Multiple testing

General setup:

Description	notation	distribution
Data	$\mathcal{X} = (X_i, i = 1, \dots, n)$	$P\otimes\ldots\otimes P$
Test-statistics	$T_n = (T_n(m), m = 1, \dots, M) \in \mathbb{R}^M$	Q_n
Null-test statistics	$Z = (Z(m), m = 1, \dots, M)$	Q_0

Often assumed (and we do that throughout) that we consider one-sided test; critical regions

$$\mathcal{C}_n = (\mathcal{C}_n(m), m = 1, \dots, M), \quad \mathcal{C}_n(m) = (c_n(m), \infty)$$

for $c_n(m) \in \mathbb{R}$.

Multiple testing

We reject the m'th hypothesis if

 $T_n(m) > c_n(m).$

A multiple testing procedure (MTP) is a choice of a vector of cut-offs $c_n = (c_n(m), m = 1, ..., M) \in \mathbb{R}^M$.

The objective is to detect among the M hypothesis the subset $\mathcal{H}_0 \subseteq \{1, \ldots, M\}$ of true hypotheses and $\mathcal{H}_1 = \mathcal{H}_0^c$ of false hypotheses.

Type I error (reject a true hypothesis): $m \in \mathcal{H}_0$ and $T_n(m) > c(m)$.

Type II error (accept a false hypothesis): $m \in \mathcal{H}_1$ and $T_n(m) \leq c(m)$.

$$V_n = \sum_{m \in \mathcal{H}_0} I(T_n(m) > c(m))$$
$$S_n = \sum_{m \in \mathcal{H}_1} I(T_n(m) > c(m))$$
$$R_n = V_n + S_n$$

The test statistic $T_n(m)$ is chosen so that it is "well behaved" if $m \in \mathcal{H}_0$ and large if $m \in \mathcal{H}_1$.

Often a form of asymptotic separation for $n \to \infty$ is assumed/imagined. Ex: *t*-test-types (single parameter), *F*-test (multiple parameters).

Trivial insight:

- The larger we choose the cut-offs the more type II errors we make (more conservative procedure).
- The smaller we choose the cut-offs the more type I errors we make (less conservative procedure).

Objectives

The objective of a MTP is to choose the least conservative (smallest) cut-offs that meet a criterion in terms of type I errors – a user defined parameter of interest.

General: Parameter of interest, Θ_n , of the distribution of (V_n, R_n) (alt. (V_n, S_n)).

More specific:

$$\Theta_n = \mathbb{E}G(V_n, R_n)$$

with

$$G(v,r) = I(v > 0)$$
 FWER

$$G(v,r) = I(v > k)$$
 gFWER(k)

$$G(v,r) = \frac{v}{\max\{r,1\}}$$
 FDR

$$G(v,r) = I(\frac{v}{\max\{r,1\}} > q) TPPFP(q)$$

For a user defined level α select cut-offs such that

 $\Theta_n \leq \alpha.$

Two essentially different approaches.

Deterministic procedures: The cut-offs do not depend upon the data – especially not on the observed test-statistics.

Non-deterministic procedures: The cut-offs are allowed to depend upon the data – often through the observed test-statistics.

We do not know the distribution of T_n . We do not know \mathcal{H}_0 . Hence,

We certainly do not know the distribution of (V_n, R_n) .

Stochastic null-domination: We may be able to estimate a distribution Q_0 on \mathbb{R}^M such that:

If Z has distribution Q_0 then $(Z(m), m \in \mathcal{H}_0)$ stochastically dominates $(T_n(m), m \in \mathcal{H}_0)$.

Intuition: Using Q_0 to construct the MTP at level α leads to a more conservative MTP than using Q_n , thus $\Theta_n \leq \alpha$.

Formal results

- For deterministic procedures stochastic null-domination (precisely jtNDT) implies that the procedure is conservative.
- In general, there are non-deterministic procedures where stochastic null-domination does not provide a conservative MTP,
- but for all procedures in the book, the conditions needed follow from stochastic null-domination.

Some proofs of Chapter 3 requires a modification to see the last result.

In practice, Q_0 is unknown but we have a consistent estimator Q_{0n} of Q_0 .

- The book emphasizes a non-parametric bootstrap based estimator of Q_0 .
- For single parameter hypothesis an alternative is the asymptotic multivariate normal distribution.

The book emphasizes two choices of Q_0

- The null shift and scale-transformed null distribution.
- The null quantile-transformed null distribution.

If Θ_n is estimated by Θ_{0n} – based on Q_{0n} among other things – we have nominal control at level α if $\Theta_{0n} \leq \alpha$.

In general we can only hope for asymptotic actual control, that is,

 $\limsup_{n \to \infty} \Theta_n \le \limsup_{n \to \infty} \Theta_{0n}.$

Better results are available for marginal MTPs if we know the marginal distribution of $T_n(m)$ if $m \in \mathcal{H}_0$ (Chapter 3).

A priori we do not know Q_0 – we estimate it as Q_{0n} .

A priori we do not know \mathcal{H}_0 either. Multiple hypothesis testing is all about "estimating" \mathcal{H}_0 .

- If $\Theta_n = \mathbb{E}G(V_n)$ a function of the distribution of V_n alone. Then if G is increasing, the procedure becomes more conservative if we replace \mathcal{H}_0 a priori by $\{1, \ldots, M\}$ (Chapters 4 and 5).
- In general, the "gain in power" by focusing on other error rates like FDR is lost if we simply replace \mathcal{H}_0 by $\{1, \ldots, M\}$.
- In particular, control of FDR reduces to control of FWER if \mathcal{H}_0 is $\{1, \ldots, M\}$.

For one-sided tests the p-value is noting but the monotonely decreasing transformation

$$P_n(m) = 1 - F_{n,m}(T_n(m))$$

where $F_{n,m}$ denotes the marginal distribution function for the distribution of $T_n(m)$.

We reject the *m*'th hypothesis if $P_n(m) < p(m)$ if and only if $T_n(m) > c(m)$ where $p(m) = 1 - F_{n,m}(c(m))$.

In practice we compute *p*-values using the null-distribution with marginals $F_{0n,m}$, thus

$$P_{0n}(m) = 1 - F_{0n,m}(T_n(m)).$$

Null domination implies larger *p*-values.

A MTP is called common cut-off if all c(m), m = 1, ..., M are equal.

A common cut-off approach is only sensible if the test statistics $T_n(m)$ for m = 1, ..., M all follow the same marginal distribution under the null.

Common quantile is simply a common cut-off based on the test statistics $(1 - P_{0n}(m), m = 1, ..., M)$.

$$\tilde{P}_{0n}(m) = \inf\{\alpha \mid T_n(m) > c(m, \alpha)\}.$$

where it is made explicit that the cut-off, $c(m, \alpha)$, depends on the nominal level α .

Given the vector of adjusted *p*-values and a nominal level α we reject the *m*'th hypothesis if and only if $\tilde{P}_{0n}(m) \leq \alpha$.

Adjusted *p*-values can in many cases be computed simply as a kind of inflation of the original *p*-values.

Classical MTPs are marginal (Bonferroni, Holm, ...). They control FWER and are not too conservative if the test statistics are independent or close to independent.

Some modern MTPs (Benjamini-Hochberg/FDR) are marginal and requires assumptions on dependence structure to work.

Bootstrap based methods attempt to capture the complete dependence structure among the test statistics.

Two types of non-deterministic, sequential procedures:

- Step-down starts from the marginally most significant hypothesis and rejects using gradually less and less conservative cut-offs.
- Step-up starts from the marginally least significant hypothesis and accepts using gradually more and more conservative cut-offs.

General insight: Non-deterministic procedures are less conservative than deterministic procedures. In some cases they require assumptions on the dependence structure.

Road map

- \square Θ_n a parameter of the dist. of V_n only:
 - Know marginal distributions, close to independence: Simple corrections like Holm can be used. Chapter 3.
 - Do not know marginals or expect strong dependence: Single step procedures (Chapter 4) in general and for FWER step-down (Chapter 5).
- \square Θ_n a parameter of the dist. of (V_n, R_n) :
 - Know marginal distributions, close to independence: Simple corrections like Benjamini and Hochberg or Lehmann and Romano can be used. Chapter 3.
 - Do not know marginals or expect strong dependence: Augmentation procedures based on a suitable FWER procedure (Chapter 6) or empirical Bayes (Chapter 7).

- The MTP is a post-hoc correction; after discussing the appropriate modeling and all other issues. It does not bring anything new into the model or the test statistics.
- Solution Asymptotic $n \to \infty$ justification may be hard appreciate for many practical problems where n is quite small.
- Accurate bootstrap marginal p-values for M large requires large B time and memory consuming.
- Most important insight: Type I error rate does not need to be FWER. Often FDR or TPPFP(q) are much more appropriate for practical purposes (screening experiments, explorative data analysis, ...)