Convergence Theorems

(X,E, 1) is a measure space.

The monotone convergence theorem: If f; < fo < ... € MT,if

falz) /7 f(2)

forn — oo forall z € X then [ f,du /' | fdu forn — oco.

The dominated convergence theorem: If f1, fa,... € MT,if

fn(z) = f()

for n — oo for all z € X then if thereis a g € M™ with [ gdu < oo such that

fn<gthen [ f,du — [ fduforn — occ.
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Example

Consider the measure space (R, B, m) and the function

nVx

5 nea? x > 0.

fn(z) =

Then f,,(x) — 0 for n — oo for all x € (0, c0) and

1
< —.
Since z — 27 IS integrable over (0, 1) it follows from dominated
convergence that
frndy — 0
(0,1)

for n — .
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Convergence Theorems Il

(X,E, 1) is a measure space.

The dominated convergence theorem: If f1, f5,... € M™T, if
fn(z) — f(2)

for n — oo for all x € X then if there isa g € M™ with [ gdu < oo such
that f,, < g then [ f,dpu — [ fdu for n — occ.

Fatou's lemma: If fi, fa,... € M, then

liminf/fnd,u > /liminffndu.

n—0oo
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The Lebesgue integral

(X,E, 1) is a measure space.

Definition: The integral of f € M™ is defined as

/fd,u =sup{I(s)|s<f, s€ ST}
fT(z) = max{f(z),0} f (z) =—min{f(z),0}

Definition: The function f € M is integrable if

/f+d,LL < oo and /f_d,u < 00.

If f € M is integrable the integral of f w.r.t. i Is

[ rau= [ rran- [ ran

The set of integrable functions is denoted £ = L(X,E, u) C M(X,E).
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The Lebesgue integral

® f=ft—f",Ifl=f"+f and f € L if and only if

/\fldﬂ < 00.

® IffelLandce Rthencf € £ and

/cfdu:c/fdu.

® Iffgelthenf+gec Land

/f+gdu=/fdu+/gdu-
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The Lebesgue integral

If f,g € Land f < g then

/fdu < /gdu-
deu| < [ 171

If f,g € Mthenif f = ¢ yu-almost everywhere we have that f € L if
and only if g € £ in which case

/fdu= /gdu-

Definition: If A e E, if f e Mandif14f € L then

/A Fu= [ 1ardp

If f € L then
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Almost everywhere

Many statements and results in measure theory have formulations
Involving “almost everywhere” (or “almost surely” for probability
measures).

Recall, a p-nullset G C X is a set contained in a set A € E with u(A) = 0.

We say that f = g u-almost everywhere (u-a.e.) (naesten overalt, n.o.) for
f,g € M™T (or f,g € M) if the set

{r e | flz)#g(x)}

IS a u-nullset.
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Almost everywhere

Lemma: If f € M then [ fdu = 0if and only if f =0 pu-a.e. Moreover, if

f,g € M™ then
/fdu= /gdu

Theorem: If f,g € M thenif f = g y-a.e. we have that f € L if and only if

g € L in which case
/fdu= /gdu-

If f =g pu-a.e.
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Ultimative dominate convergence

The dominated convergence theorem — ultimate version: Let
fi, f2,... € M(X,E) and assume that

fn— f p-a.e.

If there exists a function g € £ such that

‘fn‘ <g p-ae.

then f, f1, fo,... € L(X,E, 1) and

[ futn— [ s

for n — .

Proof: Slightly different from the proof of Theorem 7.6 in the book — we give

the high-lights on the following two slides. —pom



Proof of Dom. Conv. Thm.

Define
An = {rzeX|[fa(2)] < g(2)}
B = {ze&|fulz) = flz)}
Their complements are p-nullsets by assumption and so is A€ if
A=BNATNAsN...

Therefore there is a set C € E with u(C¢) = 0 and with C C A.

We conclude that for all x ¢ X
lo(@)fif (x) = le(@)fT(z) and 1lc(z)f, (z) — lo(z)f~ (z)
for n — oo and that

le(@)f) () < lc(z)g(z) and lc(2)f, () < lc(@)g().
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Proof of Dom. Conv. Thm.

Since g € £ and since (¢ is a u-nullset we get that f, f1, fo,... € L.
]

By Theorem 6.27 and since C° is a p-nullset it follows that

/fidu=/1cf$du—>/10f+du=/f+du,

and likewise for f,~. In conclusion,

[ fuan= [ grdu= [ godu— [rran- [ ran= [ ran
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Integration w.r.t. m

For f € MT(R,B) or f € L(R, B, m) we introduce the notation

/ ' fla)de = /(a,b) fdm

fora < binR.

Observe that since {a} and {b} are m-nullsets it does not matter if we

integrate over [a, b] or (a, b) or (a,b] or [a,b).
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Integration w.r.t. m

Definition: The set of integrable functions on (a, b) with a < bin [—o0, 0] IS
denoted

L(a,b)

A function f € M(R,B) is called locally integrable over (a,b) if f € L(c,d)

forallc,d e Rwitha < c < d <b.
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Riemann integrals

The proper (egentligt) Riemann integral of f : R — R over [a,b], a < bin
R, is denoted
RI(f,a,b)

given that it exists.

From the definition
s <RI(f,a,b) < S

with

S:ZCi(Zi—Zi_l) S:Zdi(zi_zi—l)a

a=20< 21 < ...<2zZp_1<2z,=>band

c; =inf{f(x) |z € [2;-1,2i]} di=sup{f(x)|x € |zi-1,2]}
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Improper Riemann integrals

The improper (uegentligt) Riemann integral of f : R — R over (a,b), a < b
In [—o0, oo, is defined by the limit

IRI(f,a,b) = lim RI(f,c,d)

c—a,c>a

d—b,d<b

given that f has a proper Riemann integral on [c,d] for all ¢,d € R with

a < ¢ < d < band given that the limits exist.
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Riemann and Lebesqgue

Theorem: If f € M(R,B) has a proper Riemann integral over the interval
la, b] then f € L(a,b) and

b
/ fdmz/ f(x)dz = RI(f,a,b).
(a,b) a

Theorem: If f € M(R,B) has an improper Riemann integral over the
interval (a,b) and if f € L(a,b) then

b
/ fdm = / f(x)dx = IRI(f, a,b).
(a,b) a

There are nasty examples where IRI(f, a, b) exists but where f & L(a,b). —»*=



Riemann-like rules

o o

Convention: If b < a then f; fz)dz = — [, f(z)dz.

Insertion rule: If f is locally integrable on (a,b) and ¢y, ¢, c3 € (a,b)

then ) ) )
/ F(z)de = / f(a:)d:ch/C: f(z)da.

If f € M(R,B) is continuous on (a,b) and F' is an antiderivative of f
on (a,b), thatis, F'is differentiable on (a,b) with F'(z) = f(x) for
x € (a,b) then

/ f(x)de = F(b) — F(a), x1,z2 € (a,b).

Integration by parts works (Example 7.22).
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Antiderivatives

Theorem 7.18: If f € M(R,B) is locally integrable over (a, b) then
F : (a,b) — R defined by

F(x) = /9«“ f(x)de =z € (a,b)

for any fixed x¢o € (a,b) is a continuous function. If f is continuous in

x € (a,b) then F is differentiable in = with F'(x) = f(x).
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Example

Consider the M™ (R, B)-function

rx—x °, x>0

(implicit convention, the function is O for x < 0 and the global function is
measurable by Lemma 4.11).

/OO . ﬁ ifa > 1
r Ydx = _
1 00 fa<l1

/1 . ﬁ ifa <1
r %dx =
0 00 fa>1
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Functions given as integrals

Let (X,E, 1) be a measure space, Y anysetand f: X x Y — R a
function whose section function (snitfunktion)

r— f(z,y)

is either in M™ orin £ for all y € Y then we can define a function
¢:Y — R* by

Mw=/f®wﬂw
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The I'- and B-functions

Definition: The z-section of f(z,\) = 2*~te=® forz > 0 and X\ > 0 are in
M and we define the I'-function by

['(A) 2/ e e % de.
0

The integral is finite for all A > 0.

Definition: The z-section of f(x, \, p) = 22~ 1(1 — 2)*~1 for z € (0,1) and
A, > 0 are in M™* and we define the B-function (Beta-function) by

1
B\ p) = / A1 — ) e
0

The integral is finite for all A\, i > 0.
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