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Abstract

We give a simple and elementary proof that the tracial state space of a unital C∗-al-
gebra is a Choquet simplex, using the center-valued trace on a finite von Neumann
algebra.

1 Introduction

The object of this paper is to give a simple and elementary proof (modulo well-known facts
about von Neumann algebras) of the following theorem:

Theorem 1.1. Let A be a unital C∗-algebra. Then the tracial state space T (A) of A is a
(possibly empty) Choquet simplex.

This theorem was first proved (in disguised form) in [Tho64], and another (slightly differ-
ent) proof appeared in [Sak71, Theorem 3.1.18], using the Radon-Nikodym Theorem for
operators, or see [Wang23] for a more detailed exposition. See [Tak70, p. 120] for a more
general result; the proof there, specialized to finite von Neumann algebras, gives a proof
of Theorem 1.1 (essentially the proof from [Tho64]). There is another somewhat more
elementary approach due to Pedersen ([Ped69], cf. [CP79, 2.8]). There is also a partial
converse: every metrizable Choquet simplex occurs as the trace space of a separable C∗-
algebra, even a simple (unital) AF algebra. See also [ISV] and [OSV], where it is shown
that the trace simplex of certain universal free product C∗-algebras is the Poulsen simplex.

The origin of this paper was the experience of both authors that while Theorem 1.1 is
well known and considered important by operator algebraists, the existing proofs are not
widely known or understood (the result has almost reached the status of folklore). We hope
with this exposition to make the proof of this important result more accessible. Theorem
1.1 plays a particularly important role in the classification program for simple C∗-algebras.

Our proof is very simple and elementary given well-known facts about Choquet sim-
plexes and von Neumann algebras, notably the center-valued trace on finite von Neumann
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algebras. The existence of the center-valued trace is a nontrivial but well-known and fun-
damental result in the theory of von Neumann algebras, and is in our opinion a reasonable
starting point for the proof of Theorem 1.1. It should be noted that the previous proofs
are somewhat more elementary from first principles since they do not (explicitly) use the
center-valued trace. Deep down all the proofs (except perhaps the Pedersen argument)
are really essentially the same, reducing the statement to the fact that the state space of
any commutative von Neumann algebra, indeed any commutative unital C∗-algebra, is a
Choquet simplex (even a Bauer simplex); the ingredients are largely the same, but our
argument buries all the technicalities in the center-valued trace. A good exposition of the
center-valued trace can be found in [KR86].

In Section 2 we review the basic theory of Choquet simplexes, including a selection of
the many characterizations of these. Using one of these characterizations, we show that
a quotient of a Choquet simplex with an affine cross section is again a Choquet simplex.
We use this result in Section 3 to prove our main result. We emphasize that most of the
material in Section 2 is not needed for the proof of Theorem 1.1, and it is included mostly
for expository reasons to remind the reader of some of the rich and beautiful theory behind
Choquet simplexes.

We thank George Elliott for helpful comments, and for the reference to [Wang23], and
Leonel Robert for the references to [Ped69] and [Rob13].

2 Choquet Simplexes

As mentioned already in the introduction, we review here some of the many (well-known)
equivalent conditions for a compact convex subset K of a locally convex topological space
E to be a Choquet simplex, stated formally as Theorem 2.2 below. Other equivalent con-
ditions are known, such as the one in [NP69]; this paper also discusses tensor products of
Choquet simplexes, with some interesting questions with applications in quantum informa-
tion theory. Incidentally, our Proposition 2.5 gives a very simple proof of the equivalence
of simplex and simplex-like in that paper.

The barycenter of a probability measure µ on K is
∫
K
x dµ(x), which is a point in K.

(All measures here are understood to be Borel measures.) A probability measure µ on K is
said to be a boundary measure if it is a maximal in the sense that if ν is another probability
measure on K satisyfing µ(f) ≤ ν(f), for all f ∈ P (K), the cone of all continuous convex
functions f : K → R, then ν = µ, cf. [Alf71, Proposition I.4.5]. If K is metrizable, then
the set ∂eK of extreme points of K is a Gδ-set, and µ is a boundary measure if and only
if µ(∂eK) = 1. Each x ∈ K is the barycenter of some boundary measure on K (Choquet–
Bishop–de Leeuw, cf. [Alf71, Theorem I.4.8]).

Let Aff(K) denote the set of continuous affine functions f : K → R, and equip Aff(K)
with the standard pointwise ordering: f ≥ 0 iff f(x) ≥ 0 for all x ∈ K. (Aff(K) also has
a strict ordering, where f � 0 iff f = 0 or f(x) > 0 for all x ∈ K, which is important in
applications to the classification program.)

The inclusion K ⊆ E is said to be regular if the affine subspace of E spanned by K is a
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hyperplane in E not containing 0, in other words, equal to ϕ−1({1}), for some ϕ ∈ E∗. Let
K̃ denote the cone {αx : x ∈ K,α ≥ 0} in E, and let (E, K̃) denote E equipped with the
order relation given by x ≤ y iff y − x ∈ K̃, for x, y ∈ E. Every compact convex set K is
isomorphic (affinely homeomorphic) to an essentially unique regularly embedded compact
convex set: the subset of E = Aff(K)∗ consisting of the states (order-preserving linear
maps φ : Aff(K) → R with φ(u) = 1, where u is the constant function 1) is a regularly
embedded compact convex set isomorphic to K.

We first state a proposition which is a combination of results in [Alf71] and [Goo86].

Proposition 2.1. Consider the following properties of a partially ordered real vector space
E:

(i) E is a lattice.

(ii) E has the Riesz interpolation property, i.e., for all x1, x2, y1, y2 ∈ E with xj ≤ yi,
for i, j = 1, 2, there exists z ∈ E with xj ≤ z ≤ yi, for i, j = 1, 2.

(iii) E has the Riesz decomposition property, i.e., whenever 0 ≤ y ≤ x1 + x2 in E, then
there exist 0 ≤ yj ≤ xj, j = 1, 2, in E such that y = y1 + y2.

(iv) Whenever x1, . . . , xn, y1, . . . , ym are positive elements in E with
∑n

i=1 xi =
∑m

j=1 yj,
then there exist zij ≥ 0 in E such that xi =

∑m
j=1 zij and yj =

∑n
i=1 zij, for all

1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then (i) ⇒ (ii) ⇔ (iii) ⇔ (iv), and (ii) ⇒ (i) if E+, the positive cone of E, is locally
compact in some locally convex topology on E. In particular, if K is a compact convex set
regularly embedded in E and E+ = K̃ is the positive cone in E generated by K, as above,
then all four conditions above are equivalent.

It is clear that (i) ⇒ (ii) as we may take z = x1 ∨ x2. For proofs of the equivalence of (ii)
and (iii) and the implication (ii) ⇒ (i) (assuming locally compactness of E+), see, e.g.,
Alfsen, [Alf71, Proposition II.3.1 and Proposition II.3.2]. If K is compact and convex,
then K̃ is locally compact, since each point in K̃ belongs to the interior of the compact set
{tx : 0 ≤ t ≤ r, x ∈ K}, for some r > 0.

For the convenience of the reader, and because this point is central for the proof of
Proposition 2.5 below, and hence for our arguments in the next section, we review here
the proof of (iii) ⇔ (iv).

(iv) ⇒ (iii). Assume 0 ≤ y ≤ x1 + x2. Set y1 = y and y2 = x1 + x2 − y. Then
x1 + x2 = y1 + y2, and there exist zij ≥ 0 in E such that xi = z1i + z2i and yj = zj1 + zj2,
for i, j = 1, 2. In particular, y = z11 + z12 and 0 ≤ z1i ≤ xi, as wanted.

(iii) ⇒ (iv). We first show, by induction, that whenever n ≥ 2 and 0 ≤ y ≤
∑n

j=1 xj in
E, there exist 0 ≤ yj ≤ xj, 1 ≤ j ≤ n, in E such that y =

∑n
j=1 yj. Indeed, the base step

n = 2 holds by assumption. Let n > 2 and suppose the claim has been verified for n− 1.
Set x′1 =

∑n−1
j=1 xj and x′2 = xn. Then y ≤ x′1 + x′2 and so there exist 0 ≤ y′j ≤ x′j, j = 1, 2,

satisfying y = y′1 + y′2. Set y′ = y′1 and yn = y′2. Then 0 ≤ y′ ≤
∑n−1

j=1 xj. By the induction
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hypothesis there exist 0 ≤ yj ≤ xj, 1 ≤ j ≤ n − 1, in E such that y′ =
∑n−1

j=1 yj, whence
y =

∑n
j=1 yj. This completes the induction step.

We proceed to prove (iv) by induction on m ≥ 1. The base step m = 1 is trivial. Let
m ≥ 2 and assume the claim holds for m−1. Let x1, . . . , xn ≥ 0 and y1, . . . , ym ≥ 0 satisfy∑n

i=1 xi =
∑m

j=1 yj. Then 0 ≤ ym ≤
∑n

i=1 xi, so there exist 0 ≤ zi,m ≤ xi, 1 ≤ i ≤ n, in

E such that ym =
∑n

i=1 zi,m. Set x′i = xi − zm,i ≥ 0. Then
∑n

i=1 x
′
i =

∑m−1
j=1 yj. By the

induction hypothesis we can find zij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1, in E such that

x′i =
m−1∑
j=1

zij, yj =
n∑
i=1

zij, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1.

The former identity implies xi = x′i + zi,m =
∑m

j=1 zij, as desired. �

We shall now present a selection of equivalent conditions characterizing Choquet simplexes.
These are all classical results which can be found in several textbooks (see, e.g., the com-
ments below the theorem), and at least the equivalence of (i) and (ii) goes back to Choquet.
See also the notes at the end of Chapter II.3 of [Alf71] for a more detailed account on the
history.

A homothetic image of K in E is a set of the form αK + x, where α > 0 and x ∈ E.
Finally, for ease of notation, when we say that

∑n
j=1 αjxj is a proper convex combination

in K, we mean that α1, . . . , αn > 0, x1, . . . , xn ∈ K and
∑n

j=1 αj = 1.

Theorem 2.2. Let K be a compact convex set. The following conditions are equivalent.

(i) Each point in K is the barycenter of a unique boundary measure on K.

(ii) The ordered vector space Aff(K)∗ is a lattice.

(iii) (Riesz Decomposition Property) Whenever x ∈ K in two different ways is a proper
convex combination in K, i.e.,

x =
n∑
j=1

αjxj =
m∑
i=1

βiyi,

then there exists a new convex combination x =
∑n

j=1

∑m
i=1 γijzij in K, satisfying

αj =
m∑
i=1

γij, βi =
n∑
j=1

γij, xj =
m∑
i=1

α−1
j γijzij, yi =

n∑
j=1

β−1
i γijzij, (2.1)

for all 1 ≤ j ≤ n and 1 ≤ i ≤ m

(iv) The ordered vector space Aff(K) has the Riesz Interpolation Property in either (both)
the ordinary and strict orderings (i.e., if f1, f2 ≤ g1, g2, then there is an h with
f1, f2 ≤ h ≤ g1, g2, and similarly for �).
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(v) Whenever K is embedded in a locally convex vector space E, the intersection of K
with any homothetic image of itself is either empty, a point, or another homothetic
image of K.

Condition (ii) can further be reformulated as described in Proposition 2.1.
Proofs of the equivalences of (i), (ii) and (iii) can be found, e.g., in Alfsen, [Alf71,

Propositions II.3.3 and II.3.6]. The equivalence of (ii) and (iv) is proved in [Goo86, The-
orem 11.4]; see also [Goo86, Proposition 10.7] for a proof of (ii) ⇒ (iii). The beautiful
geometric interpretation of simplexes in (v) is portrayed on the cover of Phelps’ book,
[Phe01]; it is stated but not proved in [Phe01] that (v) is equivalent to being a Choquet
simplex. One can fairly easily see that if (v) holds in some representation of K in a locally
convex vector space E, then it holds for all such representations.

For completeness of exposition we include here the short proof of (ii)⇔ (iii) via Propo-
sition 2.1, and, for the record, also the (not so short) proof of (ii) ⇔ (v). We shall use the
following setup. Retaining the notation given above Proposition 2.1 (iv), let K ⊆ E be a
regular inclusion, and K̃ ⊆ E the positive cone in E generated by K. A canonical choice
of such an inclusion is obtained by taking E = Aff(K)∗. Condition (ii) then says that
(E, K̃) is a lattice. Fix ϕ ∈ E∗ such that K ⊆ ϕ−1(1). Observe that if e ∈ E is positive,
then ϕ(e) ≥ 0; ϕ(e) = 0 if and only if e = 0; and e ∈ K if and only if ϕ(e) = 1.

Proposition 2.1 (iv) ⇒ (iii): Let x =
∑n

j=1 αjxj =
∑m

i=1 βiyi be two proper convex
combinations in K. Set x̄j = αjxj and ȳi = βiyi. Then there exist positive elements
z̄ij ∈ E satisfying x̄i =

∑m
j=1 z̄ij and ȳj =

∑n
i=1 z̄ij. Set γij = ϕ(z̄ij) ≥ 0. Then

∑m
j=1 γij =

ϕ(x̄i) = αi and
∑n

i=1 γij = ϕ(ȳj) = βj. Hence (2.1) holds with zij = γ−1
ij z̄ij ∈ K, if γij 6= 0,

and any zij ∈ K when γij = 0.
(iii) ⇒ Proposition 2.1 (iv): Let x̄1, . . . , x̄n, ȳ1, . . . , ȳm be positive elements in E sat-

isfying x :=
∑n

i=1 x̄i =
∑m

j=1 ȳj. Upon multiplying these equations by a suitable positive
number, we may assume that ϕ(x) = 1, i.e., x ∈ K. We may also assume that all x̄i and
ȳj are non-zero. Put αi = ϕ(x̄i) and βj = ϕ(ȳj), and set xi = α−1

i x̄i and yj = β−1
j ȳj. Then

xi, yj ∈ K because ϕ(xi) = ϕ(yj) = 1, and x =
∑n

i=1 αixi =
∑m

j=1 βjyj are proper convex
combinations in K. Accordingly, there exist zij ∈ K and γij ≥ 0 such that (2.1) holds. Set
z̄ij = γijzij ≥ 0. Then x̄i =

∑m
j=1 z̄ij and ȳj =

∑n
i=1 z̄ij, as desired.

For the proof of (ii) ⇔ (v), note first that for a, b, c ∈ E,

a ≤ b ⇐⇒ b ∈ K̃ + a, c = a ∨ b ⇐⇒ (K̃ + a) ∩ (K̃ + b) = K̃ + c.

We shall make frequent use of the following identities:

K̃ ∩ ϕ−1(r) = rK, (2.2)

for all r ≥ 0, and
(K̃ + a) ∩ ϕ−1(r) = (r − ϕ(a))K + a (2.3)

for a ∈ E and r ≥ ϕ(a).
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(ii)⇒ (v): Let r > 0 and a ∈ E be given, and suppose that K ∩ (rK+a) is non-empty.

Then 1 = r + ϕ(a). Set c = 0 ∨ a. Then K̃ ∩ (K̃ + b) = K̃ + c. By (2.2) and (2.3) we
therefore get

K ∩ (rK + b) = K̃ ∩ (K̃ + b) ∩ ϕ−1(1) = (K̃ + c) ∩ ϕ−1(1) = tK + c,

with t = 1− ϕ(c). (If ϕ(c) > 1, then K ∩ (rK + b) = ∅.)
(v) ⇒ (ii). We asssume in the proof that K is not a singleton. If it were, then the

ordered vector space E would be R with the usual ordering, which is a lattice. Secondly,
if (v) holds, then it also holds that the intersection of any two homothetic images of K, if
not empty or a point, is another homothetic image of K.

Let a, b ∈ E. For each t ∈ R, let Ct be the set of c ∈ E for which a, b ≤ c and ϕ(c) = t.
Note that Ct is a convex set, and that

Ct = (K̃ + a) ∩ (K̃ + b) ∩ ϕ−1(t) =
(
(t− ϕ(a))K + a

)
∩
(
(t− ϕ(b))K + b

)
, (2.4)

when t ≥ ϕ(a), ϕ(b). Set I = {t ∈ R : Ct 6= ∅}. By assumption, and since Ct ⊆ ϕ−1(t),
there exists ct (a priori depending on t) such that

Ct = (t− ϕ(ct))K + ct, t ∈ I. (2.5)

We proceed to prove the following three claims, which will complete the proof.

(a) Ct + sK ⊆ Ct+s, for all s ≥ 0 and t ∈ I.

(b) If tK + e ⊆ t′K + e′, for some t, t′ ≥ 0 and e, e′ ∈ E, then t ≤ t′ and e′ ≤ e; and if in
addition t = t′, then e = e′.

(c) ct = c is independent of t ∈ I, and c = a ∨ b.

(a) is trivial: if x ∈ Ct + sK, then x ≥ a, b and ϕ(x) = t+ s, so x ∈ Ct+s.
(b). Let e, e′ ∈ E be such that tK + e ⊆ t′K + e′, for some t, t′ ≥ 0. We first show that

t ≤ t′. Suppose otherwise. Then, for all m ≥ 1,

t′K +me′ ⊇ (t− t′)K + t′K + e+ (m− 1)e′ ⊇ · · · ⊇ m(t− t′)K + t′K +me.

Pick x ∈ K such that y := (t− t′)x + e− e′ 6= 0. Then {my + t′x : m ∈ N} ⊆ t′K, which
is impossible, as t′K is compact.

Suppose next that t = t′. Then tK + (e− e′) ⊆ tK, which entails tK +m(e− e′) ⊆ tK,
for all integers m ≥ 1. As tK is compact, this implies e = e′.

Consider finally the case t < t′. Set r′ = ϕ(e′), r = ϕ(e), and s = t + r = t′ + r′. Note
that r′ < r ≤ s. Assume, to reach a contradiction, that e′ � e. Then e /∈ (r − r′)K + e′.
Choose y in the compact convex set (r − r′)K + e′ so that

{αy + (1− α)e : 0 ≤ α < 1} ∩
(
(r − r′)K + e′

)
= ∅.
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(One can find such a y in the line segment joining any point in K to e.) Write y =
(r − r′)x+ e′, with x ∈ K, set

z = tx+ e ∈ tK + e ⊆ t′K + e′ ⊆ ϕ−1(s), α =
s− r
s− r′

, 1− α =
r − r′

s− r′
,

and set u = αe′+(1−α)z. Then u ∈ (r−r′)K+e′ because z ∈ t′K+e′ and (1−α)t′ = r−r′.
On the other hand,

u = αe′ + (1− α)tx+ (1− α)e = α
(
e′ + (r − r′)x

)
+ (1− α)e = αy + (1− α)e,

which contradicts the choice of y. This completes the proof of (b).
(c). It follows from Equations (2.4) and (2.5) and (b) that a, b ≤ ct, for all t ∈ I. If

t′ ≤ t are in I, then by (a),

(t− ϕ(ct′))K + ct′ = Ct′ + (t− t′)K ⊆ Ct = (t− ϕ(ct))K + ct, (2.6)

so ct ≤ ct′ by (b). Set t0 = inf I ≥ max{ϕ(a), ϕ(b)}. We claim that ϕ(ct) = t0, for all t ∈ I.
Since ct ≥ a, b, it follows that ϕ(ct) ∈ I, so ϕ(ct) ≥ t0. Suppose t ∈ I and t0 < ϕ(ct). Take
t′ ∈ I with t0 < t′ < ϕ(ct) ≤ t. Then ct ≤ ct′ , so ϕ(ct) ≤ ϕ(ct′) ≤ t′, a contraction. By
(2.6) and (b) this further implies that ct are equal, hence equal to c, for some c ∈ E. We
already noted that c ≥ a, b. Suppose d ∈ E also satisfies d ≥ a, b. Then d ∈ Cϕ(d), which
implies d ≥ cϕ(d) = c. This proves that c = a ∨ b. �

Definition 2.3. A compact convex set K satisfying the equivalent conditions of Theo-
rem 2.2 is a Choquet simplex.

An n-simplex in Euclidean space is a Choquet simplex with n + 1 extreme points. For
the purposes of Theorem 1.1, we will regard ∅ (which technically satisfies the conditions of
Theorem 2.2) as a Choquet simplex (a (-1)-simplex?)

The set of extreme points of a Choquet simplex need not be closed, although the set of
extreme points of a metrizable Choquet simplex is a Gδ-set and thus a Polish space (the
set of extreme points of a nonmetrizable Choquet simplex need not even be a Borel set).
A Choquet simplex in which the set of extreme points is closed is called a Bauer simplex.

The Riesz Interpolation Property (Theorem 2.2(iv)) is a weak lattice property. But if
K is a Choquet simplex, Aff(K) is not a lattice in general; in fact, Aff(K) is a lattice if
and only if K is a Bauer simplex [Alf71, Theorem II.4.1].

The plural of simplex is often written simplices, which is correct Latin, but simplexes
seems to be more common now, and is more in accord with the plural of complex (as in
CW-complex).

Remark 2.4. Observe that Theorem 2.2(iii) is a strengthening of the statement that each
element in conv(∂eK) has a unique representation as a convex combination of extreme
points in K. Indeed, if x1, . . . , xn, respectively, y1, . . . , ym, are distinct extreme points of
K and x =

∑n
i=1 αixi =

∑m
j=1 βjyj are convex combinations in K. Then (2.1) holds for
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some zij ∈ K and γij ≥ 0. If γij 6= 0, then xi = zij = yj. This implies m = n and that
{x1, . . . , xn} = {y1, . . . , ym}.

A compact convex set in which each element in conv(∂eK) has a unique representation
as a convex combination of extreme points in K is not necessarily a Choquet simplex: a
counterexample is easy to construct, e.g., dividing out the Bauer simplex ∆ with extreme
points [0, 1] (sitting regularly in Aff(∆)∗) by the one-dimensional subspace spanned by
µ− ν, where µ and ν are distinct continuous probability measures on [0, 1].

Using the characterization of Choquet simplexes in Theorem 2.2(iii) we can easily prove
the following:

Proposition 2.5. Let K be a compact convex set and let ∆ be a Choquet simplex. Assume
there exists an affine surjection ϕ : ∆ → K with an affine cross section λ : K → ∆, i.e.
ϕ ◦ λ = idK. Then K is a Choquet simplex.

Note that we do not require that the maps ϕ and λ above are continuous! (But they must
be affine.)

Proof. Let x ∈ K be written as two proper convex combinations x =
∑n

j=1 αjxj =∑m
i=1 βiyi in K. Then

λ(x) =
n∑
j=1

αjλ(xj) =
m∑
i=1

βiλ(yi)

are proper convex combinations in ∆. Since ∆ is a Choquet simplex, there exists a convex
combination λ(x) =

∑n
j=1

∑m
i=1 γij z̄ij in ∆, satisfying (2.1) with z̄ij in the place of zij.

Set zij = ϕ(z̄ij) ∈ K. Then x is the convex combination
∑n

j=1

∑m
i=1 γijzij in K and (2.1)

holds.

3 The Main Result

Let A be a unital C∗-algebra. The set S(A) of all states on A is a compact convex set in
the weak∗ topology, and T (A), the set of all tracial states on A, is a closed convex subset
of S(A) (possibly empty).

We now give the proof of Theorem 1.1.

Proof. Consider the inclusion ι : A → A∗∗ of A into its bidual, and recall that A∗∗ can
be identified with Φu(A)′′, the von Neumann algebra envelope of A in its universal rep-
resentation Φu, see, e.g., [KR86, Section 10.1]. A crucial property of this inclusion is the
identification of the dual A∗ of A with the predual (A∗∗)∗ of A∗∗. In particular, we have
an affine bijection ρ 7→ ρ ◦ ι from the set of normal states on A∗∗ to S(A), which restricts
to an affine bijection from the set of normal tracial states on A∗∗ onto T (A).

Write A∗∗ = A∗∗fin⊕A∗∗inf as a direct sum of its finite and its properly infinite parts. Since
traces on A∗∗ obviously vanish on A∗∗inf , we can view these as being defined on A∗∗, or on
M := A∗∗fin, as we please.

8



Let trc : M → Z := Z(M) denote the (unique) normal center-valued trace, [KR86,
Theorem 8.2.8], where Z denotes the center of M . We may extend the center-valued trace
to all of A∗∗ by letting it be zero on A∗∗inf . Each tracial state on M factors through the
center-valued trace (as a consequence of the Dixmier property, see [KR86, Theorem 8.3.6]).
In summary, we have the following identifications:

T (A)←→ {normal tracial states on M} ←→ {normal states on Z}, (3.1)

where the first identification (from right to left) is given by τ 7→ τ ◦ ι, for τ a normal tracial
state on M , and the last (again from right to left) is given by ρ 7→ ρ ◦ trc, where ρ is a
normal state on Z.

To prove the result we use Proposition 2.5 with K = T (A) and ∆ = S(Z), the Bauer
simplex of all states on the commutative von Neumann algebra Z, which, via Riesz’ Rep-
resentation Theorem can be identified with the Bauer simplex of probability measures on
the spectrum of Z.

Let ϕ : S(Z) → T (A) be given by ϕ(ρ) = ρ ◦ trc ◦ ι, and let λ : T (A) → S(Z) be the
composition of the two (left-to-right) maps in (3.1) above, i.e., λ(τ) = ρ, where ρ is the
unique normal state on Z for which τ = ρ ◦ trc ◦ ι = ϕ(ρ). The maps ϕ and λ are clearly
affine (note that λ is not continuous in general), and ϕ ◦ λ is the identity on T (A), by
definition of λ, so it follows from Proposition 2.5 that T (A) is a Choquet simplex.

4 The Tracial State Space of a von Neumann Algebra

Let M be a finite von Neumann algebra and consider, as in the proof of Theorem 1.1, the
(unique, normal) center-valued trace trc : M → Z, where Z is the center of M . Combining
[KR86, Theorem 8.2.8] (existence of center-valued trace) and [KR86, Theorem 8.3.6] (the
Dixmier property) we conclude as in the proof of Theorem 1.1 that every (normal) tracial
state on M is of the form ρ ◦ trc for some (normal) state on Z. This shows that the set
T (M) of tracial states on M is affinely homeomorphic to the Bauer simplex of all states on
the commutative von Neumann algebra Z, and that the convex set of normal tracial states
on M is affinely homemorphic to the convex set of normal states on Z. In particular, the
trace simplex of a von Neumann algebra is always a Bauer simplex (unlike the case for
general for separable unital C∗-algebras). We summarize:

Theorem 4.1. Let M be a finite von Neumann algebra with center Z and center-valued
trace trc : M → Z. Then every tracial state τ on M is uniquely of the form τ = ρ ◦ trc,
where ρ is a state on Z. The trace τ is normal on M if and only if the state ρ is normal
on Z.

Since the center-valued trace is idempotent (a conditional expectation), the correspon-
dence between T (M) and S(Z) is nothing but restriction. So we obtain:

Corollary 4.2. Let M be a finite von Neumann algebra with center Z. Then the restriction
map gives an affine bijection and weak* homeomorphism from T (M) onto S(Z), i.e., every
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state on Z extends uniquely to a tracial state on M . This map sends the normal traces on
M onto the normal states of Z. In particular, T (M) is a Bauer simplex.

This statement makes no explicit mention of the center-valued trace. It is slightly less
precise than the statement of Theorem 4.1, but is clean and captures the essence of what
is needed for our proof of Theorem 1.1. We actually do not need the full force of this
corollary for our proof (only the normal part), but it makes for a nice exposition of the
argument.

Of course, the statement that T (M) is a Bauer simplex applies to every von Neumann
algebra M , since T (M) is the same as the tracial state space of the finite part of M ,
although it will be empty if M is properly infinite.

Remark 4.3. Let us return to the convex set of normal traces on M , which is identified
with the set of normal states on Z(M). The commutative von Neumann algebra Z(M) is
isomorphic to L∞(Ω, µ) for some measure space (Ω, µ). The set of normal linear functionals
on Z(M) is equal to the predual of Z(M), which we identify with L1(Ω, µ). More specifi-
cally, each f ∈ L1(Ω, µ) produces the normal functional ρf (g) =

∫
Ω
fg dµ, for g ∈ L∞(Ω, µ).

Let L1
R(Ω, µ) and L1

σ(Ω, µ) denote the real-valued functions in L1(Ω, µ), respectively, the
positive functions with integral 1, which correspond to the hermitian normal functionals,
respectively, the normal states on L∞(Ω, µ). The inclusion L1

σ(Ω, µ) ⊆ L1
R(Ω, µ) is regular.

The cone generated by L1
σ(Ω, µ) is the set of positive functions, which in turn induces the

standard ordering on L1
R(Ω, µ). It is clear that L1

R(Ω, µ) is a lattice.
This shows that the convex set of normal states on M is a Choquet simplex provided

that it is compact. More specifically, we would need to equip L1
R(Ω, µ) with a locally convex

topology such that L1
σ(Ω, µ) becomes compact. This can for example be done whenever

L1
R(Ω, µ) is a dual space, which typically it isn’t. This is, however, the case when M is

the bidual of a C∗-algebra, and one can use this argument to provide another proof of
Theorem 1.1, using (ii) of Theorem 2.2 rather than (iii), still using the center-valued trace.

The set of normal states of L∞([0, 1], λ) is equal to L1
σ([0, 1], λ), and it is a well-known

fact that this convex set does not have any extreme points, and hence is not compact in
any reasonable topology, and certainly not a Choquet simplex.

Remark 4.4. It would be nice to give a similar proof of the result in [BH82] that the
set QT (A) of normalized quasitraces on a unital C∗-algebra A is a Choquet simplex. But
there is no obvious analog of the center-valued trace or, indeed, the universal enveloping
von Neumann algebra A∗∗. For any fixed normalized quasitrace τ on (unital) A there is
a finite AW∗-algebra M and an embedding of A as a “weakly dense” C∗-subalgebra of M
(there is no strong or weak topology in this case, so this must be taken with a grain of salt),
such that τ extends uniquely to a normal quasitrace on M . M is given by an ultraproduct
construction rather than the GNS construction in the trace case. One would somehow
need to tie all these M ’s together into a single finite AW∗-algebra with a “center-valued
quasitrace.” This might be possible via some version of the ultraproduct construction.
But the resulting proof would probably be more complicated than the proof in [BH82]. (It
should be noted that in the case where A is exact, so QT (A) = T (A), the proof in [BH82]
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gives an alternate proof of Theorem 1.1.) See also [Rob13] for an adaptation of Pedersen’s
approach to proving that QT (A) is a Choquet simplex.
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