
7

Prediction and Classification

7.1 Prediction and loss functions

If (X,Y ) denote a pair of random variables, we are interested in predicting the value
of Y given that we have observed X = x. In general, the sample space of X and Y
may be arbitrary, E1 and E2, say, and their simultaneous distribution on E1 × E2

will be denoted P . The marginal distribution of X and Y will be denoted P1 and P2,
respectively. If X and Y are independent, there is no point in predicting Y on the
basis of observing X. Indeed, conditionally on X = x the distribution of Y would
be P2 irrespectively of the value of x ∈ E1.

From a probabilistic point of view, all that we need to do is to compute the condi-
tional distribution of Y given X = x. Then this probability measure tells us exactly
which values Y can attain with high probability if X = x. The conditional probabil-
ity measure is, however, often a little complicated to interpret, nor is it really what
we want to report as a “prediction”. As a prediction we want to report an element
in the sample space E2.

If the sample spaces are both subsets of R
n or alternatively discrete, and if P is

given by the density (or point probabilities) f : E1 × E2 → (0,∞), then the condi-
tional distribution of Y given X = x can be specified by the conditional density (or
conditional point probabilities)

f(y|x) =
f(x, y)

f1(x)
(7.1)

where f1(x) =
∫

E2
f(x, y)dy is the density for the marginal distribution of X. If the

sample spaces are both discrete, the marginal point probabilities for X are given by
f1(x) =

∑

y∈E2
f(x, y).

An important case that we are going to consider in more details in the next section
is where E2 is discrete and E1 in principle can be an arbitrary set. Then it is
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2 Prediction and Classification

often the case that the simultaneous distribution of (X,Y ) is given by the marginal
distribution of Y (in terms of point probabilities f2) and the conditional distribution
of X given Y = y. If E1 ⊆ R

n and the conditional distribution has density g(x|y),
we find that the marginal distribution of X is given by

P(X ∈ A) =
∑

y∈E2

P(X ∈ A,Y = y)

=
∑

y∈E2

P(X ∈ A|Y = y)f2(y)

=
∑

y∈E2

∫

A

g(x|y)dxf2(y)

=

∫

A

∑

y∈E2

f2(y)g(x|y)dx

which shows that the marginal distribution of X has density

f1(x) =
∑

y∈E2

f2(y)g(x|y).

The conditional distribution of Y given X = x is then given by the point probabilities

f(y|x) =
f2(y)g(x|y)

f1(x)
. (7.2)

You may check that they are positive and sum to one by the definition of f1.

In situations like (7.1) or (7.2) where we have given the conditional distribution of Y
given X = x either in terms of a density or in terms of point probabilities, a sensible
choice of predictor is the maximum a posteriori predictor.

ŷ(x) = arg maxyf(y|x).

Especially in the case with discrete E2 sample space we can make sense out of this
predictor, as it produces the single element in E2 that have the highest probability
in the conditional distribution of Y given X = x.

We observe that to use the maximum posteriori predictor, we do not need to carry
out the computation of f1(x), since for given x this is a constant that does not depend
upon y. There is another structurally interesting observation. We rewrite the joint
density in (7.1) as f(x, y) = f2(y)g(x|y) where f2 denotes the marginal density for
the distribution of Y and g(x|y) the conditional density for the distribution of X
given Y = y. Then the maximum a posteriori predictor in both cases considered
above can be computed as

ŷ(x) = arg maxyf2(y)g(x|y) = arg maxy log f2(y) + log g(x|y).
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The last term here, log g(x|y), is structurally similar to the logarithm of a likelihood
function given the observation x ∈ E1, and we maximize over the unknown (unob-
served) y. The other term, log f2(y), depends upon y only – and thus doesn’t change
for different observations x – and it can be understood as regulating the prediction
in concordance with the marginal distribution of Y .

Example 7.1.1. If E2 = R and the conditional distribution of Y given X = x is a
normal distribution with mean value g(x) that depends upon x through the function
g : E1 → R, and variance σ2 > 0, then

f(y|x) =
1√

2πσ2
exp

(

−(y − g(x))2

2σ2

)

.

Thus the maximum a posteriori predictor is

arg miny∈R

1√
2πσ2

exp

(

−(y − g(x))2

2σ2

)

= arg miny∈R − (y − g(x))2 = g(x).

Thus the maximum a posteriori predictor is the conditional expectation of Y given
X = x. �

It is natural to ask what properties a good predictor should have? But is not so
easy to answer this question. The attempt to do so will always depend upon the
context and the purpose for which the predictor is going to be used. Are we trying
to predict the future development of stock prices given the history, are we making a
diagnose for a patient based on a series of test result, or are we making computational
annotations of biological sequences. The applications of predictions span a huge
number of different subjects and problems. The approach to unify the theory for
choosing good predictors leads to statistical decision theory. This is based on the
introduction of a loss function L : E2 × E2 → [0,∞), such that if ŷ : E1 → E2 is
any predictor, then

L(y, ŷ(x))

is the loss of predicting ŷ(x) when Y = y. A big loss is not desirable. The distribution
of the random variable L(Y, ŷ(X)), which is given in terms of a transformation of
the simultaneous distribution of (X,Y ), is precisely the distribution of the losses
that we will suffer when using the predictor ŷ. To compare predictors using the loss
function L, we should therefore compare their corresponding loss-distributions. The
closer to 0 the loss-distribution is located the better.

Since it is difficult to compare distributions, one often rely on comparing their mean
values. The expected prediction error for the predictor ŷ is defined as

EPE(ŷ) = E(L(Y, ŷ(X))).

The optimal predictor is then defined as the predictor that minimizes EPE over the
set of possible predictors.
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There are two important observations. Since the quality of the predictor is measured
by the loss function L, the optimal predictor is only optimal in the sense that L
dictates. Different choices of loss functions lead to different optimal solutions. It
is in general never possible to come up with a predictor that is optimal in every
thinkable way – only in the the sense of minimizing the expected loss for a particular
loss function. The other observation is that we consider only the expectation of
L(Y, ŷ(X)) as a measure good performance, when we use EPE.

Example 7.1.2. The standard loss function is the squared error loss. When E2 ⊆ R

we define the squared error loss function as

L2(y, ŷ) = (y − ŷ)2.

With the distribution of X having density f1 we find that

EPE(ŷ) = E((ŷ(X) − Y )2)

=

∫ ∫

(ŷ(x) − y)2f1(x)f(y|x)dxdy

=

∫ ∫

(ŷ(x) − y)2f(y|x)dyf1(x)dx

We find that if we choose ŷ(x) to minimize the inner integral
∫

(ŷ(x) − y)2f(y|x)dy

for every x ∈ E1, we have also minimized EPE. We recognize this integral as the
expectation of (ŷ(x) − Y )2 in the conditional distribution of Y given X = x, which
we will write as E((ŷ(x) − Y )2|X = x). By (4.11) we have that

E((ŷ(x) − Y )2|X = x) = V(Y |X = x) + (ŷ(x) − E(Y |X = x))2,

which is minimized if and only if ŷ(x) = E(Y |X = x). That is, the optimal predictor
in the sense of minimizing the expected prediction error when using the squared
error loss is given as

ŷ(x) = E(Y |X = x) =

∫

yf(y|x)dy

where E(Y |X = x) is the conditional expectation of Y given that X = x.

If E2 ⊆ R
n a simple generalization of the squared error loss to n-dimensional vectors

is obtained by taking

L(y, ŷ) =

n
∑

i=1

(yi − ŷi)
2,

which is the sum of squared deviations for each of the coordinates. It is not difficult
to see that the argument above can be carried out coordinate by coordinate to give
the optimal predictor

ŷi(x) = E(Yi|X = x).

�



Classification 5

Example 7.1.3. In Example 2.8.17 we considered the linear regression model, where
the distribution of (X,Y ) on R

2 was given in terms of the marginal distribution of
X and the conditional distribution of Y given X. In particular we have that the
conditional mean of Y given X = x was specified to be

E(Y |X = x) = α + βx.

Thus the optimal predictor in the sense of squared error loss of Y given X = x is
simply ŷ(x) = α + βx. �

Example 7.1.4. Another possible choice of loss function is the absolute value of
the deviation instead of the squared deviation. That is,

L1(y, ŷ) = |y − ŷ|.

The solution is that the optimal predictor is the conditional median of Y in the
conditional distribution of Y given X = x.

Depending upon a parameter p > 0 we can choose a range of different loss functions,

Lp(y, ŷ) = |y − ŷ|p.

The tradeoff is that small values of p put more emphasis on the numerically small
prediction errors whereas large values of p put more emphasis of the large prediction
errors. �

The discussion about how to choose the proper predictor is by no means settled by
the abstract decision theory, where we introduce the loss function to provide a way
of quantifying different properties of different predictors. We have simply moved
the problem from theory to practice. We will in practice need to specify the loss
function that captures precisely the needs of that particular problem before we rely
on the theory. This is not so easy – how do we quantify a “loss” in situations where
there is no obvious or direct financial loss by a wrong prediction. Second, even if we
manage to come up with the “right” loss function, it may not really be easy to work
with in the computation of the optimal predictor. The squared error loss, L2, is so
convenient to work with that it is often used.

7.2 Classification

When we predict a variable Y that take discrete values, we often talk about classifi-
cation instead. This is in particular the case if Y can take only finitely many different
values, that can be regarded as some kind of group label attached to the X-variable.
Thus we then classify the observation x to one of the groups by predicting the group
label. The special case with E2 containing only two different elements, and where
we often take E2 = {0, 1}, plays a central role in the theory as well as in many
applications.
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For the finite classification problem we can in principle rather easily write down all
possible loss functions, as we will do in the following example.

Example 7.2.1. If E2 = {1, . . . , n} is a discrete sample space containing n elements,
the values, L(y, ŷ), of any loss function can be viewed and organized as a matrix of
weights;

L =







L(1, 1) L(1, 2) . . . L(1, n)
...

...
L(n, 1) L(n, 2) . . . L(n, n)






.

Usually we take the diagonal elements in the L matrix to be 0, that is, there is no
loss when the prediction is correct, and the off-diagonals to be > 0.

A special case is obtained by L(i, j) = 1 whenever i 6= j and L(i, i) = 0. This is often
called the zero-one loss function, as it gives a loss of 1 whenever we make a wrong
prediction and a loss of 0 whenever we make a correct prediction. We find that

EPE(ŷ) = E(L(Y, ŷ(X)))

=

∫

(

∑

y

L(y, ŷ(x)))f(y|x)

)

f1(x)dx.

If we use the zero-one loss function, L(Y, ŷ(X)) is a Bernoulli variable, and it’s
expectation, EPE(ŷ), equals the probability that the loss is 1, that is, the expected
prediction error for the zero-one loss function is the probability of misclassification.

The expression for EPE(ŷ) is minimized by minimizing the inner sum for every
x ∈ E1. When we use the zero-one loss function this sum is

∑

y

L(y, ŷ(x)))f(y|x) =
∑

y 6=ŷ(x)

f(y|x)

= 1 − f(ŷ(x)|x).

The optimal choice of ŷ, that minimizes 1− f(ŷ(x)|x) for every x ∈ E1, is therefore

ŷ(x) = arg maxyf(y|x),

which is precisely the maximum a posteriori predictor. This is also known as the
Bayes classifier, and the expected prediction error for the Bayes classifier is called
the Bayes rate. We see that the Bayes rate is the probability of misclassification
when using the Bayes classifier. �

With a dichotomous Y -variable, E2 = {0, 1}, we typically change the notation for
the marginal distribution of Y , and write π0 and π1 (with π0 +π1 = 1) for the point
probabilities f2(0) and f2(1). Then the Bayes classifier is given by computing the
maximum of π0g(x|0) and π1g(x|1). We see that this divides the sample space E1

into two sets

G0 =

{

x ∈ E1

∣

∣

∣

g(x|0)
g(x|1) >

π1

π0

}
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and

G1 =

{

x ∈ E1

∣

∣

∣

g(x|0)
g(x|1) <

π1

π0

}

,

such that the Bayes classifier ŷ equals 0 on G0 and 1 on G1. On the boundary
between the two sets where we have equality, we can predict 0 or 1 as we like. We
see the effect of changing the proportions π0 and π1. If π0 = π1 = 0.5 we classify
according to y-variable which gives the the largest conditional probability of the
observed x. As π1 gets larger the set G0 shrinks and the set G1 grows accordingly,
and vice versa, if π1 gets smaller G0 grows and G1 shrinks accordingly.

To summarize the performance of any classification procedure we can benefit from
the confusion matrix :

Predicted y
Observed y 0 1

0 p00 p01

1 p10 p11

Table 7.1: The confusion matrix gives the probability of making different classifi-
cations divided according to the observed value of Y . The sum p01 + p10 is the
probability of misclassification, which is always bounded from below by the Bayes
rate.

The off-diagonal elements in the confusion matrix represents the two different types
of misclassifications. Either the observed y equals 0 and we classify as 1 or it equals
1 and we classify as 0. The zero-one loss function puts equal weight on the two types
of mistakes and the Bayes classifier minimizes the sum p01 + p10. Changing the off
diagonal elements L(0, 1) and L(1, 0) in the loss function, so that they differ, we put
different weights on the two types of misclassifications, and the optimal predictor
will minimize

L(0, 1)p01 + L(1, 0)p10

instead. It may, for instance, be much more serious to make the mistake of diagnosing
a patient to be healthy, even though the patient is ill than the other way around.

As always there is here a tradeoff, and a reasonable tradeoff can only be decided
upon in the concrete situation.

7.3 Estimation and expected loss

In the previous sections we derived several optimal procedures for prediction or
classification. The optimality is in the sense that the procedure gives the smallest
expected prediction error – or in other words the smallest expected loss – for a partic-
ular choice of loss function. However, the constructions rely on complete knowledge
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of the simultaneous distribution of (X,Y ). This is something we never have, but
something that we can try to infer (estimate) from a dataset.

The ideal situation is that we have a convenient, parameterized family Pθ, θ ∈ Θ, of
probability measures on E1×E2 such that the distribution of (X,Y ) belongs to this
family, and that we have a dataset consisting of n iid realizations (x1, y1), . . . , (xn, yn)
of (X,Y ). Then we can simply estimate θ and compute the optimal predictor for
the estimated probability measure.

Example 7.3.1. Again considering Example 2.1.17, the probability measure on R
2

is parameterized by α, β ∈ R and the two variance parameters σ2
1, σ

2
2 > 0. Using least

squared regression we can estimate α and β from a dataset to obtain the estimates
α̂ and β̂. Then, according to Example 7.1.3, the estimated optimal predictor is given
as

ŷ(x) = α̂ + β̂x.

�

Example 7.3.2 (Mixtures). If E1 = R and the conditional distribution of X given
Y = y is given by the distribution function Gy, then

P (X ≤ x, Y = y) = πyGy(x)

and the marginal distribution of X has distribution function

P (X ≤ x) = π0G0(x) + π1G1(x).

If Gy is differentiable, and thus the conditional distribution is given by a density,
g(x|y), say, then the marginal distribution of X has density

f1(x) = π0g(x|0) + π1g(x|1).

In general, we will estimate π0 (and implicitly π1) as the relative frequencies of
yi = 0 in the dataset. The conditional densities can be estimated based on the
relevant xi-observations where either yi = 0 or yi = 1.

If both conditional distributions are normal with the same variance, that is,

g(x|y) =
1√

2πσ2
exp

(

−(x − µ(y))2

2σ2

)

,

then

g(x|0)
g(x|1) = exp

(

−µ(0)2 − 2µ(0)x + 2µ(1)x − µ(1)2

2σ2

)

= exp

(

−2(µ(1) − µ(0))x + µ(0)2 − µ(1)2

2σ2

)

.
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By taking logarithms we see that π0g(x|0) = π1g(x|1) if and only if

x =
2σ2(log π1 − log π0) + µ(1)2 − µ(0)2

2(µ(1) − µ(0))
.

For the special case π0 = π1 = 0.5 this simplifies to

x =
µ(0) + µ(1)

2

where we used that µ(1)2 −µ(0)2 = (µ(1)−µ(0))(µ(1)+µ(0)). This boundary point
between the two sets G1 and G0 is precisely the midpoint between the two means.
If π0 6= 0.5 the boundary point moves towards the mean for which πy is smallest.

In general, there may not be a unique boundary point and the sets G0 and G1 may
not be simple intervals. This happens for instance if the two normal densities above
are allowed to have different variance. But often there will in reality only be one
boundary point that is interesting. Others will typically be out in the tail of the
densities where it is highly unlikely that we will ever get observations. �

Example 7.3.3. In Example 5.2.18 we considered the logistic regression model. In
this case we would be interested in predicting the dichotomous variable death/survival
of a fly for a given concentration of dimethoat. This is an example where we naturally
have a model of the conditional distribution of Y given X = x directly – rather than
a model of the simultaneous distribution of (X,Y ). The parameters are α, β ∈ R,
and based on a dataset, we can obtain the estimates α̂ and β̂. The estimated point
probability p̂(x) of Y = 1 given x is

p̂(x) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)
.

Since the logit transformation p → log(p/(1 − p)) is monotonely increasing, we find
that p̂(x) > 1/2 if and only if α̂ + β̂x > 0, and the Bayes classifier is therefore given
as

ŷ(x) =

{

1 if α̂ + β̂x > 0

0 if α̂ + β̂x < 0
.

In particular we observe that LD50 is the boundary point that separates the G0 set
from the G1 set when π0 = π1. �

Whenever we estimate the parameters, the optimality of the resulting estimated
predictor is lost. The estimated predictor is optimal for the estimated model, but
not the true model. We are interested in finding out how much we have lost.

If ŷθ denotes the optimal predictor for Pθ, then

EPE(θ) = Eθ(Y,L(ŷθ(X)))
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is the minimal expected prediction error we can obtain for θ ∈ Θ. We can regard
EPE(θ) as a parameter of interest, we can estimate the optimal EPE as EPE(θ̂), and
we may use bootstrapping for instance to give a 95% confidence interval for EPE(θ).
But this is not really what we want! It is fine that we can tell that the optimal
predictor has an EPE that is in this and that interval, but we don’t know what the
optimal predictor looks like exactly. What we have is instead an estimated predictor
ŷ

θ̂
, and we would like to know the size of the expected loss for that predictor.

Therefore we introduce another quantity

Err(θ) = Eθ(L(Y, ŷ
θ̂
(X))),

where the expectation Eθ denotes expectation over the estimator θ̂ as well as an
independent copy of (X,Y ). The quantity Err(θ) as a function of θ is called the test

error or generalization error. It is important to understand the definition correctly.
If θ is the true and fixed parameter, the estimator θ̂ has a distribution. When we
apply the estimated parameter value to produce the estimated predictor ŷ

θ̂
and then

predict another independent Y given X – still with θ the true parameter – the loss
is L(Y, ŷ

θ̂
(X)), and Err(θ) is the expectation of these losses over the distribution of

the estimator as well as the independent (X,Y ).

We can again regard Err(θ) as a parameter of interest, and we can estimate it
as Err(θ̂) and compute 95% confidence intervals. The actual computation of the
expectation in the definition of Err(θ) can be carried out by simulation, if we can
not do it analytically (which we most likely can not).

We are still not completely satisfied. If we introduce the notation E
θ̂
θ to denote the

expectation operator where we take expectation w.r.t. the distribution of θ̂ and

E
(X,Y )
θ the expectation operator where we take expectation w.r.t. the distribution of

(X,Y ), we can rewrite

Err(θ) = E
θ̂
θE

(X,Y )
θ (L(Y, ŷ

θ̂
(X))).

We are in reality interested in the inner expectation

R(θ̂, θ) = E
(X,Y )
θ (L(ŷ

θ̂
(X), Y )) ≥ E

(X,Y )
θ (L(ŷθ(X), Y ))).

The inequality follows from the fact that ŷθ is the optimal predictor under Pθ. If ϑ̂
denotes our estimate of θ based on a dataset, the quantity R(ϑ̂, θ) is the expected
prediction error that is of interest. This is a realization of the random variable R(θ̂, θ),
but since we do not know θ we can not compute the quantity, and if we plug in the
estimate of θ we get

R(ϑ̂, ϑ̂) = EPE(ϑ̂).

If ϑ̂ is close to θ we have almost equality in the inequality above but the size of the
gap depends upon the concrete realization of ϑ̂. The quantity Err(θ) represents the
expectation of the interesting quantity R(θ̂, θ) – that is, the average expected loss
for the estimated predictor.
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To really bound the expected loss, R(ϑ̂, θ), for the estimated predictor, we can in-
troduce yet another quantity

zq(θ) = q-quantile for the distribution of R(θ̂, θ) under Pθ.

Taking q = 0.95 we get that with 95% probability the expected loss of the estimated
predictor is ≤ z0.95(θ). Again, regarding this as the parameter of interest, we can
estimate this quantile as z0.95(ϑ̂) and compute a 95% confidence interval for this
quantile, to give the ultimate upper bound on the expected loss of the estimated
predictor. Just as for the computation of Err(θ) we will most likely have to use
simulations to actually compute z0.95(ϑ̂). Note that to simulate a single realization of
R(θ̂, ϑ̂) we have to simulate an entire dataset using P

ϑ̂
(of exactly the same size as the

original dataset), reestimate θ as ϑ̂new, simulate a number of independent variables,
again using P

ϑ̂
, and make the prediction using the reestimated predictor based on

ϑ̂new, and finally compute the loss for each prediction. Then we take the average of
these losses as an approximation to R(ϑ̂new, ϑ̂). This gives a single realization and
must be repeated a sufficiently large number of times to compute z0.95(ϑ̂), say. If
you use bootstrapping around all this there is yet another outer level of replications.

Algorithm 7.3.4 (Plug-in estimate of Err). We consider Err(θ) = E
θ̂
θR(θ̂, θ) and

want to compute the plug-in estimate Err(ϑ̂).

• Choose B sufficiently large and simulate B new independent, identically dis-
tributed datasets, (x1, y1), . . . , (xB , yB) ∈ E, each simulation being from the
probability measure P

θ̂
.

• Compute, for each dataset (xi, yi), i = 1, . . . , B, new estimates ϑ̂i = θ̂(xi, yi)

using the estimator θ̂ and new optimal predictors ŷ
ϑ̂i

.

• Compute R(ϑ̂i, ϑ̂) for i = 1, . . . , B. This may again be done via simulations.

• Compute

Êrr(ϑ̂) =
1

B

B
∑

i=1

R(ϑ̂i, ϑ̂).

By taking B suitably large, Êrr(ϑ̂) is an arbitrarily good approximation of Err(ϑ̂).

A similar algorithm can be used to compute zq(ϑ̂), say, by changing the last step
to a computation of the empirical q-quantile instead of an average.

A possible variation on the first two steps is to fix the y-variables as observed and
simulate the X-variables conditionally on the y’s.

How to estimate θ? Often one relies on methods such as MLE, but if the sole purpose
of estimating θ is prediction, and if we have a loss function that we are really keen
on optimizing, then it is a sound principle to try to estimate the parameters by
optimizing the empirical loss. That is, we let l(θ) =

∑n
i=1 L(yi, ŷθ(xi)) for θ ∈



12 Prediction and Classification

Θ. We do not need a generative probability model behind this approach, just a
parameterized family of predictors ŷθ. Then we would estimate θ by

θ̂ = arg min l(θ).

The squared error loss leads for instance to least squares estimation. The zero-one
loss is a little difficult to use directly as there will often be many optimal θ-values
and the optimization problem will be very difficult as the function, l(θ), will be
discontinuous and quite ugly.


