
Convergence Theorems

(X , E, µ) is a measure space.

The monotone convergence theorem: If f1 ≤ f2 ≤ . . . ∈ M+, if

fn(x) ր f(x)

for n → ∞ for all x ∈ X then
∫

fndµ ր
∫

fdµ for n → ∞.

The dominated convergence theorem: If f1, f2, . . . ∈ M+, if

fn(x) → f(x)

for n → ∞ for all x ∈ X then if there is a g ∈ M+ with
∫

gdµ < ∞ such that

fn ≤ g then
∫

fndµ →
∫

fdµ for n → ∞.
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Example

Consider the measure space (R, B, m) and the function

fn(x) =
n
√

x

1 + n2x2
x > 0.

Then fn(x) → 0 for n → ∞ for all x ∈ (0,∞) and

fn(x) ≤ 1

2
√

x
.

Since x 7→ 1
2
√

x
is integrable over (0, 1) it follows from dominated

convergence that
∫

(0,1)

fndµ → 0

for n → ∞.
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Convergence Theorems II

(X , E, µ) is a measure space.

The dominated convergence theorem: If f1, f2, . . . ∈ M+, if

fn(x) → f(x)

for n → ∞ for all x ∈ X then if there is a g ∈ M+ with
∫

gdµ < ∞ such
that fn ≤ g then

∫

fndµ →
∫

fdµ for n → ∞.

Fatou’s lemma: If f1, f2, . . . ∈ M+, then

lim inf
n→∞

∫

fndµ ≥
∫

lim inf
n→∞

fndµ.
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The Lebesgue integral

(X , E, µ) is a measure space.

Definition: The integral of f ∈ M+ is defined as

∫

fdµ = sup{I(s) | s ≤ f, s ∈ S+}.

f+(x) = max{f(x), 0} f−(x) = −min{f(x), 0}

Definition: The function f ∈ M is integrable if

∫

f+dµ < ∞ and
∫

f−dµ < ∞.

If f ∈ M is integrable the integral of f w.r.t. µ is

∫

fdµ =

∫

f+dµ −
∫

f−dµ.

The set of integrable functions is denoted L = L(X , E, µ) ⊂ M(X , E).
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The Lebesgue integral

f = f+ − f−, |f | = f+ + f− and f ∈ L if and only if

∫

|f |dµ < ∞.

If f ∈ L and c ∈ R then cf ∈ L and

∫

cfdµ = c

∫

fdµ.

If f, g ∈ L then f + g ∈ L and

∫

f + gdµ =

∫

fdµ +

∫

gdµ.
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The Lebesgue integral

If f, g ∈ L and f ≤ g then

∫

fdµ ≤
∫

gdµ.

If f ∈ L then
∣

∣

∣

∣

∫

fdµ

∣

∣

∣

∣

≤
∫

|f |dµ.

If f, g ∈ M then if f = g µ-almost everywhere we have that f ∈ L if
and only if g ∈ L in which case

∫

fdµ =

∫

gdµ.

Definition: If A ∈ E, if f ∈ M and if 1Af ∈ L then

∫

A

fdµ =

∫

1Afdµ.
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Almost everywhere

Many statements and results in measure theory have formulations
involving “almost everywhere” (or “almost surely” for probability
measures).

Recall, a µ-nullset G ⊂ X is a set contained in a set A ∈ E with µ(A) = 0.

We say that f = g µ-almost everywhere (µ-a.e.) (næsten overalt, n.o.) for
f, g ∈ M+ (or f, g ∈ M) if the set

{x ∈ X | f(x) 6= g(x)}

is a µ-nullset.
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Almost everywhere

Lemma: If f ∈ M+ then
∫

fdµ = 0 if and only if f = 0 µ-a.e. Moreover, if
f, g ∈ M+ then

∫

fdµ =

∫

gdµ

if f = g µ-a.e.

Theorem: If f, g ∈ M then if f = g µ-a.e. we have that f ∈ L if and only if
g ∈ L in which case

∫

fdµ =

∫

gdµ.
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Ultimative dominate convergence

The dominated convergence theorem – ultimate version: Let
f1, f2, . . . ∈ M(X , E) and assume that

fn → f µ-a.e.

If there exists a function g ∈ L such that

|fn| ≤ g µ-a.e.

then f, f1, f2, . . . ∈ L(X , E, µ) and

∫

fndµ →
∫

fdµ

for n → ∞.

Proof: Slightly different from the proof of Theorem 7.6 in the book – we give

the high-lights on the following two slides. . – p.9/21



Proof of Dom. Conv. Thm.

Define

An = {x ∈ X | |fn(x)| ≤ g(x)}
B = {x ∈ X | fn(x) → f(x)}.

Their complements are µ-nullsets by assumption and so is Ac if

A = B ∩ A1 ∩ A2 ∩ . . .

Therefore there is a set C ∈ E with µ(Cc) = 0 and with C ⊂ A.

We conclude that for all x ∈ X

1C(x)f+
n (x) → 1C(x)f+(x) and 1C(x)f−

n (x) → 1C(x)f−(x)

for n → ∞ and that

1C(x)f+
n (x) ≤ 1C(x)g(x) and 1C(x)f−

n (x) ≤ 1C(x)g(x).
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Proof of Dom. Conv. Thm.

Since g ∈ L and since Cc is a µ-nullset we get that f, f1, f2, . . . ∈ L.

By Theorem 6.27 and since Cc is a µ-nullset it follows that

∫

f+
n dµ =

∫

1Cf+
n dµ →

∫

1Cf+dµ =

∫

f+dµ,

and likewise for f−
n . In conclusion,

∫

fndµ =

∫

f+
n dµ −

∫

f−
n dµ →

∫

f+dµ −
∫

f−dµ =

∫

fdµ.
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Integration w.r.t. m

For f ∈ M+(R, B) or f ∈ L(R, B, m) we introduce the notation

∫ b

a

f(x)dx =

∫

(a,b)

fdm

for a ≤ b in R.

Observe that since {a} and {b} are m-nullsets it does not matter if we

integrate over [a, b] or (a, b) or (a, b] or [a, b).
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Integration w.r.t. m

Definition: The set of integrable functions on (a, b) with a < b in [−∞,∞] is
denoted

L(a, b)

A function f ∈ M(R, B) is called locally integrable over (a, b) if f ∈ L(c, d)

for all c, d ∈ R with a < c < d < b.
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Riemann integrals

The proper (egentligt) Riemann integral of f : R → R over [a, b], a < b in
R, is denoted

RI(f, a, b)

given that it exists.

From the definition

s ≤ RI(f, a, b) ≤ S

with

s =
∑

i

ci(zi − zi−1) S =
∑

i

di(zi − zi−1),

a = z0 < z1 < . . . < zn−1 < zn = b and

ci = inf{f(x) | x ∈ [zi−1, zi]} di = sup{f(x) | x ∈ [zi−1, zi]}.
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Improper Riemann integrals

The improper (uegentligt) Riemann integral of f : R → R over (a, b), a < b

in [−∞,∞], is defined by the limit

IRI(f, a, b) = lim
c→a,c>a

d→b,d<b

RI(f, c, d)

given that f has a proper Riemann integral on [c, d] for all c, d ∈ R with

a < c < d < b and given that the limits exist.
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Riemann and Lebesgue

Theorem: If f ∈ M(R, B) has a proper Riemann integral over the interval
[a, b] then f ∈ L(a, b) and

∫

(a,b)

fdm =

∫ b

a

f(x)dx = RI(f, a, b).

Theorem: If f ∈ M(R, B) has an improper Riemann integral over the
interval (a, b) and if f ∈ L(a, b) then

∫

(a,b)

fdm =

∫ b

a

f(x)dx = IRI(f, a, b).

There are nasty examples where IRI(f, a, b) exists but where f 6∈ L(a, b). . – p.16/21



Riemann-like rules

Convention: If b < a then
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx.

Insertion rule: If f is locally integrable on (a, b) and c1, c2, c3 ∈ (a, b)

then
∫ c3

c1

f(x)dx =

∫ c2

c1

f(x)dx +

∫ c3

c2

f(x)dx.

If f ∈ M(R, B) is continuous on (a, b) and F is an antiderivative of f

on (a, b), that is, F is differentiable on (a, b) with F ′(x) = f(x) for
x ∈ (a, b) then

∫ b

a

f(x)dx = F (b) − F (a), x1, x2 ∈ (a, b).

Integration by parts works (Example 7.22).
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Antiderivatives

Theorem 7.18: If f ∈ M(R, B) is locally integrable over (a, b) then
F : (a, b) → R defined by

F (x) =

∫ x

x0

f(x)dx x ∈ (a, b)

for any fixed x0 ∈ (a, b) is a continuous function. If f is continuous in

x ∈ (a, b) then F is differentiable in x with F ′(x) = f(x).
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Example

Consider the M+(R, B)-function

x 7→ x−α, x > 0

(implicit convention, the function is 0 for x ≤ 0 and the global function is
measurable by Lemma 4.11).

∫ ∞

1

x−αdx =







1
α−1 if α > 1

∞ if α ≤ 1

∫ 1

0

x−αdx =







1
1−α

if α < 1

∞ if α ≥ 1
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Functions given as integrals

Let (X , E, µ) be a measure space, Y any set and f : X × Y → R a
function whose section function (snitfunktion)

x 7→ f(x, y)

is either in M+ or in L for all y ∈ Y then we can define a function
φ : Y → R

∗ by

φ(y) =

∫

f(x, y)dµ.
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The Γ- and B-functions

Definition: The x-section of f(x, λ) = xλ−1e−x for x > 0 and λ > 0 are in
M+ and we define the Γ-function by

Γ(λ) =

∫ ∞

0

xλ−1e−xdx.

The integral is finite for all λ > 0.

Definition: The x-section of f(x, λ, µ) = xλ−1(1 − x)µ−1 for x ∈ (0, 1) and
λ, µ > 0 are in M+ and we define the B-function (Beta-function) by

B(λ, µ) =

∫ 1

0

xλ−1(1 − x)µ−1dx.

The integral is finite for all λ, µ > 0.
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