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Multivariate analysis with the

normal distribution

1.1 Introduction

In multivariate analysis the focus in on multivariate observations and in particular the
statistical modeling and inference of the dependence structure between variables. For quite
a large number of practical statistical problems the data can be organized conveniently
in a n × p matrix X. We will refer to p as the number of features and n as the number
of replications. Depending on the objectives of the analysis, the nature of the data and
the data collection process a range of relevant statistical models present themselves. From
earlier statistics courses you may think of linear normal models where we have a one-
dimensional response variable measured independently n times. The experimental design
in terms of continues covariates and/or factor levels for each observation are also registered,
and together with the response variable form the p features. But the statistical models
are models of the one-dimensional response variable – conditionally on the covariates. In
multivariate analysis we extend the setup to focus on two or more response variables and
their joint distribution. Still the joint distribution may then be considered conditionally
on other variables and/or an experimental design.

It is the general assumption in multivariate analysis that the p features are dependent.
Or at least it is partly the objective in multivariate analysis to study the dependence
structure between the features. We may think of the features as different measurements
on a single individual. This could be clinical measurements on a patient or test scores for
one individual from an exam or IQ-test. But it could also be repeated measurements on
the same individual over time. In the latter case one often focus on parametric models
that are more specific than those we consider in multivariate analysis, but the models are
submodels (often non-linear) of the general models considered. The features could also be
the prices or returns for p assets or other financial products. In portfolio management it is
crucial to acknowledge that such prices or returns are dependent. However, observations
made over time can introduce another dependence structure. The features are not just
dependent within each row but also within each column. The problem therefore belongs
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to the world of multivariate time series analysis. On the other hand, returns may actually
be found to be empirically uncorrelated over time, and the statistical inference for the
so-called capital asset pricing model (CAPM) from financial econometrics builds on the
assumptions of temporally independent returns and a multivariate normal distribution
of the p asset returns. In multivariate analysis we do generally consider the n rows in
the matrix to represent independent observations of the p features. Therefore, assuming
temporally independent returns, the statistical analysis of the CAPM model falls within
the framework of multivariate analysis anyway.

For linear normal models we are required to build models on the vector space R
n of

column vectors. Multivariate analysis requires that we can build models on M(n, p) of n×p
matrices. This is a vector space and in many ways it is simply R

np, but the organization of
data in the matrix form does actually mean something. Some prefer to consequently map
everything into R

np and work with the theory for the normal distribution, say, on R
np.

Others, including this author, prefer to work with M(n, p) as a vector space directly. This
implies basically that we need to discuss some general vector space theory. Moreover, the
models considered in these notes are all given in terms of the normal distribution. Thus
we need to understand what the normal distribution on a general vector space is.

1.2 Vector spaces

It is assumed that the reader has a basic knowledge of finite dimensional vector space
theory. For instance, that for any finite dimensional vector space V we can choose a basis,
and that all such bases have the same number of elements. This number, d, say, is the
dimension of V . For another finite dimensional vector space W of dimension d′ we can
likewise choose a basis, and any linear map from V to W can be represented in the chosen
bases using a d′ × d matrix.

Two vector spaces V and W are called isomorphic if there is a bijective, linear map from
V to W . One then shows that two vector spaces are isomorphic if and only if they have
the same dimension. We know one example of a d dimensional vector space; R

d. Thus
all vector spaces are essentially (up to isomorphism) equal to R

d. However, for the vector
spaces we will consider in multivariate analysis, the concrete representation of the vector
space plays an important role, were the reduction of the space to R

d for some d is not
always a good idea.

The next level of abstraction – when we get beyond studying a single linear map between
two vector spaces, say – is to study a range of sets of linear maps. These sets also turn out
to have a linear structure themselves and thus be vector spaces too. For any vector space
V we define the dual space as

V ∗ = {z : V → R | z is a linear function},

which is the set of linear functions on V into the real line. For two vector spaces, V and
W , we define

L(V,W ) = {A : V →W | A is a linear map}
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of linear maps from V to W . And finally we also define

B(V,W ) = {B : V ×W → R | B is a bilinear function}

of bilinear functions on V × W into R. That B : V × W → R is bilinear means that
y 7→ B(x, y) is linear for all x ∈ V and that x 7→ B(x, y) is linear for all y ∈W . All three
sets can be equipped with pointwise addition and scalar multiplication, which can easily
be seen to make the sets into vector spaces.

Lemma 1.2.1. There is an isomorphism

Φ : B(V,W ) 7→ L(V,W ∗)

determined by the

Φ(B)(x)(y) = B(x, y)

for any B ∈ B(V,W ), x ∈ V and y ∈W .

Proof: It follows by bilinearity of B that Φ(B)(x) is a linear function on W and that
Φ(B) is a linear map then from V to W ∗. It’s obvious that Φ is a linear map. To show
that it is an isomorphism we just need to find the inverse. For A a linear map from V to
W ∗ we define Φ−1 by

Φ−1(A)(x, y) = A(x)(y),

which is obviously a bilinear function on V ×W by linearity of A(x) and A. We observe
that

Φ(Φ−1(A))(x)(y) = A(x)(y),

which shows that Φ−1 is the inverse of Φ.

Since V ∗ is a vector space it has a dual space, which we can denote V ∗∗ – the second dual
of V . This space is in a very fundamental way isomorphic to V . If x ∈ V we can define
the linear function ϕ(x) ∈ V ∗∗ by

ϕ(x)(z) := z(x).

Obviously ϕ(x) ∈ V ∗∗ and by linearity of z, ϕ is a linear map from V to V ∗∗. Moreover,
for x 6= y there is a z ∈ V ∗ with z(x) 6= z(y), cf. Exercise 1.3.3, and this shows that
ϕ(x) 6= ϕ(y). Thus ϕ is one-to-one and the image of ϕ is a d-dimensional subspace of V ∗∗

since V has dimension d. But V ∗ also has dimension d, cf. Exercise 1.3.1, and so does V ∗∗

and therefore

ϕ(V ) = V ∗∗.

The isomorphism ϕ is of such a fundamental nature that we will typically suppress any
reference to it and regard V and V ∗∗ as the same space. It is important though to recognize
that the identification is not just an arbitrary isomorphism based on equal dimensions but
the very specific identification that tells exactly how x ∈ V should be regarded as a linear
function on V ∗.
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The two spaces V and V ∗ have the same dimension and are thus isomorphic, but there
is no abstract, natural isomorphism between them. If we choose a basis e1, . . . , ed for V
we have, however, automatically introduced a natural identification of V and V ∗. With
ei(x) denoting the i’th coordinate of x in the basis the function x 7→ ei(x) is linear, and
we denote it by ei. For any y ∈ V we get the function

x 7→

d
∑

i=1

ei(y)ei(x).

We let ψ : V → V ∗ be given by

ψ(y) =
d

∑

i=1

ei(y)ei,

and then ψ is a linear map from V to V ∗, cf. also Exercise 1.3.1. In the exercise e1, . . . , ed

is shown to be a basis for V ∗, and it is called the dual basis of V ∗. Once we have introduced
a basis for V we should always choose the dual basis for V ∗. We can show that ψ is one-to-
one and thus an isomorphism. Again we may be sloppy and simply write y(x) instead of
ψ(y)(x) for the linear map ψ(y) evaluated on x ∈ V . However, in this case the identification
of the vector spaces is basis dependent. You may note that

y(x) = ψ(y)(x) =
d

∑

i=1

ei(y)ei(x) = ψ(x)(y) = x(y),

which is a symmetry that holds for this particular type of isomorphism.

The choice of a basis is actually also equivalent to choosing an inner product on V . A
bilinear function Λ ∈ B(V, V ) is an inner product if it is symmetric and positive definite.
That is, if Λ(v,w) = Λ(w, v) for all v,w ∈ V and if Λ(v, v) ≥ 0 and = 0 if and only if
v = 0. It defines an orthogonality concept on V ;

v ⊥Λ w ⇔ Λ(v,w) = 0

and a norm on V ;
||v||Λ =

√

Λ(v, v).

If e1, . . . , ed is a basis, the function

I(z, x) =

d
∑

i=1

ei(z)ei(x)

is bilinear and positive definite. Moreover, in this inner product the basis is an orthonormal
basis meaning that ||ei||I = 1 and I(ei, ej) = 0 if i 6= j. For a given basis we refer to this
inner product as the standard inner product – defined in terms of the basis. On the other
hand, if we have an inner product Λ on V then all linear functions on V can be written as

x 7→ Λ(x, y)
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for some y ∈ V . This also provides an identification of V and V ∗. If we choose any Λ-
orthonormal basis for V the resulting basis isomorphism ψ above coincides with the inner
product identification of V and V ∗.

Lemma 1.2.2. Given a basis for W and the corresponding basis induced isomorphism

ψ : W →W ∗ then there is an isomorphism Ψ : L(V,W ) → L(V,W ∗) defined by

Ψ(B)(x) = ψ(B(x))

for B ∈ L(V,W ) and x ∈ V . Thus

Φψ := Ψ−1 ◦ Φ : B(V,W ) → L(V,W ).

is an isomorphism.

Proof: Obviously ψ(B(x)) ∈W ∗ and linearity of B and ψ assures that Ψ(B) ∈ L(V,W ∗).
Moreover, linearity of ψ assures the Ψ is linear. The inverse is clearly

Ψ−1(B)(x) = ψ−1(B(x))

for B ∈ L(V,W ∗) and x ∈ V . Since the composition of two isomorphisms is an isomorphism
the last result follows.

There is a nice interpretation of Φψ for V = R
d and W = R

d′ endowed with the standard
bases. For these vector spaces of column vectors, the set of bilinear functions on V ×W can
be identified with the set of d× d′ matrices M(d, d′), such that B ∈ M(d, d′) is identified
with the bilinear function

(x, y) 7→ xtBy.

In this case the dual (Rd′)∗ is interpreted as the space of row vectors and ψ(x) = xt

for x ∈ R
d′ defines the isomorphism of R

d′ and (Rd′)∗ using standard bases. Then for
B ∈M(d, d′)

Φψ(B)(x) = Btx.

Thus the linear map corresponding to the bilinear function given by the matrix B is given
by the transposed matrix Bt.

In an abstract vector space we can add elements and we can multiply elements by real
scalars, but there is no general “multiplication” or “composition” of elements. The vec-
tor space B(V, V ) does not have an obvious composition, but given a basis for V and
thus the identification Φψ from Lemma 1.2.2 of B(V, V ) and L(V, V ) we can introduce a
composition. For A,B ∈ B(V, V ) we define the composition by

A ◦B = Φ−1

ψ ([Φψ(A)] ◦ [Φψ(B)]).

For B ∈ B(V, V ) the linear map Φψ(B) may be invertible. In that case we define the
inverse of the bilinear map B by the formula

B−1 := Φ−1

ψ (Φψ(B)−1).
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Obviously then B ◦B−1 = B−1 ◦B = I where I refers to the standard inner product.

For V = R
d and representing the bilinear functions by matrices the composition is matrix

multiplication and the inverse is given by the matrix inverse. However, we must be very
careful here. If B is a bilinear function regarded as a d × d matrix, the bilinear function
determined by B−1 is in fact given as

(x, y) 7→ xt(B−1)ty = ytB−1x.

Thus the inverse bilinear function equals (x, y) 7→ xtB−1y if and only if B and thus B−1

are symmetric.

1.3 Exercises

Exercise 1.3.1. Show that if e1, . . . , ed is a basis for V , we can define the functions
ei : V → R by ei(x) is the i’the coordinate of x in this basis. Show that the functions
e1, . . . , ed are linear, thus elements in V ∗, and linearly independent. Then show that they
span V ∗ and thus form a basis, which makes V ∗ into a d dimensional vector space too.

Exercise 1.3.2. If x, y ∈ V and x 6= y show that there exists z ∈ V ∗ such that z(x) 6= z(y).

Exercise 1.3.3. Show that for a bilinear function B and (x, y) ∈ V ×W

B(x, y) = Φ(B)(x)(y).

Since Φ(B) is a linear map from V to W ∗ it may have an inverse, Φ(B)−1, from W ∗ to V .
The inverse is regarded as a bilinear function on V ∗ ×W ∗ by the definition

(x, y) 7→ x(Φ(B)−1y).

Show that if V = W then

B(Φ(B)−1x,Φ(B)−1y) = x(Φ(B)−1y).

for (x, y) ∈ V ∗ × V ∗, and show that if B is symmetric, then

x(Φ(B)−1y) = y(Φ(B)−1x).

We could write Φ(B)−1 = B ◦ (Φ(B)−1 × Φ(B)−1) where

(Φ(B)−1 × Φ(B)−1)(x, y) = (Φ(B)−1x,Φ(B)−1y)

for (x, y) ∈ V ∗×V ∗. We have shown that for V = W then Φ(B)−1 is symmetric, regarded
as a bilinear function on V ∗ × V ∗, if B is symmetric.

If B is a symmetric bilinear function on V × V and we let ψ × ψ be defined by

(ψ × ψ)(x, y) = (ψ(x), ψ(y))

then Φ(B)−1 ◦ (ψ × ψ) is a symmetric bilinear function on V × V . Show that in this case

B−1 = Φ(B)−1 ◦ (ψ × ψ).

Hint: Show first the formula B−1(x, y) = ψ(Φ(B)−1(ψ(x)))(y).
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1.4 The normal distribution on a finite dimensional vector

space

We consider a d-dimensional, real vector space V endowed with the usual Borel σ-algebra
and a Lebesgue measure. The Lebesgue measure is unique up to a proportionality constant.
The regular normal distribution on V is given in terms of a symmetric, positive definite
bilinear function Λ on V and a location parameter µ ∈ V .

The set of symmetric, positive definite bilinear functions (the inner products) on V is
denoted S+(V ), and in the language of the normal distribution an element Λ ∈ S+(V ) is
also called a precision. For a precision parameter Λ ∈ S+(V ) and a location parameter
µ ∈ V the regular normal distribution on V has density fΛ,µ w.r.t. to the Lebesgue measure
where

fΛ,µ(x) =
1

ϕd(Λ)
exp

(

−
1

2
Λ(x− µ, x− µ)

)

. (1.1)

Here ϕd(Λ) is a normalization constant that depends on the dimension d and on Λ – but
not on µ. This is because the Lebesgue measure on V is translation invariant. We can
write the normalization constant as

ϕd(Λ) =

∫

exp

(

−
1

2
Λ(x, x)

)

dx

where the integration is w.r.t. the chosen Lebesgue measure on V .

An affine subspace of V is a set µ+U where U ⊆ V is a linear subspace of V and µ ∈ V .
It is possible to define a normal distribution, whose support is an affine subspace. Since U
is a subspace of V and µ ∈ V we can define the embedding τµ : U → V by

τµ(u) = µ+ u.

The image measure under τµ of the regular normal distribution on U with location pa-
rameter 0 and precision Λ is called the normal distribution with location µ, precision Λ
and support µ + U . If U 6= V we call this a singular normal distribution. If V = U the
definition coincides with the definition of the regular normal distribution above. In terms
of random variables we say that Y follows a normal distribution on V with location µ,
precision Λ and support µ+ U if

Y = µ+X

where the distribution of X is a normal distribution on U with location 0 and precision Λ.

If we choose a fixed basis e1, . . . , ed for V we use ei(x) ∈ R to denote the i’th coordinate
of x ∈ V . We can identify x with the column vector (e1(x), . . . , ed(x))t ∈ R

d and

x =

d
∑

i=1

ei(x)ei.
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If X is a random variable on V let ξi = Eei(X). Then the mean value of X is defined as

ξ =
d

∑

i=1

ξiei,

which can be identified with the column vector (ξ1, . . . , ξd)
t. Moreover, since we have

chosen a basis we identify V with V ∗ such that for z ∈ V with z =
∑d

i=1 e
i(z)ei the

corresponding linear function in V ∗ is

z(x) =
d

∑

i=1

ei(x)ei(z).

We identify z with the column vector (e1(z), . . . , ed(z))t so that using matrix multiplication
we may simply write z(x) = ztx. If X is a random variable with values in V and z ∈ V

we find that
Ez(X) = ztξ.

To introduce the covariance of X we define the map Σ : V × V → R by

Σ(z,w) = cov(z(X), w(X))

for any (z,w) ∈ V × V . We may show that this is a symmetric and positive semidefinite
bilinear function on V . We may identify this bilinear function with a matrix, which we
with abuse of notation call Σ too, and whose entries are given by

Σij = cov(ei(X), ej(X)) = E(ei(X) − ξi)(e
j(X) − ξj).

By bilinearity

Σ(z,w) =

d
∑

i,j=1

ei(z)Σije
j(w).

Thus in terms of matrix multiplication – and identifying z and w with column vectors
– this equals ztΣw. One can show that for a regular normal distribution with location
parameter µ and precision Λ the mean is µ and the covariance is the inverse of Λ, that is,
Σ = Λ−1.

The following results are of great importance. The proofs are skipped.

Theorem 1.4.1. For any ξ ∈ V and symmetric, positive semidefinite bilinear function

Σ on V there is one and only one normal distribution on V with mean ξ and covariance

Σ. We denote this distribution by N(ξ,Σ). Moreover, it is a regular normal distribution if

and only if Σ is positive definite, and in this case the precision is Λ = Σ−1.

If X is a random variable with distribution N(ξ,Σ) we also write X ∼ N(ξ,Σ).

If A : V → W is a linear map and f1, . . . , fd′ is a basis of W , then we can represent the
map as a d′×d matrix, which we also call A. The transpose, At, represents a map W → V ,
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which we also denote At. For a bilinear function Σ on V we can define the bilinear function
AΣAt on W by

AΣAt(x, y) := Σ(Atx,Aty).

If we identify x and y with d′-dimensional column vectors, Atx and Aty are d-dimensional
column vectors and

Σ(Atx,Aty) = (Atx)tΣ(Aty) = (xtA)Σ(Aty) = xt(AΣAt)y.

Hence the notation, AΣAt for the bilinear map. Because Σ is symmetric the linear map
from W to W corresponding to the the bilinear function AΣAt on W ×W is precisely the
map

x 7→ A(Σ(At(x)))

where Σ is identified as a linear map Σ : V → V . It is easy to see that if Σ is positive
semidefinite so is AΣAt.

Theorem 1.4.2. If X ∼ N(ξ,Σ), if A : V → W is a linear map and if ν ∈ W then

ν +AX ∼ N(ν +Aξ,AΣAt).

The choice of basis introduces an inner product, which makes the basis into an orthonor-
mal basis. Using this inner product we can for a subspace U ⊆ V define the orthogonal
complement U⊥ as the subspace of vectors in V that are orthogonal to U . Let P1 denote
the orthogonal projection on U and P2 = I − P1 the orthogonal projection onto U⊥. As-
sume that X ∼ N(ξ,Σ) and define X1 = P1X, X2 = P2X, ξ1 = P1ξ and ξ2 = P2ξ. Define
for i, j = 1, 2 the bilinear functions

Σi,j = PiΣP
t
j .

From Theorem 1.4.2 X2 ∼ N(ξ2,Σ2,2). In addition, we have a result on the conditional
distribution of X1 given X2.

Theorem 1.4.3. If Σ2,2 has an inverse, then

X1|X2 ∼ N(ξ1 + Σ1,2Σ
−1
2,2(X2 − ξ2),Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1).
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Tensor products

2.1 Introduction

“Unfortunately no one can be told what the matrix is. You have to see it for yourself”.
This is what Morpheus says to Neo just before he takes the red pill.

I can tell you what a matrix is. It’s a set of real numbers arranged in an square array –
but maybe that is not what Morpheus had in mind. However, in mathematics one may
rephrase the citation as

“Unfortunately no one can be told what a tensor is. You have to see it for yourself”.

The problem is that I don’t have a red pill, and it may require equal parts of hard work
and simple acceptance of my authority to gain confidence in working with tensors and
tensor products.

What we are aiming at is quite down to earth; the organization of linear and bilinear maps
so that they can be manipulated algebraically without tedious references to coordinates
and choices of basis in the underlying vector space(s). And even if we choose a basis we
need to organize the set of real coefficients in a suitable choice of scheme – like the linear
map representation using a matrix.

Why are matrices not always sufficiently good schemes? For multivariate statistical analysis
the answer is that the data are naturally in a matrix form. This means that the data vector
is written down as a matrix, but this is not something we think of as a linear map but
as an element in a vector space of matrices. On this vector space we need to consider
linear maps and we find ourself in a mess of matrices at different levels if we insist on the
matrix organization for linear maps. However, the abstract and coordinate free theory for
tensor products on vector spaces is – well, abstract. It does not offer the opportunity to
exploit the concrete structure on the vector space of real n× p matrices, which is of most
importance to multivariate analysis. Therefore we choose a concrete approach to tensor
products.

13



14

2.2 Concrete tensor products

We introduce tensor products in this section using constructions that are based on the
explicit structure of the vector spaces – in particular the vector space R

d and the space
M(n, p) of real n×p matrices. In both cases we take advantage of standard bases and inner
products and the explicit identification of the vector space with it’s dual. For the matrix
vector space we can also exploit matrix algebra to obtain convenient algebraic expressions
for tensor product constructions and computations.

2.2.1 The space R
d

Consider the vector space R
d. Elements in this space are thought of as column vectors and

we write x = (x1, . . . , xd)
t for the typical element in R

d. Here the “t” means to transpose,
that is, physically rotate the column vector 90 degrees. The vector space has a standard
basis, e1, . . . , ed, where ei denotes the column vector with a 1 at the i’th coordinate and 0
elsewhere, and we can then write the typical element as

x =
d

∑

i=1

xiei.

The dual of R
d is identified with R

d and z ∈ R
d defines the linear function

x 7→ ztx =
d

∑

i=1

zixi

on R
d. Therefore we often think of and represent the dual of R

d as row vectors and thus
for z ∈ R

d the corresponding dual element is zt. This identification of R
d and it’s dual is

equivalent to introducing the standard inner product on R
d given by

(x, z) 7→ ztx,

which makes the standard basis into an orthonormal basis.

Definition 2.2.1. The tensor product R
d ⊗ R

d′ is defined as the vector space B(Rd,Rd′).

For any two x ∈ Rd and z ∈ Rd′ we define the elementary tensor x ⊗ z as the bilinear
function

x⊗ z(a, b) = xtaztb (2.1)

for (a, b) ∈ R
d × R

d′ . If f1, . . . , fd is the standard basis on R
d′ we can consider the set of

elementary tensors (ei ⊗ fj)i=1,...,d,j=1,...,d′ .

Lemma 2.2.2. The set (ei ⊗ fj)i=1,...,d,j=1,...,d′ is a basis for R
d ⊗ R

d′ . Any B ∈ R
d ⊗ R

d′

can therefore be written as

B =
∑

i,j

Bijei ⊗ fj
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and it is natural to organize the coefficients for B in a d× d′ matrix and simply write

B =







B11 · · · B1d′

...
...

Bd1 · · · Bdd′






.

This provides an identification of R
d ⊗ R

d′ and the set M(d, d′) of d× d′ matrices.

Proof: Define Bij = B(ei, fj). Then for any x =
∑d

i=1 xiei ∈ V and y =
∑d′

j=1 yjfj ∈ W

we have by bilinearity of B that

B(x, y) =

d
∑

i=1

d′
∑

j=1

xiyjB(ei, fj) =

d
∑

i=1

d′
∑

j=1

Bijxiyj .

By definition ei ⊗ fj(x, y) = xiyj it follows that

B =
∑

i,j

Bijei ⊗ fj,

and we have shown that (ei ⊗ fj)i=1,...,d,j=1,...,d′ span R
d ⊗ R

d′ . Since

ei ⊗ fj(ek, fl) = δikδjl

where δik is 1 if and only if i = k it follows that (ei ⊗ fj)i=1,...,d,j=1,...,d′ are also linearly
independent (no element can be written as a linear combination of the others due to
the identity above, which is 1 if and only if i = k and j = l). This shows that (ei ⊗
fj)i=1,...,d,j=1,...,d′ forms a basis for R

d ⊗ R
d′ .

Note that the lemma also shows that the dimension of R
d ⊗ R

d′ is dd′.

2.2.2 The space M(n, p)

The vector space M(n, p) of real n× p matrices is obviously an np-dimensional real vector
space and thus isomorphic to R

np. We have a standard basis (eij)i=1,...,n,j=1,...,p where
eij is the matrix with a 1 at position (i, j) and 0 elsewhere, which can be used to make
the identification. However, this vector space has more structure than R

np. Trying to
understand the tensor product M(n, p)⊗M(n, p) we may refer to the former section and
regard it as the set of M(np, np) matrices, but this is not a very good idea.

The first important structure on matrices that we will exploit is that for square matrices
we have a so-called trace. The trace is the map tr : M(d, d) → R defined by

tr(A) =

d
∑

i=1

Aii.
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It has the following important properties for two matrices A ∈ M(n, p) and B ∈ M(p, n)
that

tr(AB) = tr(BA). (2.2)

tr(λA+ γB) = λtr(A) + γtr(B), for λ, γ ∈ R. (2.3)

tr(A) = tr(At), if n = p (2.4)

To identify M(n, p) with it’s own dual using the standard basis – or to introduce the
standard inner product on M(n, p) – we can use the trace together with transposition. For
A ∈M(n, p) we can define the corresponding linear function tr(At·), that is, the function

B 7→ tr(AtB).

The inner product is

tr(AtB) =

p
∑

i=1





n
∑

j=1

AjiBji



 =
∑

i,j

AijBij.

Note that it is an algebraic trick to write the double sum as a matrix multiplication followed
by a trace but by no means a computational trick. There is a large amount of computations
involved in AtB that is not needed for computing the trace afterwards. To be precise, AtB
requires p2n multiplications and p2(n − 1) additions. The following computation of the
trace requires then in addition p−1 additions. But the double sum can be computed using
pn multiplications and pn− 1 additions.

Definition 2.2.3. The tensor product M(m,n)⊗M(p, q) is defined as B(M(m,n),M(p, q)),
that is, as the set of bilinear functions from M(m,n) ×M(p, q) into R.

For two matrices A ∈ M(m,n) and B ∈ M(p, q) we have the elementary tensor A ⊗ B,
which is given as the bilinear function

A⊗B(C,D) = tr(AtC)tr(BtD)

for C ∈M(m,n) and D ∈M(p, q). Moreover, we have the basis (eir⊗ejs)i,j=1,...,n,r,s=1,...,p

for M(n, p) ⊗M(n, p). For the elementary tensor A⊗B the coordinates in this basis are

(A⊗B)irjs = AirBjs.

There is, however, another fruitful construction of tensors that rely heavily on matrix
algebra. For A ∈M(n, n) and B ∈M(p, p) we define the kronecker tensor product A⊗B ∈
M(n, p) ⊗M(n, p) as the bilinear function

(A⊗B)(C,D) := tr(BCtAtD). (2.5)
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We choose (2.5) as the equation that defines the tensor productA⊗B as a bilinear function.
By the general correspondence in Lemma 1.2.2 we may also regard A⊗B as a linear map
from M(n, p) to M(n, p), which is formally written as Φψ(A⊗B). We see that

Φψ(A⊗B)(C) = ACBt.

Thus dropping the isomorphism Φψ we simply write A ⊗ B for the linear map also, that
is,

(A⊗B)(C) = ACBt (2.6)

for C ∈M(n, p). The coordinates in the standard basis are

(A⊗B)irjs = AijBrs.

The composition of two elements in M(n, p) ⊗ M(n, p) is defined abstractly using the
isomorphism Φψ. We find that regarded as linear maps

(A⊗B)◦ (C ⊗D)(E) = (A⊗B)(CEDt) = ACEDtBt = (AC)E(BD)t = (AC⊗BD)(E).

Thus we have proved the general formula for the kronecker tensor product;

(A⊗B) ◦ (C ⊗D) = AC ⊗BD

for A,C ∈M(n, n) and B,D ∈M(p, p).

In principle there is a chance of confusion. The notation for the kronecker tensor product
of two matrices could also be taken to mean an elementary tensor in M(n, n) ⊗M(p, p).
Especially if n = p we could be in serious trouble. Does A⊗B mean an elementary tensor
or the kronecker tensor product for two p× p matrices A and B?

Example 2.2.4. Let X0 and Z be independent, real valued p-dimensional random vari-
ables with second moment and define1

X1 = Ω
1/2
1 Z

Ω1 = Ω +AX0X
t
0A

t

for two matrices Ω, A ∈ M(p, p), where Ω is symmetric and positive definite. We assume
that Z has mean 0 and the identity matrix I as covariance matrix.

We ask if there is a distribution on X0 such that X1
D
= X0. A more modest question is if

we can find a mean value and covariance matrix Σ of X0 such that X1 has the same mean
value and covariance matrix2

1the formula is used in particular in econometrics to define recursively a class of stochastic processes

known as ARCH processes
2the interest is whether there is a time stationary version of the process, or perhaps a so-called weakly

stationary version where just the fist and second moments do not change with time
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We compute the mean in the defining equation and find that EX1 = 0, thus X0 should
have mean 0. Then we compute the variance of X1 to be

V(X1) = EΩ1 = Ω +AΣAt

where we have used that if EX0 = 0 then EX0X
t
0 = Σ. Thus to get the same covariance

matrix for X1 we need that Σ fulfills the equation

Σ −AΣAt = Ω.

The interest is whether there is a matrix solution in Σ to this equation and whether the
solution if it exists is symmetric and positive definite.

By relying on the definition of the tensor product we see that in reality we are trying to
solve the linear equation

(I −A⊗A)Σ = Ω

where I denotes the identity map from M(p, p) to M(p, p). The linear map (I − A ⊗ A)
is invertible if the eigenvalues of A ⊗ A are < 1. In this case the inverse is given by the
Neumann series

(I −A⊗A)−1 =

∞
∑

k=0

(A⊗A)k,

which converges and (I − A ⊗ A)−1Ω is positive definite for all positive definite Ω. This
shows that if the eigenvalues of A⊗A are < 1 then

Σ =
∞
∑

k=0

(A⊗A)kΩ =
∞
∑

k=0

AkΩ(Ak)t

is the unique positive definite solution.

2.3 Exercises

Exercise 2.3.1. Lemma 2.2.2 allows us to regard elements in R
n ⊗ R

p as matrices in
M(n, p). Show the the matrix representation of the elementary tensor x ⊗ y for x ∈ R

n

and y ∈ R
p is xyt.

In Lemma 1.2.2 an isomorphism Φψ from R
n⊗R

p = B(Rn,Rp) to L(Rn,Rp) is established
if we choose the standard bases for R

n and R
p. Show that the matrix representation of

the linear map Φψ(x⊗ y) is yxt.

Exercise 2.3.2. For A ∈ M(n, n) and B ∈ M(p, p) the kronecker tensor product A ⊗ B

can by (2.6) be regarded as a linear map on M(n, p) → M(n, p). Using Lemma 2.2.2
we identify M(n, p) by R

n ⊗ R
p, and thus we can regard A ⊗ B as a linear map on

R
n ⊗ R

p → R
n ⊗ R

p. Writing (A⊗B)(C) for C ∈ R
n ⊗ R

p show that

(A⊗B)(x⊗ y) = (Ax) ⊗ (By)

for x ∈ R
n and y ∈ R

p.


