My teaching

Teaching is fun. I am currently teaching

  • introduction to mathematics,
  • introduction to number theory, and
  • analytic number theory.

I have previously been teaching courses in linear algebra, functional analysis, complex analysis, elliptic curves, modular forms, and automorphic forms.

Become my PhD student or postdoc

I also enjoy supervising projects and mentoring students.

If you are looking for a PhD or postdoc position with me as your mentor, please apply to our next open call. If you are interested in number theory feel free to suggest me as your mentor in your application. Our bi-annual PhD calls have deadline April 1st, and November 15th. Our annual postdoc call has deadline November 15th. If you are interested in number thery feel free to suggest me as your mentor in your application.

Write a project with me

If you want to do a bachelor project or a masters project with me you should see below at which types of projects previous students have written with me. Then you should send me an email, and if I have bandwith we can set up a meeting. Unfortunately I do currently not have funding to sponsor internships.

Public outreach. I have given many lectures for non-mathematicians, mostly high-school students. See here for extra info

Postdocs

  • 2023-2024 Keshaw Aggawal
  • 2021-2022 Nils Matthes
  • 2015-2017 Oscar Marmon
  • 2015–2016 Niko Laaksonen
  • 2014–2017 Piotr Maciak
  • 2013-2016 Anders Södergren

PhD Students

  • 2024 Alf Söderberg
  • 2016-2020 Asbjørn Nordentoft: On arithmetic statistics and periods of automorphic forms
  • 2013-2016 Giacomo Cherubini: Studies in the hyperbolic circle problem
  • 2011-2014 Flemming von Essen: Automorphic forms – Multiplier Systems and Taylor Coefficients
  • 2005-2009 Jimi Lee Truelsen: Distribution results in automorphic forms and analytic number theory

Masters Students

  • 2024 Alexander Bretlauch Specht: An experimental investigation of the error term in the Gauss circle problem and related quantities
  • 2023 Nikoline Hyllested Andersen: The ABC-conjecture and its applications
  • 2023 Nicolas Arnvig: Hyperbolic lattice points. Cartan’s decomposition and equidistribution modulo 1
  • 2022 Line Lindholm Jensen: The Lindelöf hypothesis for admissible sequences
  • 2021 Jasmin Karina Øder Madsen: Vinogradov’s 3-prime theorem
  • 2021 Lasse Nøhr Henriksen: The L-function of a Maass form
  • 2021 Gustav Torp: Selberg’s central limit theorem for the Riemann zeta function
  • 2019 Patrick Liljegren Dinesen: Taylor coefficients for Ramanujan’s Delta function
  • 2018 Asbjørn Nordentoft: Statistics of twisted L-functions
  • 2018 Mads Friis Frand-Madsen: Equidistribution of zeroes
  • 2018 Kasper Müller: Sphere packings
  • 2017 Jens Siegstad: The Selberg Trace Formula
  • 2014 Camilla Frantzen: The Bombieri-Vinogradov theorem
  • 2013 Christina Slaatorn: Vinogradov’s three primes theorem
  • 2012 Bo Malling Christensen: The Lindelöf Conjecture

Bachelor Projects

  • 2025 Lucas Oldrup Marsh
  • 2025 Thais Ziegler Hansen
  • 2025 Jeppe Skaunborg
  • 2025 Rafei Malik: p-adiske tal
  • 2024 Albert Jels Eilgaard: Modulære former og deres L-funktioner
  • 2023 Oscar Breiø: Modular forms and their L-function
  • 2023 Niklas Ellelund Hansen: p-adiske tal
  • 2023 Sebastian Nørregaard: The prime number theorem and the functional equation for zeta
  • 2023 Sofie Faxholm: AKS primtalstesten
  • 2022 Laura Obel: Primes in arithmetic progressions
  • 2022 Victoria Sarah Snow: The prime number theorem and Riemann’s zeta function
  • 2022 Oliver Wix Schütt Wagner: Legemet af p-adiske tal
  • 2022 Gunn Joensen: Primtalssætningen
  • 2022 Stine Langhede: p-adiske tal
  • 2022 Christian Thomas Kvist Jensen: Primtalssætningen
  • 2022 Katrine Bille Laursen: Dirichlets klassetalsformel
  • 2021 Nanna Wiberg Nielsen: Modular forms
  • 2021 Bertram Koch-Larsen: Construction and study of p-adic numbers
  • 2020 Nikoline Hyllested Andersen: Primes in arithmetic progression
  • 2020 Mathias Kirkeby: The functional equation for Riemann’s zeta
  • 2020 Esben Folke Ydesen: Modular forms and the partition function
  • 2019 Frederik Weber Wellendorf: p-adic numbers
  • 2019 Karoline Amalie Trond Reich: Gauss’ circle problem
  • 2019 Line Lindholm Jensen: The prime number theorem
  • 2019 Rasmus Goddiksen Graabæk: Modular forms
  • 2018 Stine Valgreen: Sieve methods, and twin primes
  • 2018 Rasmus Brammer: Primes in arithmetic progression
  • 2018 Erik Lange: The prime number theorem
  • 2018 Jasmin Madsen: p-adic numbers
  • 2017 Helle Bertelsen: p-adic numbers
  • 2016 Astrid Mortensen: The AKS algorithm
  • 2016 Sebastian Tim Holdum: Weyls law and the Gauss’ circle problem
  • 2015 Anders Aamand: The Bombieri-Vinogradov theorem
  • 2015 Asbjørn Nordentoft: Primes close together
  • 2015 Bjarke Østergård Nielsen: Dirichlets unit theorem
  • 2015 Hector Hougaard: p-adic numbers and the Hasse-Minkovski Theorem
  • 2014 Rikke Langhede: Higher order reciprocity
  • 2014 Mathilde Kjær Pedersen: The AKS algorithm
  • 2014 Kristoffer Holm Nielsen: Pell’s equation and Archimedes’ revenge
  • 2013 Mathis Elmgaard Isaksen: Phragmén Lindelöf princippet
  • 2013 Freja Elbro: Modular forms
  • 2013 Nilin Abrahamsen: A central limit theorem for the free group
  • 2011 Niels Andreas Hvitved: Billing-Mahlers sætning (Billing-Mahlers theorem)
  • 2010 Peter Humphries: Elementary proof of the prime number theorem
  • 2007 Diana Bertelsen: Primtalssætningen (The prime number theorem)
  • 2006 Jesper Vejgaard Knudsen: Primtal i arithmetiske progressioner (Primes in arithmetic progressions)

Other projects

  • 2022 Katrine Bille Laursen Pells ligning og kædebrøker
  • 2021 Jasmin Øder Madsen: Zeroes of L-functions
  • 2008 Rune Bak og Martin Damhus: Tate’s thesis

Public outreach

  • I have given several hundred lectures for high-school classes visiting the university of Copenhagen. Mostly on primes, where I discuss classical and modern results about prime numbers. You can book a lecture here

  • Several presentations on prime numbers for Science talents.

  • Several presentations at the danish youth association for science UNF on prime numbers, the Riemann zeta function and other topics.