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Motivation and aims

Two motivating applications:

• The modeling of physical binding positions of transcription
factors on the genome.

• The modeling of the spike times for single neurons or
neuronal nets.

General aims:

• To build and implement a flexible (non-parametric), intensity
based framework of multivariate point process models – aka
discretely marked point processes.

• To develop an organizational model of active transcription
regulatory elements along genomes – joint with Lisbeth
Carstensen, Albin Sandelin, Ole Winther.
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Point process modeling via intensities

We consider a filtered probability space (Ω,F ,Ft ,P) and a
parametrized family (λt(θ))t≥0 of positive, predictable processes
for θ ∈ Θ.
The minus-log-likelihood is

lt(θ) =

∫ t

0
λs(θ)ds −

∫ t

0
log λs(θ)N(ds)

We will study penalized maximum-likelihood estimation of the
parameter θ.
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Simple example form neuron modeling

A neuron cell emits electro-chemical signals known as spikes. The
cells membrane potential is influenced by signals from other
neurons and determines the signaling of the cell.

Take (Xt)t≥0 to be the membrane potential and
λt(a, b) = ϕ(aXt + b) for a fixed ϕ to generalize commonly used
threshold models:

• ϕ(x) = c1{x>1}. Threshold model, a, b determines the
threshold, c how rapid the neuron fires.

• ϕ(x) = x+, “convex version”, b determines the threshold and
a how rapid the neuron fires.

More complicated examples are found in the recent developments
of multivariate modeling of spikes in neuronal nets1.

1Pillow et al. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature, 454. 2008
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Genomic scales

cused on 14 manually chosen human
genomic regions and 30 randomly se-
lected ones, which in total compose
30 mega-bases (∼1%) of the human
genome sequence. Of all possible func-
tional elements in the ENCODE regions,
epigenetic modifications and cis-
regulatory elements, including promot-
ers and TF-binding sites (TFBSs; together
referred to as TREs in this report), are
a major form of transcriptional regula-
tion in eukaryotes. To identify the com-
plex set of cis-acting transcriptional con-
trol sequences and modification sites in
the ENCODE regions, a large number of
proteins (including POLR2A) that play
various roles in transcription and several
types of histone modifications were as-
sayed by different participating labora-
tories.

The ENCODE experimental assays
of the transcriptional regulation, which
collectively represent the first concerted
effort to systematically identify TREs in
the human genome on a large scale,
have generated a large amount of data.
With this information available (The
ENCODE Project Consortium 2007), it is
now possible to conduct detailed surveys
of different TFs and their TREs on vari-
ous genomic levels (Fig. 1A). The pro-
moter assay finds the promoter regions
immediately upstream to genes’ tran-
scription start sites (TSSs) on a 100-base-
pair (bp) level, and the chromatin struc-
ture analysis examines the correspon-
dence between various TREs and aspects
of chromatin architecture that impli-
cates mega-bases of DNA. In contrast,
our analysis of the genomic distribution
of TREs was conducted on an intermedi-
ate genomic level, which involves
10∼100 kb of DNA encompassing several
genes on average.

With such an unprecedented data
set, it is now also possible to examine TF
coassociation on a large genomic scale.
It is highly desirable to present the problem and subsequently
analyze the data in a consistent and coherent statistical frame-
work. To do this, we first coded the ChIP–chip experimental
results as a binary 105 ! ∼30,000,000 data matrix (Fig. 1B)
and then transformed it into a 105 ! 5669 count matrix using
a sliding window to both reduce the matrix size and incorpo-
rate contextual information from neighboring nucleotide posi-
tions (Fig. 1C). By presenting the data set in the matrix form,
many well-studied, mathematically-sound statistical methods
and techniques such as the principal component analysis and
data randomization (Fig. 1D) can be adopted to tackle the prob-
lem.

Below, we evaluate the genomic distribution of the newly
identified TREs both by themselves and together with the gene
distribution, determine TRE clusters and deserts in the ENCODE

regions, and study the relationship among the TFs that have been
assayed.

Results
We analyzed 105 lists of regulatory elements of 29 TFs in the
ENCODE regions. A list of TREs of a particular TF specifies the
location in the genome of the regulatory elements of this factor
under certain cellular and experimental conditions. Disregarding
overlaps among sites, there are a total of 15,211 TREs identified.
The numbers of TREs in each list, ranging from 1–1083 with an
average of ∼145 per list, are plotted in Supplemental Figure 1 with
lists from the same laboratory grouped together and labeled ac-
cordingly. The overall landscape of all 44 ENCODE regions with
identified TREs is depicted in Figure 2 and clearly shows a posi-

Figure 1. Schematic introduction of the several concepts used in this study. (A) Studies of different
transcription factors and their regulatory elements on various genomic levels. (TRE) Transcriptional
regulatory element; (TSS) transcription start site. (Modified from The ENCODE Project Consortium
2004 and reprinted with permission from AAAS [www.sciencemag.org] © 2004.) (B) The binary data
matrix. Each row is the result track of a ChIP–chip experiment. Red dots are identified transcriptional
regulatory elements, in which each nucleotide position is coded as one. (C) The count matrix. A sliding
window (the green boxes in B) was used to incorporate contextual information from neighboring
positions. Each gray dot represents the number of nucleotide positions in TREs in a sliding window. (D)
Correlating two ChIP–chip tracks. The correlation can be done on either two binary vectors or two
corresponding count integer vectors (actually used, not shown). Two tracks can also be randomized to
generate a background distribution of the correlation.

Zhang et al.

788 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 6, 2010 - Published by genome.cshlp.orgDownloaded from 

We focus on the distribution of point-like transcriptional regulatory
elements2 at the meso-genomic scale.

2Figure from Zhang et al., Genome Res. 17. 787-797. 2007
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Transcription regulator binding loci

Attempt of a broad definition: Transcription regulators are
proteins that modify, interact with or bind to the DNA, chromatin
or other transcription regulators to either activate or repress the
transcription of DNA.

An active transcription regulatory loci is a loci on the genome
where we observe the presence of a transcription regulator.

Fact: Transcription regulators cluster – in promoter regions and
intergenic regions. Why? Is there a combined effect? Do they
recruit each other ... ?

With regulators as marks and measurements of the active loci as
points on the meso-genomic scale we use a multivariate point
process model of the organization of active loci.
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Embryonic mouse stem cell data (ChIP-seq)
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Mouse, chromosome I: 7 of 15 active transcription factor binding
loci measured by ChIP-seq for embryonic stem cells.3

3Chen et al, Cell 133, 1106-1117, 2008
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A self-exciting model

If (Nt)t≥0 is the counting process for the occurrences of a TR
binding loci along the genome. With τ1, . . . τNt the jumps we
consider the model

λt(g) = ϕ

∑
j :τj<t

g(t − τj)

 = ϕ

(∫ t−

0
g(t − s)N(ds)

)
For a multivariate counting process, (N i

t)t≥0,i=1,...,K , we consider

λk
t (g) = ϕ

 K∑
i=1

∑
j :τ i

j<t

g ik(t − τ i
j )

 ,

which is the non-linear Hawkes process4. With ϕ(x) = x + d we
get the linear Hawkes process.

4Bremaud, P. and Massoulie, L. Stability of nonlinear Hawkes processes.
Ann. Probab. 24(3), 1996.
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Generalized linear point process models

Assume that (Xt)t≥0 is an adapted, càdlàg process with values in
V ∗ – the dual of the vector space V and define

Θ(D) = {β ∈ V | Xs−β ∈ D for all s ∈ [0, t] P-a.s.}.

Assume that ϕ : D → [0,∞) and assume in addition that (Yt)t≥0

is a predictable, càdlàg process with values in [0,∞).

We define a generalized linear point process model on [0, t] to be
the statistical model for a point process on [0, t] with parameter
space Θ(D) such that for β ∈ Θ(D) the point process has intensity

λs = Ysϕ(Xs−β)

for s ∈ [0, t].
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The problem with explosion

Given a predictable (candidate) intensity process (λt)t≥0 does it
define a point process? Yes but the likelihood process

Lt = exp

(
t −

∫ t

0
λsds +

∫ t

0
log λsN(ds)

)
may not be a martingale.

EP(Lt) = 1 if and only if the intensity defines a point process that
does not explode in [0, t].

We must restrict our attention to combinations of ϕ and processes
(Xt)t≥0 such that the likelihood process is a martingale. Otherwise
we don’t have a dominated statistical model and we don’t have a
likelihood function.
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Banach space parameters

We can take V = Rd and

Xt = (Xt,1, . . . ,Xt,d)

a d-dimensional (row) vector with (Xt,i )t≥0 an adapted, real
valued, càdlàg process.

The definition of a glppm applies whenever V is a separable
Banach space, the process (Xt)t≥0 takes values in the dual space
V ∗ of continuous linear functionals, is adapted and norm-càdlàg.

Under these circumstances (Xtβ)t≥0 is adapted and càdlàg,
(Xt−β)t≥0 is predictable and (||Xt ||)t≥0 and (||Xt−||)t≥0 are
bounded on bounded intervals.
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Stochastic integrals as linear functionals
If g : [0,∞)→ R is a measurable, locally bounded function and
(Zt)t≥0 a semi-martingale we can define the linear filter

Xtg =

∫ t

0
g(t − s)dZs

Question: Is the function

g 7→ Xtg

an ω-wise linear functional on some Banach space V ? Is it
continuous?

The solution is integration by parts∫ t

0
h(s)dZs = h(t)Zt − h(0)Z0 −

∫ t

0
Zs−h′(s)ds

We have to choose V to be a space of functions where the
derivative makes sense.
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Sobolev spaces
Definition: W m,2([0, t]) is the space of functions that are m times
weakly differentiable with the m’th derivative in L2([0, t]).

Several equivalent norms, we choose one that makes W m,2([0, t])
a reproducing kernel Hilbert space with kernel given as
Rm = R0

m + R1
m where

R1
m(s, r) =

∫ s∧r

0

(s − u)m−1(r − u)m−1

((m − 1)!)2
du,

and

R0
m(s, r) =

m∑
k=1

ϕk(s)ϕk(r)

with ϕk(t) = tk−1/(k − 1)! for k = 1, . . . ,m.

Example: m = 1, Rm(s, r) = s ∧ r + 1 and

< f , g >= f (0)g(0) +

∫ t

0
f ′(s)g ′(s)dt.
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Penalized maximum likelihood estimation

As a function of g ∈W m,2([0, t]) the minus-log-likelihood function
reads

lt(g) =

Z t

0

Ysϕ

„Z s−

0

g(s − u)dZu

«
ds−

Z t

0

log(Ysϕ

„Z s−

0

g(s − u)dZu

«
)N(ds)

We are aiming at optimizing the penalized minus-log-likelihood

lt(g) + λ

∫ t

0
Dmg(s)2ds

over W m,2([0, t]).
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Main Theorem

Let τ1, . . . τNt denote the jump times for N.

Theorem

If ϕ(x) = x + d with domain (−d ,∞) then a minimizer of the
penalized minus-log-likelihood function over Θ((−d ,∞)) belongs
to the finite dimensional subspace of W m,2([0, t]) spanned by the
functions ϕ1, . . . , ϕm, the functions

hi (r) =

∫ τi−

0
R1(τi − u, r)dZu

for i = 1, . . . ,Nt together with the function

f (r) =

∫ t

0
Ys

∫ s

0
R1(s−u, r) dZuds =

∫ t

0

∫ t

u
YsR1(s−u, r)ds dZu.
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Some spline bases
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If (Zs)0≤s≤t is a counting process with jumps σ1, . . . , σZt the hi

basis functions are order 2m splines with knots in

{τi − σj | i = 1, . . . ,Nt , j : σj < τi}.
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Some spline bases
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Estimated multiplicative effects - ES cells
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Further results

Theorem

If ϕ is continuously differentiable,

ηi (r) =

∫ τi−

0

R(τi − u, r)dZu

and

fg (r) =

∫ t

0

∫ t

u

Ysϕ
′
(∫ s−

0

g(s − u)dZu

)
R1(s − u, r)dsdZu.

Then the gradient of lt at g ∈ Θ(D)◦ is

∇lt(g) = fg −
Nt∑
i=1

ϕ′
(∫ τi−

0
g(τi − u)dZu

)
ϕ
(∫ τi−

0
g(τi − u)dZu

) ηi .
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ppstat

The current implementation in the R-package ppstat offers

• a formula interface to model specification, standard summary
tables etc.

• standard (e.g. spline) basis function expansions of linear
filters.

• inclusion of continuous time covariate effects and additive
model specification.

We are currently implementing

• simulations; in particular MCMC simulation of conditional
distributions.

• infinite dimensional descent algorithm.

• grouped lasso estimation and interaction term support.
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