
Examples

The bionomial distribution with parameters (n, p) has sample space
{0, 1, . . . , n} and point probabilities

p(k) =

(

n

k

)

pk(1 − p)n−k, k = 0, . . . , n

The uniform distribution on {1, . . . , n} has point probabilities

p(k) =
1

n
, k = 1, . . . , n.

. – p.1/15

Mean and variance

If P is a probability measure on a discrete set E ⊆ R with point
probabilities p(x) for x ∈ E we define the mean and the variance as

µ =
∑

x∈E

xp(x)

and

σ2 =
∑

x∈E

(x − µ)2p(x).

The former is only meaningful if

∑

x∈E

|x|p(x) < ∞

and the latter only if
∑

x∈E

x2p(x) < ∞.
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Uniform distribution

The uniform distribution on {1, . . . , n} has mean

µ =
n + 1

2

and variance

σ2 =
(n + 1)(n − 1)

12
.
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Distribution functions

If P is a probability measure on R the Distribution function is defined as

F (x) = P ((−∞, x])

for x ∈ R.

How does such a function look? What are the general characteristics of a

distribution function?

. – p.4/15



Characterization

A distribution function F : R → [0, 1] satisfies the following properties

(i) F is increasing.

(ii) F (x) → 0 for x → −∞, F (x) → 1 for x → ∞.

(iii) F is right continuous.

Important characterization: Any function F : R → [0, 1] satisfying the
properties (i)-(iii) above is the distribution function for a unique probability
measure.
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Discrete distributions

A binomial distribution on {0, . . . , 10} and probability parameter p = 1/2

has point probabilities, which we can get from R.

> pb <- dbinom(c(0:10), 10, 1/2)

Compute the mean and variance for this binomial distribution.

We can also simulate 100 Binomial experiments with probability
parameter 1/2

> tmp <- rbinom(100, 10, 1/2)

Use mean and var to compute the empirical mean and variance for the

resulting 100 simulated variables.
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Solutions
Compute the mean and variance for this binomial distribution:

> pb <- dbinom(c(0:10), 10, 1/2)

> mu <- sum((0:10) * pb)

> mu

[1] 5

> sum((0:10 - mu)^2 * pb)

[1] 2.5

> tmp <- rbinom(100, 10, 1/2)

> mean(tmp)

[1] 5.19

> var(tmp)

[1] 2.741313
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Densities

If f : R → [0,∞) satisfies that

∫

∞

−∞

f(x)dx = 1

we call f a (probability) density function. The corresponding probability
measure is given by

P (A) =

∫

A

f(x)dx

and has distribution function

F (x) =

∫ x

−∞

f(x)dx.

If a distribution function F is differentiable then there is a density

f(x) = F ′(x).
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Distribution functions

Plot the graph (use plot or curve) for the function

> F <- function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))

for x ∈ [1,∞). Argue that it is a distribution function.

Define

> f <- function(x) x^3 * exp(-x)/6

for x ∈ [0,∞) and use integrate(f,0,Inf) to verify that f is a density.

How can you use integrate to create the corresponding distribution func-

tion?
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Solutions

1 2 3 4 5

0.
0

0.
4

0.
8

x

F
 (

x)

> F <- function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))

> curve(F, 1, 5) . – p.10/15

Solutions – continued

> f <- function(x) x^3 * exp(-x)/6

> integrate(f, 0, Inf)$value

[1] 1

> F.simple <- function(x) integrate(f, 0, x)$value

> F <- function(x) sapply(x, F.simple)

The latter F works correctly when given a vector input, the former
F.simple does not.
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Mean and variance

If P is a probability measure on R given by the density f we define the
mean

µ =

∫

∞

−∞

xf(x)dx

and the variance

σ2 =

∫

∞

−∞

(x − µ)2f(x)dx.

The former is meaningful if

∫

∞

−∞

|x|f(x)dx < ∞

and the latter if
∫

∞

−∞

x2f(x)dx < ∞.
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Mean and variance

Compute the mean and variance of the distribution with density

> f <- function(x) x^3 * exp(-x)/6

using integrate.

Then compute the mean and variance for the distribution with distribution
function

> F <- function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))
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