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PL-Topology The Noncommutative Case

Piecewise-Linear Topology

PL-Topology is the study of topological spaces via triangulations
and piecewise-linear maps.

For us, “space” means “compact metrizable space.”

All C*-algebras will be assumed separable.
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Definition:

A triangulation of a space X is a homeomorphism from X to the
underlying space of a (finite) simplicial complex.

Definition:

A piecewise-linear map between simplicial complexes is a
continuous map between the underlying spaces which is linear
(affine) on each subsimplex.
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Triangulations are related to open covers.

If U is a (finite) open cover of X , the nerve of U is the simplicial
complex whose vertices are the open sets in U , with the subsimplex
spanned by Ui1 , . . . ,Uim included if and only if

Ui1 ∩ · · · ∩ Uim 6= ∅ .

There is no natural map from X to the nerve of U .

If V is a refinement of U , there is no natural map from the nerve of
V to the nerve of U . However, there is a unique well-defined
PL-homotopy class of piecewise-linear maps.

The nerves of fine open covers carry the essential homotopy
information about X (Čech cohomology).

We want a finer object which gives actual maps.
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Partitions of Unity

Definition:

A partition of unity on a space X is a set

{f1, . . . , fn}

of continuous functions from X to [0, 1] such that

n∑
k=1

fk(x) = 1

for all x ∈ X .

We will assume that each fk takes the value 1 somewhere
(nondegeneracy).
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A triangulation gives a partition of unity using coordinates. More
generally, any continuous function from X to a simplicial complex
gives a partition of unity, provided all vertices are in the range.

Conversely, a partition of unity P = {f1, . . . , fn} gives an open
cover

UP = {U1, . . . ,Un}

where
Uk = {x ∈ X : fk(x) > 0} .

The nondegeneracy condition says that this is a minimal open
cover.
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There is then a continuous function γP from X to the nerve of UP
defined by sending x ∈ X to the point with coordinates

(f1(x), . . . , fn(x)) .

There is thus a natural one-one correspondence between partitions
of unity on X and weak triangulations of X : continuous functions
from X to a simplicial complex for which all vertices are in the
range.
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Refinement of Partitions of Unity

Definition:

If P = {f1, . . . , fn} and Q = {g1, . . . , gm} are partitions of unity on
X , then Q refines P if there are scalars αij such that

fi =
m∑

j=1

αijgj

for all i .

The αij are necessarily in [0, 1], and for each j we have

n∑
i=1

αij = 1 .
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However, we rarely have

m∑
j=1

αij = 1

for fixed i .

If Q refines P, then the open cover UQ refines the open cover UP ,
and there is a natural PL-map γQP from the nerve of UQ to the
nerve of UP defined by

γQP(λ1, . . . , λm) =

 m∑
j=1

α1jλj , . . . ,
m∑

j=1

αnjλj

 .

These maps satisfy
γP = γQP ◦ γQ

as maps from X to the nerve of UP .
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PL-Structures on a Space

Definition

A PL-structure on a space X is a sequence (Pn) of partitions of
unity on X , each refining the previous one, such that the sequence
of corresponding open covers Un eventually refines any open cover
of X .

Equivalently, ∪Un is a base for the topology of X .

It is not obvious that such a PL-structure exists on a given X .
There are various ways to prove this; one of the best (in my
humble opinion) is using our theorem.
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If (Pn) is a PL-structure on X , then as above we get continuous
maps γn from X to the nerve Xn of Un, and for n < m a PL-map
γmn from Xm to Xn satisfying

γn = γmn ◦ γm .

Thus an inverse system of simplicial complexes (polyhedra) is
obtained, along with a map from X to the inverse limit.

Theorem:

This map from X to the inverse limit is a homeomorphism. So

X ∼= lim
←

(Xn, γmn) .
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Note that this says a little more than that X can be written as an
inverse limit of polyhedra, since under the connecting maps all
vertices at each stage must be in the range.

If f is a continuous function from X to R or C, then f is
“approximately PL”: it is a uniform limit of functions of the form
ψ ◦ γn, where ψ : Xn → C is PL. [Choose n large enough that f is
approximately constant on the sets of Un.]
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The Operator Algebra Perspective

Key Observation: A partition of unity on X is just a set of
positive elements of C (X ) of norm 1 adding to the constant
function 1.

Such a set {f1, . . . , fn} defines a unital (complete) order
embedding βP of Cn into C (X ):

(λ1, . . . , λn) 7→
n∑

k=1

λk fk .

Conversely, if β is a unital (complete) order embedding of Cn into
C (X ), and fk = β(ek), then {f1, . . . , fn} is a partition of unity on
X .
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If P = {f1, . . . , fn} is a partition of unity on X , there is also a
homomorphism αP from C (X ) to Cn such that αP ◦ βP is the
identity on Cn: for each k choose xk for which fk(xk) = 1, and set

αP(f ) = (f (x1), . . . , f (xn)) .

This homomorphism is canonical if the partition of unity gives a
true triangulation (or if γP is just injective), but requires choices in
general.
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If Q = {g1, . . . , gm} is a partition of unity refining P, there is also
a unital (complete) order embedding βPQ of Cn into Cm defined
similarly, and

βP = βQ ◦ βPQ
and a homomorphism αPQ : Cm → Cn with αPQ ◦ βPQ the
identity on Cn.

The αP , αQ, and αPQ can be chosen so that

αP = αPQ ◦ αQ .
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Thus, if X is a compact metrizable space, one can generate a
system

B1 → B2 → · · ·

of finite-dimensional commutative C*-algebras, where the
connecting maps βnm are not homomorphisms but are complete
order embeddings, and compatible complete order embeddings

βn : Bn → C (X )

such that the union ∪nβn(Bn) is dense in C (X ), and (unique!)
homomorphisms αn : C (X )→ Bn which are coherent and left
inverses for the βn.
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It is notationally convenient to write things “locally” by saying
there are diagrams

C (X )
id //

α
''OOOOOOOOOOOOO

C (X )

B

β

77ooooooooooooo

which approximately commute in the point-norm topology, where
the B is finite-dimensional and α and β are completely positive
contractions, with the additional properties that
(1) α is a homomorphism.
(2) α ◦ β is the identity on B. (Hence β ◦ α is an idempotent map
from C (X ) to C (X ).)
(3) β is a complete order embedding.
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The Noncommutative Case

If A is a (separable) C*-algebra, it is natural to regard an inductive
system of finite-dimensional C*-algebras and complete order
embeddings into A with analogous properties to be a “PL
structure” on A. Phrasing things locally, we want a set of diagrams

A
id //

α
&&MMMMMMMMMMMMM A

B

β

88qqqqqqqqqqqqq

which approximately commute in the point-norm topology, where
the B is finite-dimensional and α and β are completely positive
contractions, satisfying as many of (1)–(3) as possible.

One can pass to the inductive system picture by fairly routine
perturbation arguments (if A is separable).
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To get started, we need A to be nuclear.

In addition, we want at least some of the following:

(1) α is a homomorphism.

(2) α ◦ β is the identity on B. (Hence β ◦ α is an idempotent map
from C (X ) to C (X ).)

(3) β is a complete order embedding.

We can only hope for (1) if A is residually finite-dimensional.

Theorem:

If A is nuclear and residually finite-dimensional, we can get
(1)–(3). (Such a C*-algebra is called an RF algebra.)
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We can, however, weaken (1) to

(4) α is approximately multiplicative.

Condition (4) is extremely natural: it means that not only the
complete order structure but also the algebraic structure
(multiplication) of A can be approximated in finite-dimensional
C*-algebras.

We can only hope to get (4) if A is stably finite.
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Definition:

A separable C*-algebra A is an NF algebra if, for any
x1, . . . , xn ∈ A and ε > 0 there is a finite-dimensional C*-algebra B
and completely positive contractions α : A→ B and β : B → A
such that ‖β ◦ α(xi )− xi‖ < ε and ‖α(xixj)− α(xi )α(xj)‖ < ε for
all i , j .

A
id //

α
&&MMMMMMMMMMMMM A

B

β

88qqqqqqqqqqqqq
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Here are a few of the many characterizations of NF algebras:

Theorem:

Let A be a separable C*-algebra. The following are equivalent:

(i) A is an NF algebra.

(ii) A is nuclear and quasidiagonal.

(iii) A can be written as a generalized inductive limit of a sequence
of finite-dimensional C*-algebras in which the connecting
maps are completely positive contractions (and asymptotically
multiplicative).

A1
φ1,2−→ A2

φ2,3−→ A3
φ3,4−→ · · · −→ A

Such a system is called an NF system for A.
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If (An, φn,n+1) is an NF system for A, there is a completely positive
contraction φn : An → A, and ∪nφn(An) is dense in A. But φn(An)
is not a subalgebra of A in general.

An NF system gives a “combinatorial” description of A. The study
of NF algebras via NF systems can be called “noncommutative PL
topology.”

From the quasidiagonality characterization, we obtain the fact, not
obvious from the definition, that a nuclear C*-subalgebra of an NF
algebra is NF.

A quotient of an NF algebra is not necessarily NF. In fact, any
separable nuclear C*-algebra is a quotient of an NF algebra [if A is
separable and nuclear, then the cone over A is an NF algebra by
Voiculescu.]
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Conditions (2) and (3) are closely related: diagrams satisfying (2)
automatically satisfy (3), and diagrams satisfying (3) can be
modified to diagrams satisfying (2). Diagrams satisfying (2)
automatically satisfy (4).

It turns out that we cannot always get (2) or (3) for NF algebras.

Definition:

A (separable) C*-algebra A with diagrams satisfying (2) (hence
also (3) and (4)) is a strong NF algebra.
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Here are a few of the many characterizations of strong NF algebras:

Theorem:

Let A be a separable C*-algebra. The following are equivalent:

(i) A is a strong NF algebra.

(ii) A is nuclear and has a separating family of quasidiagonal
irreducible representations.

(iii) A can be written as a generalized inductive limit of a sequence
of finite-dimensional C*-algebras in which the connecting
maps are complete order embeddings (and asymptotically
multiplicative).

A1
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If A is a C*-algebra and every quotient of A is an NF algebra (i.e.
A is strongly quasidiagonal), then A is a strong NF algebra.

In particular, every simple NF algebra is a strong NF algebra.

Theorem:

Every strong NF algebra is an ordinary inductive limit of RF
algebras (with injective connecting maps).
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Ideal Structure of NF Algebras

Ideals (closed, two-sided) in the inductive limit of an ordinary
inductive system can be read off from the system, at least in
principle. But ideals in the inductive limit of a generalized
inductive system are much harder to describe.

Example. Let An = Mn,

φn,n+1




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 =


a11 a12 · · · a1n 0
a21 a22 · · · a2n 0

...
...

. . .
...

...
an1 an2 · · · ann 0
0 0 · · · 0 ann


The inductive limit A is isomorphic to K + C1. Each An is simple,
but A is not simple.

Bruce Blackadar Noncommutative PL-Topology



PL-Topology The Noncommutative Case

Ideal Structure of NF Algebras

Ideals (closed, two-sided) in the inductive limit of an ordinary
inductive system can be read off from the system, at least in
principle. But ideals in the inductive limit of a generalized
inductive system are much harder to describe.

Example. Let An = Mn,

φn,n+1




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 =


a11 a12 · · · a1n 0
a21 a22 · · · a2n 0

...
...

. . .
...

...
an1 an2 · · · ann 0
0 0 · · · 0 ann


The inductive limit A is isomorphic to K + C1. Each An is simple,
but A is not simple.

Bruce Blackadar Noncommutative PL-Topology



PL-Topology The Noncommutative Case

But there is something that can be said about ideals in a
generalized inductive limit. Let A = lim→(An, φn,n+1), and let J be
an ideal in A. Since φn(An) is not a subalgebra of A, φ−1

n (J) is not
a subalgebra of An in general.

However, since φn is positive, φ−1
n (J)∩An+ is a (closed) hereditary

cone in An+, so its span is a hereditary C*-subalgebra Jn of An

(not an ideal in general.) Since An is finite-dimensional, Jn is a
corner, i.e. Jn = pnAnpn for a projection pn ∈ An.

φn,n+1(pn) is not a projection in An+1 in general. However, pn+1 is
a unit for φn,n+1(pn).
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The closure of ∪φn(Jn) is an ideal of A contained in J.

Definition:

If ∪φn(Jn) is dense in J, then the ideal J is induced from the
system (An, φn,n+1). J is an induced ideal of A if it is induced from
some NF system for A.

It is unclear whether an ideal can be induced from one NF system
but not from another.

Proposition:

In C (X ), every ideal is induced from any NF system.

Bruce Blackadar Noncommutative PL-Topology



PL-Topology The Noncommutative Case

The closure of ∪φn(Jn) is an ideal of A contained in J.

Definition:

If ∪φn(Jn) is dense in J, then the ideal J is induced from the
system (An, φn,n+1). J is an induced ideal of A if it is induced from
some NF system for A.

It is unclear whether an ideal can be induced from one NF system
but not from another.

Proposition:

In C (X ), every ideal is induced from any NF system.

Bruce Blackadar Noncommutative PL-Topology



PL-Topology The Noncommutative Case

To see why, suppose J is an ideal of C (X ) consisting of all
functions vanishing on a closed set Y in X . An consists of all
piecewise-linear functions on a simplicial complex Xn, with
γn : X → Xn a continuous map whose range contains the vertices
of Xn.

Then Jn consists of the span of the set of nonnegative
piecewise-linear functions vanishing on γn(Y ) (an ideal in An in
this case). Such a function also vanishes on any entire subsimplex
of Xn containing a point of γn(Y ) in its interior. φn(Jn) consists of
all functions vanishing on the inverse image Yn under γn of these
simplexes.

We have Y ⊆ Yn for each n. If ρ is a metric on X and ε > 0, then
for sufficiently large n we have Yn contained in an ε-neighborhood
of Y . Thus ∩Yn = Y and ∪nφn(Jn) is dense in J.
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Not every ideal in an NF algebra is induced:

Definition:

An ideal J in an NF algebra A is an NF ideal if A/J is an NF
algebra.

Not every ideal in an NF algebra is an NF ideal.
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Proposition:

An induced ideal is an NF ideal.

Suppose J is induced from the system (An, φn,n+1), and let pn be
the projection in An corresponding to Jn. Define a generalized
inductive system as follows: let Bn = (1− pn)An(1− pn), and
define ψn,n+1 : Bn → Bn+1 by

ψn,n+1(x) = (1− pn+1)φn,n+1(x)(1− pn+1) .

It is routine to check that this is indeed a generalized inductive
system, hence an NF system, and that the generalized inductive
limit is naturally isomorphic to A/J.
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Using a similar (but simplified) argument, one can show:

Proposition:

Let J be an ideal in an NF algebra A. If J has a quasicentral
approximate unit of projections, then J is an NF ideal.

This can also be proved using the known result that the quotient
of a quasidiagonal C*-algebra by an ideal with a quasicentral
approximate unit of projections is quasidiagonal.

We say an ideal J in a C*-algebra A is locally approximately split
if, for every x1, . . . , xn ∈ A/J and ε > 0, there is a completely
positive contraction σ : A/J → A such that ‖π ◦ σ(xi )− xi‖ < ε
and ‖σ(xixj)− σ(xi )σ(xj)‖ < ε for all i , j , where π : A→ A/J is
the quotient map.

Proposition:

A locally approximately split ideal in an NF algebra is an NF ideal.
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There is a “converse” to the proposition. Suppose J is an NF ideal
in an NF algebra A. We want to show that J is an induced ideal
from some NF system for A. We outline the argument.

Begin with finite subsets {xi} of A and {yj} of J and an
approximately commutative diagram

A/J
id //

α1

''NNNNNNNNNNNNN A/J

B1

β1

88ppppppppppppp
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Lift the diagram to

A
id //

π
��

α1

��

A XX

��
π σ

A/J
id //

ᾱ1
''NNNNNNNNNNNNN A/J

B1

β̄1

88ppppppppppppp

β1

@@

This diagram only approximately commutes mod J.
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PL-Topology The Noncommutative Case

Using a quasicentral approximate unit for J, choose h ∈ J+,
‖h‖ ≤ 1, such that h almost commutes with the elements of A and
is almost a unit for the elements of J.

Choose a diagram

A
id //

α2
&&MMMMMMMMMMMMM A

B2

β2

88qqqqqqqqqqqqq

which is approximately commutative and approximately
multiplicative on all elements defined so far.

Let α = α1 ⊕ α2 : A→ B1 ⊕ B2 and β : B1 ⊕ B2 → A, where

β(x , y) = (1− h)1/2β1(x)(1− h)1/2 + h1/2β2(y)h1/2
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PL-Topology The Noncommutative Case

To get an NF system, set A1 = B1 ⊕ B2. At the next stage, reduce
ε and expand {xi} by throwing in all the images of matrix units of
B1 ⊕ B2 and more elements of a dense subset of A, and expand
{yi} by throwing in the images of the matrix units of B2 (which lie
in J) as well as more elements of a dense subset of J.

The ideal J is induced by this NF system.

So the conclusion is:

Theorem:

Let A be an NF algebra, J an ideal of A. Then J is an NF ideal if
and only if J is induced by some NF system for A.
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It would be nice to get a single NF system for an NF algebra A
such that all NF ideals can be induced from this system. It is really
only necessary to be able to do the previous construction with two
NF ideals J and K (or finitely many) simultaneously.

If J ∩ K and J + K are also NF ideals, it appears the construction
can be made to work with some technical complications. It is true
that J ∩ K is always an NF ideal, since A/(J ∩ K ) can be
embedded in A/J ⊕ A/K and hence is an NF algebra. But it is not
obvious that J + K is always NF.

The construction at least appears to work for residually NF
algebras (strongly quasidiagonal nuclear C*-algebras).
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PL-Topology The Noncommutative Case

A potential application is to the following fundamental question:

Question:

Is every stably finite separable nuclear C*-algebra an NF algebra?

The theorem gives a potential approach to showing that a
separable nuclear C*-algebra B with a faithful tracial state τ must
be an NF algebra. Any separable nuclear C*-algebra is a quotient
of an NF algebra, so B is a quotient of an NF algebra A, and τ
may be regarded as a tracial state on A. If J is the kernel of τ , i.e.

J = {x ∈ A : τ(x∗x) = 0}

then J is the kernel of the quotient map from A to B. So it
suffices to show that the kernel of a tracial state on an NF algebra
is an induced ideal.
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