervals, then $\mathcal{C} = \bigcap_{n=1}^{\infty} C_n$.

Remark: Since C_n is closed, C is closed. Especially, $C \in \mathbb{B}$.

Lemma: $m(\mathcal{C}) = 0$.

Proof:

$$m(\mathcal{C}) \le m(C_n) = 2^{n-1} \left(\frac{1}{3}\right)^{n-1} = \left(\frac{2}{3}\right)^{n-1} \to 0 \qquad \text{for } n \to \infty$$

Remark: There exists a bijective map from Cantors set to the set of 0-1 sequences – hence the Cantor set is uncountable.