

Convergence Theorems

$(\mathcal{X}, \mathbb{E}, \mu)$ is a measure space.

The monotone convergence theorem: If $f_1 \leq f_2 \leq \dots \in \mathcal{M}^+$, if

$$f_n(x) \nearrow f(x)$$

for $n \rightarrow \infty$ for all $x \in \mathcal{X}$ then $\int f_n d\mu \nearrow \int f d\mu$ for $n \rightarrow \infty$.

The dominated convergence theorem: If $f_1, f_2, \dots \in \mathcal{M}^+$, if

$$f_n(x) \rightarrow f(x)$$

for $n \rightarrow \infty$ for all $x \in \mathcal{X}$ then if there is a $g \in \mathcal{M}^+$ with $\int g d\mu < \infty$ such that $f_n \leq g$ then $\int f_n d\mu \rightarrow \int f d\mu$ for $n \rightarrow \infty$.

Example

Consider the measure space $(\mathbb{R}, \mathbb{B}, m)$ and the function

$$f_n(x) = \frac{n\sqrt{x}}{1 + n^2x^2} \quad x > 0.$$

Then $f_n(x) \rightarrow 0$ for $n \rightarrow \infty$ for all $x \in (0, \infty)$ and

$$f_n(x) \leq \frac{1}{2\sqrt{x}}.$$

Since $x \mapsto \frac{1}{2\sqrt{x}}$ is integrable over $(0, 1)$ it follows from **dominated convergence** that

$$\int_{(0,1)} f_n d\mu \rightarrow 0$$

for $n \rightarrow \infty$.

Convergence Theorems II

$(\mathcal{X}, \mathbb{E}, \mu)$ is a measure space.

The dominated convergence theorem: If $f_1, f_2, \dots \in \mathcal{M}^+$, if

$$f_n(x) \rightarrow f(x)$$

for $n \rightarrow \infty$ for all $x \in \mathcal{X}$ then if there is a $g \in \mathcal{M}^+$ with $\int g d\mu < \infty$ such that $f_n \leq g$ then $\int f_n d\mu \rightarrow \int f d\mu$ for $n \rightarrow \infty$.

Fatou's lemma: If $f_1, f_2, \dots \in \mathcal{M}^+$, then

$$\liminf_{n \rightarrow \infty} \int f_n d\mu \geq \int \liminf_{n \rightarrow \infty} f_n d\mu.$$

The Lebesgue integral

$(\mathcal{X}, \mathbb{E}, \mu)$ is a measure space.

Definition: The integral of $f \in \mathcal{M}^+$ is defined as

$$\int f d\mu = \sup\{I(s) \mid s \leq f, s \in \mathcal{S}^+\}.$$

$$f^+(x) = \max\{f(x), 0\} \quad f^-(x) = -\min\{f(x), 0\}$$

Definition: The function $f \in \mathcal{M}$ is **integrable** if

$$\int f^+ d\mu < \infty \quad \text{and} \quad \int f^- d\mu < \infty.$$

If $f \in \mathcal{M}$ is integrable the integral of f w.r.t. μ is

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

The set of **integrable functions** is denoted $\mathcal{L} = \mathcal{L}(\mathcal{X}, \mathbb{E}, \mu) \subset \mathcal{M}(\mathcal{X}, \mathbb{E})$.

The Lebesgue integral

- $f = f^+ - f^-$, $|f| = f^+ + f^-$ and $f \in \mathcal{L}$ if and only if

$$\int |f| d\mu < \infty.$$

- If $f \in \mathcal{L}$ and $c \in \mathbb{R}$ then $cf \in \mathcal{L}$ and

$$\int cf d\mu = c \int f d\mu.$$

- If $f, g \in \mathcal{L}$ then $f + g \in \mathcal{L}$ and

$$\int f + g d\mu = \int f d\mu + \int g d\mu.$$

The Lebesgue integral

- If $f, g \in \mathcal{L}$ and $f \leq g$ then

$$\int f d\mu \leq \int g d\mu.$$

- If $f \in \mathcal{L}$ then

$$\left| \int f d\mu \right| \leq \int |f| d\mu.$$

- If $f, g \in \mathcal{M}$ then if $f = g$ μ -almost everywhere we have that $f \in \mathcal{L}$ if and only if $g \in \mathcal{L}$ in which case

$$\int f d\mu = \int g d\mu.$$

- **Definition:** If $A \in \mathbb{E}$, if $f \in \mathcal{M}$ and if $1_A f \in \mathcal{L}$ then

$$\int_A f d\mu = \int 1_A f d\mu.$$

Almost everywhere

Many statements and results in measure theory have formulations involving “almost everywhere” (or “almost surely” for probability measures).

Recall, a μ -nullset $G \subset \mathcal{X}$ is a set **contained** in a set $A \in \mathbb{E}$ with $\mu(A) = 0$.

We say that $f = g$ μ -almost everywhere (μ -a.e.) (næsten overalt, n.o.) for $f, g \in \mathcal{M}^+$ (or $f, g \in \mathcal{M}$) if the set

$$\{x \in \mathcal{X} \mid f(x) \neq g(x)\}$$

is a μ -nullset.

Almost everywhere

Lemma: If $f \in \mathcal{M}^+$ then $\int f d\mu = 0$ if and only if $f = 0$ μ -a.e. Moreover, if $f, g \in \mathcal{M}^+$ then

$$\int f d\mu = \int g d\mu$$

if $f = g$ μ -a.e.

Theorem: If $f, g \in \mathcal{M}$ then if $f = g$ μ -a.e. we have that $f \in \mathcal{L}$ if and only if $g \in \mathcal{L}$ in which case

$$\int f d\mu = \int g d\mu.$$

Ultimative dominate convergence

The dominated convergence theorem – ultimate version: Let $f_1, f_2, \dots \in \mathcal{M}(\mathcal{X}, \mathbb{E})$ and assume that

$$f_n \rightarrow f \quad \mu\text{-a.e.}$$

If there exists a function $g \in \mathcal{L}$ such that

$$|f_n| \leq g \quad \mu\text{-a.e.}$$

then $f, f_1, f_2, \dots \in \mathcal{L}(\mathcal{X}, \mathbb{E}, \mu)$ and

$$\int f_n d\mu \rightarrow \int f d\mu$$

for $n \rightarrow \infty$.

Proof: Slightly different from the proof of Theorem 7.6 in the book – we give the high-lights on the following two slides.

Proof of Dom. Conv. Thm.

Define

$$\begin{aligned} A_n &= \{x \in \mathcal{X} \mid |f_n(x)| \leq g(x)\} \\ B &= \{x \in \mathcal{X} \mid f_n(x) \rightarrow f(x)\}. \end{aligned}$$

Their complements are μ -nullsets by assumption and so is A^c if

$$A = B \cap A_1 \cap A_2 \cap \dots$$

Therefore there is a set $C \in \mathbb{E}$ with $\mu(C^c) = 0$ and with $C \subset A$.

We conclude that for all $x \in \mathcal{X}$

$$1_C(x)f_n^+(x) \rightarrow 1_C(x)f^+(x) \quad \text{and} \quad 1_C(x)f_n^-(x) \rightarrow 1_C(x)f^-(x)$$

for $n \rightarrow \infty$ and that

$$1_C(x)f_n^+(x) \leq 1_C(x)g(x) \quad \text{and} \quad 1_C(x)f_n^-(x) \leq 1_C(x)g(x).$$

Proof of Dom. Conv. Thm.

Since $g \in \mathcal{L}$ and since C^c is a μ -nullset we get that $f, f_1, f_2, \dots \in \mathcal{L}$.

By Theorem 6.27 and since C^c is a μ -nullset it follows that

$$\int f_n^+ d\mu = \int 1_C f_n^+ d\mu \rightarrow \int 1_C f^+ d\mu = \int f^+ d\mu,$$

and likewise for f_n^- . In conclusion,

$$\int f_n d\mu = \int f_n^+ d\mu - \int f_n^- d\mu \rightarrow \int f^+ d\mu - \int f^- d\mu = \int f d\mu.$$

Integration w.r.t. m

For $f \in \mathcal{M}^+(\mathbb{R}, \mathbb{B})$ or $f \in \mathcal{L}(\mathbb{R}, \mathbb{B}, m)$ we introduce the notation

$$\int_a^b f(x)dx = \int_{(a,b)} f dm$$

for $a \leq b$ in \mathbb{R} .

Observe that since $\{a\}$ and $\{b\}$ are m -nullsets it does not matter if we integrate over $[a, b]$ or (a, b) or $(a, b]$ or $[a, b)$.

Integration w.r.t. m

Definition: The set of integrable functions on (a, b) with $a < b$ in $[-\infty, \infty]$ is denoted

$$\mathcal{L}(a, b)$$

A function $f \in \mathcal{M}(\mathbb{R}, \mathbb{B})$ is called **locally integrable** over (a, b) if $f \in \mathcal{L}(c, d)$ for all $c, d \in \mathbb{R}$ with $a < c < d < b$.

Riemann integrals

The **proper** (egentligt) Riemann integral of $f : \mathbb{R} \rightarrow \mathbb{R}$ over $[a, b]$, $a < b$ in \mathbb{R} , is denoted

$$\text{RI}(f, a, b)$$

given that it exists.

From the definition

$$s \leq \text{RI}(f, a, b) \leq S$$

with

$$s = \sum_i c_i(z_i - z_{i-1}) \quad S = \sum_i d_i(z_i - z_{i-1}),$$

$a = z_0 < z_1 < \dots < z_{n-1} < z_n = b$ and

$$c_i = \inf\{f(x) \mid x \in [z_{i-1}, z_i]\} \quad d_i = \sup\{f(x) \mid x \in [z_{i-1}, z_i]\}.$$

Improper Riemann integrals

The **improper** (uegentligt) Riemann integral of $f : \mathbb{R} \rightarrow \mathbb{R}$ over (a, b) , $a < b$ in $[-\infty, \infty]$, is defined by the limit

$$\text{IRI}(f, a, b) = \lim_{\substack{c \rightarrow a, c > a \\ d \rightarrow b, d < b}} \text{RI}(f, c, d)$$

given that f has a proper Riemann integral on $[c, d]$ for all $c, d \in \mathbb{R}$ with $a < c < d < b$ and given that the limits exist.

Riemann and Lebesgue

Theorem: If $f \in \mathcal{M}(\mathbb{R}, \mathbb{B})$ has a **proper** Riemann integral over the interval $[a, b]$ then $f \in \mathcal{L}(a, b)$ and

$$\int_{(a,b)} f dm = \int_a^b f(x) dx = \mathbf{RI}(f, a, b).$$

Theorem: If $f \in \mathcal{M}(\mathbb{R}, \mathbb{B})$ has an **improper** Riemann integral over the interval (a, b) and if $f \in \mathcal{L}(a, b)$ then

$$\int_{(a,b)} f dm = \int_a^b f(x) dx = \mathbf{IRI}(f, a, b).$$

There are nasty examples where $\mathbf{IRI}(f, a, b)$ exists but where $f \notin \mathcal{L}(a, b)$. - p.16/21

Riemann-like rules

- **Convention:** If $b < a$ then $\int_a^b f(x)dx = - \int_b^a f(x)dx$.
- **Insertion rule:** If f is locally integrable on (a, b) and $c_1, c_2, c_3 \in (a, b)$ then

$$\int_{c_1}^{c_3} f(x)dx = \int_{c_1}^{c_2} f(x)dx + \int_{c_2}^{c_3} f(x)dx.$$

- If $f \in \mathcal{M}(\mathbb{R}, \mathbb{B})$ is continuous on (a, b) and F is an **antiderivative** of f on (a, b) , that is, F is differentiable on (a, b) with $F'(x) = f(x)$ for $x \in (a, b)$ then

$$\int_a^b f(x)dx = F(b) - F(a), \quad x_1, x_2 \in (a, b).$$

- Integration by parts works (Example 7.22).

Antiderivatives

Theorem 7.18: If $f \in \mathcal{M}(\mathbb{R}, \mathbb{B})$ is locally integrable over (a, b) then $F : (a, b) \rightarrow \mathbb{R}$ defined by

$$F(x) = \int_{x_0}^x f(x)dx \quad x \in (a, b)$$

for any fixed $x_0 \in (a, b)$ is a continuous function. If f is continuous in $x \in (a, b)$ then F is differentiable in x with $F'(x) = f(x)$.

Example

Consider the $\mathcal{M}^+(\mathbb{R}, \mathbb{B})$ -function

$$x \mapsto x^{-\alpha}, \quad x > 0$$

(implicit convention, the function is 0 for $x \leq 0$ and the global function is measurable by Lemma 4.11).

$$\int_1^\infty x^{-\alpha} dx = \begin{cases} \frac{1}{\alpha-1} & \text{if } \alpha > 1 \\ \infty & \text{if } \alpha \leq 1 \end{cases}$$

$$\int_0^1 x^{-\alpha} dx = \begin{cases} \frac{1}{1-\alpha} & \text{if } \alpha < 1 \\ \infty & \text{if } \alpha \geq 1 \end{cases}$$

Functions given as integrals

Let $(\mathcal{X}, \mathbb{E}, \mu)$ be a measure space, \mathcal{Y} any set and $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ a function whose **section function** (snitfunktion)

$$x \mapsto f(x, y)$$

is either in \mathcal{M}^+ or in \mathcal{L} for all $y \in \mathcal{Y}$ then we can define a function $\phi : \mathcal{Y} \rightarrow \mathbb{R}^*$ by

$$\phi(y) = \int f(x, y) d\mu.$$

The Γ - and B -functions

Definition: The x -section of $f(x, \lambda) = x^{\lambda-1}e^{-x}$ for $x > 0$ and $\lambda > 0$ are in \mathcal{M}^+ and we define the Γ -function by

$$\Gamma(\lambda) = \int_0^\infty x^{\lambda-1}e^{-x}dx.$$

The integral is finite for all $\lambda > 0$.

Definition: The x -section of $f(x, \lambda, \mu) = x^{\lambda-1}(1-x)^{\mu-1}$ for $x \in (0, 1)$ and $\lambda, \mu > 0$ are in \mathcal{M}^+ and we define the B -function (Beta-function) by

$$B(\lambda, \mu) = \int_0^1 x^{\lambda-1}(1-x)^{\mu-1}dx.$$

The integral is finite for all $\lambda, \mu > 0$.