
Multiple testing

General setup:

Description notation distribution

Data X = (Xi, i = 1, . . . , n) P ⊗ . . . ⊗ P

Test-statistics Tn = (Tn(m), m = 1, . . . , M) ∈ R
M Qn

Null-test statistics Z = (Z(m), m = 1, . . . , M) Q0

Often assumed (and we do that throughout) that we consider one-sided
test; critical regions

Cn = (Cn(m), m = 1, . . . , M), Cn(m) = (cn(m),∞)

for cn(m) ∈ R.
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Multiple testing

We reject the m’th hypothesis if

Tn(m) > cn(m).

A multiple testing procedure (MTP) is a choice of a vector of cut-offs
cn = (cn(m), m = 1, . . . , M) ∈ R

M .

The objective is to detect among the M hypothesis the subset
H0 ⊆ {1, . . . , M} of true hypotheses and H1 = Hc

0
of false hypotheses.
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Errors

Type I error (reject a true hypothesis): m ∈ H0 and Tn(m) > c(m).

Type II error (accept a false hypothesis): m ∈ H1 and Tn(m) ≤ c(m).

Vn =
∑

m∈H0

I(Tn(m) > c(m))

Sn =
∑

m∈H1

I(Tn(m) > c(m))

Rn = Vn + Sn
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Test statistics

The test statistic Tn(m) is chosen so that it is “well behaved” if m ∈ H0

and large if m ∈ H1.

Often a form of asymptotic separation for n → ∞ is assumed/imagined.
Ex: t-test-types (single parameter), F -test (multiple parameters).

Trivial insight:

The larger we choose the cut-offs the more type II errors we make
(more conservative procedure).

The smaller we choose the cut-offs the more type I errors we make
(less conservative procedure).
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Objectives

The objective of a MTP is to choose the least conservative (smallest)
cut-offs that meet a criterion in terms of type I errors – a user defined
parameter of interest.

General: Parameter of interest, Θn, of the distribution of (Vn, Rn) (alt.
(Vn, Sn)).

More specific:

Θn = EG(Vn, Rn)

with

G(v, r) = I(v > 0) FWER

G(v, r) = I(v > k) gFWER(k)

G(v, r) = v
max{r,1} FDR

G(v, r) = I( v
max{r,1} > q) TPPFP(q)
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Procedures

For a user defined level α select cut-offs such that

Θn ≤ α.

Two essentially different approaches.

Deterministic procedures: The cut-offs do not depend upon the data –
especially not on the observed test-statistics.

Non-deterministic procedures: The cut-offs are allowed to depend upon
the data – often through the observed test-statistics.
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Null-distributions

We do not know the distribution of Tn. We do not know H0. Hence,

We certainly do not know the distribution of (Vn, Rn).

Stochastic null-domination: We may be able to estimate a distribution Q0

on R
M such that:

If Z has distribution Q0 then (Z(m), m ∈ H0) stochastically dominates
(Tn(m), m ∈ H0).

Intuition: Using Q0 to construct the MTP at level α leads to a more
conservative MTP than using Qn, thus Θn ≤ α.
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Formal results

For deterministic procedures stochastic null-domination (precisely
jtNDT) implies that the procedure is conservative.

In general, there are non-deterministic procedures where stochastic
null-domination does not provide a conservative MTP,

but for all procedures in the book, the conditions needed follow from
stochastic null-domination.

Some proofs of Chapter 3 requires a modification to see the last result.
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Estimated null-distributions

In practice, Q0 is unknown but we have a consistent estimator Q0n of Q0.

The book emphasizes a non-parametric bootstrap based estimator of
Q0.

For single parameter hypothesis an alternative is the asymptotic
multivariate normal distribution.

The book emphasizes two choices of Q0

The null shift and scale-transformed null distribution.

The null quantile-transformed null distribution.
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Control – Asymptotics

A MTP controls the error rate Θn at level α if Θn ≤ α. This is actual
control.

If Θn is estimated by Θ0n – based on Q0n among other things – we have
nominal control at level α if Θ0n ≤ α.

In general we can only hope for asymptotic actual control, that is,

lim sup
n→∞

Θn ≤ lim sup
n→∞

Θ0n.

Better results are available for marginal MTPs if we know the marginal
distribution of Tn(m) if m ∈ H0 (Chapter 3).
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Unknowns

A priori we do not know Q0 – we estimate it as Q0n.

A priori we do not know H0 either. Multiple hypothesis testing is all about
“estimating” H0.

If Θn = EG(Vn) – a function of the distribution of Vn alone. Then if G

is increasing, the procedure becomes more conservative if we
replace H0 a priori by {1, . . . , M} (Chapters 4 and 5).

In general, the “gain in power” by focusing on other error rates like
FDR is lost if we simply replace H0 by {1, . . . , M}.

In particular, control of FDR reduces to control of FWER if H0 is
{1, . . . , M}.
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p-values

For one-sided tests the p-value is noting but the monotonely decreasing
transformation

Pn(m) = 1 − Fn,m(Tn(m))

where Fn,m denotes the marginal distribution function for the distribution
of Tn(m).

We reject the m’th hypothesis if Pn(m) < p(m) if and only if Tn(m) > c(m)

where p(m) = 1 − Fn,m(c(m)).

In practice we compute p-values using the null-distribution with marginals
F0n,m, thus

P0n(m) = 1 − F0n,m(Tn(m)).

Null domination implies larger p-values.
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Common cut-offs

A MTP is called common cut-off if all c(m), m = 1, . . . , M are equal.

A common cut-off approach is only sensible if the test statistics Tn(m) for
m = 1, . . . , M all follow the same marginal distribution under the null.

Common quantile is simply a common cut-off based on the test statistics
(1 − P0n(m), m = 1, . . . , M).
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Adjusted p-values

P̃0n(m) = inf{α |Tn(m) > c(m, α)}.

where it is made explicit that the cut-off, c(m, α), depends on the nominal
level α.

Given the vector of adjusted p-values and a nominal level α we reject the
m’th hypothesis if and only if P̃0n(m) ≤ α.

Adjusted p-values can in many cases be computed simply as a kind of
inflation of the original p-values.
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Marginal or multivariate

Classical MTPs are marginal (Bonferroni, Holm, ...). They control FWER
and are not too conservative if the test statistics are independent or close
to independent.

Some modern MTPs (Benjamini-Hochberg/FDR) are marginal and
requires assumptions on dependence structure to work.

Bootstrap based methods attempt to capture the complete dependence
structure among the test statistics.
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Deterministic or non-deterministic

Single step common cut-off or common quantile procedures where the
cut-off is chosen according to Q0n alone are regarded deterministic.

Two types of non-deterministic, sequential procedures:

Step-down starts from the marginally most significant hypothesis and
rejects using gradually less and less conservative cut-offs.

Step-up starts from the marginally least significant hypothesis and
accepts using gradually more and more conservative cut-offs.

General insight: Non-deterministic procedures are less conservative than
deterministic procedures. In some cases they require assumptions on the
dependence structure.
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Road map

Θn a parameter of the dist. of Vn only:

Know marginal distributions, close to independence: Simple
corrections like Holm can be used. Chapter 3.

Do not know marginals or expect strong dependence: Single step
procedures (Chapter 4) in general and for FWER step-down
(Chapter 5).

Θn a parameter of the dist. of (Vn, Rn):

Know marginal distributions, close to independence: Simple
corrections like Benjamini and Hochberg or Lehmann and
Romano can be used. Chapter 3.

Do not know marginals or expect strong dependence:
Augmentation procedures based on a suitable FWER procedure
(Chapter 6) or empirical Bayes (Chapter 7).
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Points of view

The MTP is a post-hoc correction; after discussing the appropriate
modeling and all other issues. It does not bring anything new into the
model or the test statistics.

Asymptotic n → ∞ justification may be hard appreciate for many
practical problems where n is quite small.

Accurate bootstrap marginal p-values for M large requires large B –
time and memory consuming.

Most important insight: Type I error rate does not need to be FWER.
Often FDR or TPPFP(q) are much more appropriate for practical
purposes (screening experiments, explorative data analysis, ...)
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