
Measures

Let (X , E) be a measurabel space.

Definition: A measure on (X , E) is a set-function µ : E → [0,∞] satisfying

µ(∅) = 0.

µ is σ-additive, that is, for any sequence A1, A2, . . . ∈ E of pairwise
disjoint sets (Ai ∩ Aj = ∅ for i 6= j) we have

µ

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

µ(An).

The high-point is the existence of the Lebesgue measure, m, on the
measurable space (R, B) – where B is the Borel-algebra. The Lebesgue
measure is uniquely determined by the specification that

m((a, b)) = b − a a < b.
. – p.1/25



Generated sigma-algebras

Lemma: With (Ei)i∈I a family of σ-algebras on X then

G =
⋂

i∈I

Ei

is a σ-algebra – the “minimum” of the σ-algebras Ei, i ∈ I.

Observation: The sigma-algebra generated by D is denoted σ(D) and is
defined as the smallest σ-algebra containing D – the “minimum” of all
σ-algebras containing the paving D.

Let Ok denote the paving of open sets in Rk.
Definition: The Borel-algebra, Bk, on Rk is the smallest σ-algebra
containing the open sets, that is, Bk = σ(Ok).
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Example 1.19

If D is a paving on X define

D′ = {D′ ∈ P(X ) | D′ = Dc for D ∈ D}.

Then σ(D) = σ(D′).

O′

k is the paving of closed sets in Rk, then Bk = σ(O′

k), that is, the
Borel-algebra is also generated by the closed sets.

Actually, the Borel-algebra is generated by virtually any sensible paving.
Theorem 1.24 (and 1.22 for k = 1): The Borel-algebra, Bk, is generated by
the open boxes, Ik, (the intervals for k = 1)

(a1, b1) × . . . × (ak, bk).

In fact, Bk, is generated by the open boxes with rational corners, Ik
0 .
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Open sets are covered by Ik0

G

x

B(x, r)

For any open set G ⊂ Rk and any point x ∈ G, there is an ordinary ball of
radius r > 0 and center x such that B(x, r) ⊂ G.

There exists an y ∈ Qk and an open box

x ∈ (y1 − q, y1 + q) × . . . × (yk − q, yk + q) ⊂ B(x, r)

for some q < r/(2
√

k). Hence

G = ∪J∈Ik

0
,J⊂GJ.

. – p.4/25



Constructable sets

Definition: The enlargement of the paving D on X is

D⋄ = {D ∈ P(X ) | D = Ac or D = ∪nAn for A, A1, A2, . . . ∈ D}.

D⋄n =
(

D⋄(n−1)
)⋄

, but D⋄n does not need to be a σ-algebra.
Definition: The constructable sets are ∪∞

n=1D⋄n.

Bad news: Obviously ∪∞

n=1I⋄n
0 ⊂ B but in fact

∪∞

n=1I
⋄n
0 6= B.

Sets outside of the constructable sets are far outside of what we can
possibly imagine!
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The Borel-algebra on Rk

O

P(Rk)
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The Borel-algebra on Rk

Ok

P(Rk)

Constructable
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The Borel-algebra on Rk

Ok

P(Rk)

Constructable Bk
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Measures

Let (X , E) be a measurabel space.

Definition: A measure on (X , E) is a set-function µ : E → [0,∞] satisfying

µ(∅) = 0.

µ is σ-additive, that is, for any sequence A1, A2, . . . ∈ E of pairwise
disjoint sets (Ai ∩ Aj = ∅ for i 6= j) we have

µ

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

µ(An).

The Lebesgue measure, mk, on the measurable space (Rk, Bk) is
uniquely specified by requiring that for for ai < bi, i = 1, . . . , k,

mk((a1, b1) × . . . × (ak, bk)) =
k
∏

i=1

(bi − ai).
. – p.9/25



Sigma-additivity means:

① If µ(An) = ∞ for at least one n, then

µ

(

∞
⋃

n=1

An

)

= ∞.

② If µ(An) < ∞ for all n while µ (
⋃

∞

n=1 An) = ∞, then

N
∑

n=1

µ(An) → ∞ for N → ∞.

③ If µ(An) < ∞ for all n while µ (
⋃

∞

n=1 An) < ∞, then

N
∑

n=1

µ(An) → µ

(

∞
⋃

n=1

An

)

for N → ∞.
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Measures on finite sets

Let X be a finite set with the σ-algebra P(X ).

Let p : X → [0,∞] be a function and define

µ(A) =
∑

x∈A

p(x) for A ⊂ X

Then µ is finitely additive,

µ(A ∪ B) =
∑

x∈A∪B

p(x) =
∑

x∈A

p(x) +
∑

x∈B

p(x) = µ(A) + µ(B)

if A ∩ B = ∅.

Since X is finite, finite additivity and σ-additivity is the same – any infinite
sequence of disjoint sets are from some point necessarily empty.
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Some simple measures

Definition: For an arbitray set X define on P(X ) the one-point measure, ǫx,
in x ∈ X by

ǫx(A) =











1 hvis x ∈ A

0 hvis x /∈ A

Then ǫx is a measure.

Definition: The empirical measure, ǫx1,...,xn
, in x1, . . . , xn ∈ X is defined as

ǫx1,...,xn
(A) =

1

n

n
∑

i=1

ǫxi
(A)

for A ∈ P(X ). An empirical measure is a Probability measure since

ǫx1,...,xn
(X ) =

1

n

n
∑

i=1

1 = 1.
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More examples

Definition: For an arbitrary set X we define the counting measure
(tællemålet) τ on P(X ) by

τ(A) = number of elements in A

The Lebesgue measure, mk, on the measurable space (Rk, Bk) is
uniquely specified by requiring that

mk((a1, b1) × . . . × (ak, bk)) =

k
∏

i=1

(bi − ai)

for ai < bi, i = 1, . . . , k, any finite real numbers.

Existence of mk: A little hard and lengthy – not this course.

Uniqueness of mk: Proved next week.
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Lebesgue measure

Lemma: For all x ∈ Rk

mk ({x}) = 0

Proof for k = 1: Observe that

{x} =
∞
⋂

n=1

(

x − 1

n
, x +

1

n

)

.

Then downward continuity implies that

m ({x}) = lim
n→∞

m

((

x − 1

n
, x +

1

n

))

= lim
n→∞

2

n
= 0

Consequence: All intervals

(a, b) [a, b) (a, b] [a, b]

have the same Lebesgue measure. . – p.14/25



Nullsets

Consider a measure µ on (X , E).

Definition: A set A ⊂ X is a µ-nullset if there is a B ∈ E such that

A ⊂ B , µ(B) = 0

Definition: A set A ⊂ X is µ-almost everywhere if Ac is a µ-nullset.
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Union of nullsets

Lemma: Let µ be a measure on (X , E). If A1, A2, . . . is a sequence of
µ-nullsets the

⋃

∞

n=1 An is a µ-nullset.

Proof: For any An we have Bn ∈ E such that An ⊂ Bn and µ(Bn) = 0.
Hence

∞
⋃

n=1

An ⊂
∞
⋃

n=1

Bn.

According to Boole’s inequality

µ

(

∞
⋃

n=1

Bn

)

≤
∞
∑

n=1

µ(Bn) = 0.
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Lebesgue measure

Qk is a mk-nullset.
Proof: Let Qk = {x1, x2, . . . , }. Using Boole’s inequality

mk(Qk) = mk

(

∞
⋃

n=1

{xn}
)

≤
∞
∑

n=1

mk({xn}) = 0.

All lower-dimensional sets in Rk have Lebesgue measure 0.

Closed and open boxes have the same mk-measure;

mk([a1, b1] × . . . × [ak, bk]) =
k
∏

i=1

(bi − ai)

and so do all semi-closed boxes.
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Cantors set

Divide a closed interval – the unit interval [0, 1], say – into three equal
parts.

Remove the central open part.

Repeat the procedure on the remaining two intervals.

Continue forever.

The Cantor set C is what is left when we are done.
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Cantors set
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Cantors set
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Cantors set
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Cantors set
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Cantors set
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Cantors set
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Cantors set

In the n’th step we have a collection of 2n−1 disjoint, closed intervals each
of length 3−(n−1).

Let Cn denote the union of these intervals, then C =
⋂

∞

n=1 Cn.

Remark: Since Cn is closed, C is closed. Especially, C ∈ B.

Lemma: m(C) = 0.

Proof:

m(C) ≤ m(Cn) = 2n−1

(

1

3

)n−1

=

(

2

3

)n−1

→ 0 for n → ∞

Remark: There exists a bijective map from Cantors set to the set of 0-1
sequences – hence the Cantor set is uncountable. . – p.25/25
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