Examples

Uniform distribution

The bionomial distribution with parameters (n,p) has sample space $\{0,1,\ldots,n\}$ and point probabilities

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \dots, n$$

The uniform distribution on $\{1, \ldots, n\}$ has point probabilities

$$p(k) = \frac{1}{n}, \quad k = 1, \dots, n.$$

The uniform distribution on $\{1, \ldots, n\}$ has mean

$$\mu = \frac{n+1}{2}$$

and variance

$$\sigma^2 = \frac{(n+1)(n-1)}{12}.$$

. - p.1/15

- p.2/15

Mean and variance

Distribution functions

If P is a probability measure on a discrete set $E \subseteq \mathbb{R}$ with point probabilities p(x) for $x \in E$ we define the mean and the variance as

$$\mu = \sum_{x \in E} x p(x)$$

and

$$\sigma^2 = \sum_{x \in E} (x - \mu)^2 p(x).$$

The former is only meaningful if

$$\sum_{x \in E} |x| p(x) < \infty$$

and the latter only if

$$\sum_{x \in E} x^2 p(x) < \infty.$$

If P is a probability measure on $\mathbb R$ the Distribution function is defined as

$$F(x) = P((-\infty, x])$$

for $x \in \mathbb{R}$.

How does such a function look? What are the general characteristics of a distribution function?

Characterization

Solutions

A distribution function $F: \mathbb{R} \to [0,1]$ satisfies the following properties

- (i) *F* is increasing.
- (ii) $F(x) \to 0$ for $x \to -\infty$, $F(x) \to 1$ for $x \to \infty$.
- (iii) *F* is right continuous.

Important characterization: Any function $F: \mathbb{R} \to [0,1]$ satisfying the properties (i)-(iii) above is the distribution function for a unique probability measure.

Compute the mean and variance for this binomial distribution:

$$> pb \leftarrow dbinom(c(0:10), 10, 1/2)$$

$$> sum((0:10 - mu)^2 * pb)$$

- p.5/15

Discrete distributions

A binomial distribution on $\{0, \dots, 10\}$ and probability parameter p = 1/2has point probabilities, which we can get from R.

$$> pb <- dbinom(c(0:10), 10, 1/2)$$

Compute the mean and variance for this binomial distribution.

We can also simulate 100 Binomial experiments with probability parameter 1/2

Use mean and var to compute the empirical mean and variance for the resulting 100 simulated variables.

Densities

 $\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$

we call f a (probability) density function. The corresponding probability measure is given by

$$P(A) = \int_{A} f(x) \mathrm{d}x$$

and has distribution function

If $f: \mathbb{R} \to [0, \infty)$ satisfies that

$$F(x) = \int_{-\infty}^{x} f(x) dx.$$

If a distribution function F is differentiable then there is a density

$$f(x) = F'(x).$$

- p.6/15

. - p.8/15

-p.7/15

Distribution functions

Solutions - continued

Plot the graph (use plot or curve) for the function

$$> F \leftarrow function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))$$

for $x \in [1, \infty)$. Argue that it is a distribution function.

Define

$$> f \leftarrow function(x) x^3 * exp(-x)/6$$

for $x\in[0,\infty)$ and use ${\tt integrate(f,0,Inf)}$ to verify that f is a density. How can you use ${\tt integrate}$ to create the corresponding distribution function?

 $> f \leftarrow function(x) x^3 * exp(-x)/6$

> integrate(f, 0, Inf)\$value

[1] 1

> F.simple <- function(x) integrate(f, 0, x)\$value

> F <- function(x) sapply(x, F.simple)

The latter F works correctly when given a vector input, the former F.simple does not.

- p.9/15

Mean and variance

. - p.11/15

If P is a probability measure on $\mathbb R$ given by the density f we define the mean

$$\mu = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x$$

and the variance

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

The former is meaningful if

$$\int_{-\infty}^{\infty} |x| f(x) \mathrm{d}x < \infty$$

and the latter if

$$\int_{-\infty}^{\infty} x^2 f(x) \mathrm{d}x < \infty.$$

Solutions

> $F \leftarrow function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))$

> curve(F, 1, 5)

. - p.10/15

Mean and variance

Compute the mean and variance of the distribution with density

>
$$f \leftarrow function(x) x^3 * exp(-x)/6$$

using integrate.

Then compute the mean and variance for the distribution with distribution function

>
$$F \leftarrow function(x) 1 - x^(-0.3) * exp(-0.4 * (x - 1))$$

. - p.13/15