

Corrections, clarifications, and up-dates to “An Introduction to K -theory for C^* -algebras”

Necessary corrections:

Page 5, l. 5: Replace ”one and only one $*$ -homomorphism ...” by ”one and only one unital $*$ -homomorphism ...”.

Page 7, item (ii): Replace “ X is compact” by “ X is compact and metrizable”.

Page 7, item (iv): This statement has to be modified when X and Y are not compact and when φ is not unital. In the first statement, one must insert the word ”proper” in front of ”continuous function” two places. (A continuous function $f: Y \rightarrow X$ is said to be *proper* if the preimage, $f^{-1}(K)$, of any compact subset K of X is compact.) In the second statement one must require that the image of φ is not a proper ideal of $C_0(X)$.

Page 11, l. -9: Replace “for all x, y in A , and...” with “for all x, y in \tilde{A} , and...”.

Page 14, Exercise 1.14: Replace “if and only if” with “if”.

Page 19, l. 12: Replace “*retract*” by “*deformation retract*”.

Page 20, l. 4: Replace “each bounded subset Ω of A ” by “each bounded subset Ω of A^+ ”.

Page 41, l. -2: Replace “a collection of maps $\varphi \mapsto F(\varphi)$ ” by “a map $\varphi \mapsto F(\varphi)$ ”

Page 46, 3.3.1: One should assume that the C^* -algebra A is unital; at least in the last section, where $K_0(\tau)$ is defined.

Page 53, l. 9: Change “Example 3.3.5” to “Example 3.3.4”.

Page 55, Exercise 3.4 (iii): Delete “over $C(X)$ ” from “rectangular matrices v_1, v_2, \dots, v_r over $C(X)$ such that...”

Page 74, l. 15: Replace “Use (iii) to show...” with “Use (iv) to show...”.

Page 83, l. 14: After “for each pair of *commuting* elements a, b in A^+ ” add “, and such that τ extends (possibly in a non-canonical way) to a continuous function $\tau: M_2(A)^+ \rightarrow \mathbb{R}^+$ with the same properties.”

Page 84, l. 6-7: Replace “every unital, stably finite, separable, exact C^* -algebra admits a faithful trace.” by “every unital, stably finite, exact C^* -algebra admits a tracial state.”

Page 94, Proposition 6.2.4 (iii): This statement should read:

$$\text{Ker}(\mu_n) = \{a \in A_n : \lim_{m \rightarrow \infty} \|\varphi_{m,n}(a)\| = 0\}.$$

Page 100, l. -4: Replace "By Proposition 6.4.2 (iii)" by "By Proposition 6.4.2 (ii)".

Page 102, l. -2: Replace " $K_0(\varphi_{n,1}) : K_0(A_n) \rightarrow K_0(M_n(A))$ " with " $K_0(\varphi_{n,1}) : K_0(A) \rightarrow K_0(M_n(A))$ ".

Page 103, l. 4: Replace "... = $K_0(g') = g$," with "... = $K_0(\kappa_n)(g') = g$,".

Page 103, l. 12–13: Replace "[31, Section 3.3]" with "[31, Section 3.4]".

Page 152, Exercise 8.18 (iv): Replace "a" by "c" in the second sentence "Show that there is an invertible element b in A with $[b]_1 = [a]_1$ in $K_1(A)$."

Page 155, l. 11: Replace "and p in $\mathcal{U}_{2(n_1+n_2)}(\tilde{I})$ by" with "and p in $\mathcal{P}_{2(n_1+n_2)}(\tilde{I})$ by".

Page 167, l. -11: Replace "an isomorphism" with "injective" in "Moreover, φ is an isomorphism if and only if v ..."

Page 169, Eq. (9.13): Move the minus sign appearing in the matrix so that the equation reads:

$$v = \begin{pmatrix} a & -(1 - aa^*)^{1/2} \\ (1 - a^*a)^{1/2} & a^* \end{pmatrix}$$

Page 188, l. 14: Correct "The inclusion $\text{GL}_n(\widetilde{SA}) \subseteq \mathcal{U}_n(\widetilde{SA})$ is a π_0 -equivalence..." to "The inclusion $\mathcal{U}_n(\widetilde{SA}) \subseteq \text{GL}_n(\widetilde{SA})$ is a π_0 -equivalence..."

Page 188, l. 15: Replace " $\mathcal{U}_n(\widetilde{SA}) \subseteq \text{Inv}_0(n)$ is also..." with " $\text{GL}_n(\widetilde{SA}) \subseteq \text{Inv}_0(n)$ is also..." .

Page 195, l. -9: Replace two occurrences of " 1_A " with " 1_B ".

Page 196, l. 9-10: Correct "the inclusion $\mathcal{P}_n(A) \subseteq \text{GI}_n(A)$ is a π_0 -equivalence:" to "the inclusion $\text{GI}_n(A) \subseteq \mathcal{P}_n(A)$ is a π_0 -equivalence:".

Page 203, l. 6: Replace "retract" by "deformation retract".

Page 203, l. 14–15: It is not true that

$$\{u \in C([0, 1], \mathcal{V}(A)) : u(0) = u(1) = 1\} = \{u \in \mathcal{U}_\infty(\widetilde{SA}) : s(u) = 1\},$$

but $\{u \in \mathcal{U}_\infty(\widetilde{SA}) : s(u) = 1\}$ is a dense subset of $\{u \in C([0, 1], \mathcal{V}(A)) : u(0) = u(1) = 1\}$, and this inclusion is a π_0 -equivalence (which justifies the claim in line 17). (Use density and the fact that if u, v are elements of either set and if $\|u - v\| < 1$, then $u \sim_h v$ in the respective set, to show that the inclusion is a π_0 -equivalence.)

Page 213, l. -7: Remove the equation

$$s\left(v(t) \begin{pmatrix} z(t)^* & 0 \\ 0 & z(t) \end{pmatrix}\right) = 1_{2n}.$$

(This equation does not make sense because we are not working in a C^* -algebra with an adjoined unit, and the equation is not needed for anything.)

Page 217, last line of Exercise 12.5: Replace “ $\gamma_0 = \delta_0 \circ \beta_B$ ” with “ $\gamma_0 = K_1(\iota) \circ \beta_B$ ”, and “ $\gamma_1 = \delta_1 \circ \theta_B$ ” with “ $\gamma_1 = K_0(\iota) \circ \theta_B$ ”.

Page 220, Eq. (13.1): Replace two occurrences of the interval “[0, 2π]” by “[0, 1]”.

Clarifications and minor corrections:

Page 2, l. -1: Insert “(a quotient of)” in front of “ A as a vector space...”.

Page 3, l. 2: After “... to this inner product.” add the following text “(It requires extra work to make φ injective, and this is often done by taking the infinite direct sum of all such Hilbert spaces, one Hilbert space for each positive linear functional on A).”

Page 9, l. -2: Remove one “the”.

Page 17: After line 7 add “because the unitary on the left-hand side has spectrum $\{-1, 1\} \subsetneq \mathbb{T}$.”

Page 22, l. 10: Replace this line by “ $|\alpha| = 1$, that u is unitary, and that $q = upu^*$.”

Page 35, l. -4: After “Let $(S, +)$ be an Abelian semigroup” add “, not necessarily with a neutral element. (We have chosen to work in this generality although the semigroups we shall consider actually do have a neutral element).”

Page 36, l. 9: After “It is called the *Grothendieck map*.” add “If S has a neutral element 0, then γ_S is given by the simpler formula $\gamma_S(x) = \langle x, 0 \rangle$.”

Page 56, Exercise 3.8: The given formulae for p is correct, but the example below is better. Replace the first sentence of the exercise with the following: "Show that an element p in $M_2(\mathbb{C})$ is a one-dimensional projection if and only if

$$p = \begin{pmatrix} (1+x)/2 & (y+iz)/2 \\ (y-iz)/2 & (1-x)/2 \end{pmatrix},$$

where $(x, y, z) \in \mathbb{R}^3$ satisfy $x^2 + y^2 + z^2 = 1$."

Page 67, l. -11: To see the second last equality, use Lemma 4.3.1 (ii).

Page 68, l. 8: Most standard text books on algebraic topology contain the *Five Lemma*; see for example (14.7) in M. J. Greenberg and J. R. Harper *Algebraic topology*, Addison-Wesley, 1981.

Page 137, l. 16: After "Lemma 2.1.3 (ii)" add "(or Corollary 2.1.4)".

Page 140, l. 13: Replace Lemma 8.2.3 (i) by the slightly more precise: "there is a unitary u in $\mathcal{U}_n(\tilde{A})$ for some n such that $g = [u]_1$ and $\tilde{\varphi}(u) \sim_h 1$ in $\mathcal{U}_n(\tilde{B})$,"

Page 177, l. -13: Before "Each element g in ..." add "The two unitaries u and v referred to in the theorem do exist as we shall proceed to show."

Page 177, l. -10: After "Lemma 2.1.3 (ii)" add "(or Corollary 2.1.4)".

Page 198, l. 18: Use the Whitehead Lemma (Lemma 2.1.5) and its proof to see the last homotopy.