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Abstract

A C*-algebra A is defined to be purely infinite if there are no characters on A, and
if for every pair of positive elements a, b in A, such that b lies in the closed two-sided
ideal generated by a, there exists a sequence {r,} in A such that r}ar, — b. This
definition agrees with the usual definition by J. Cuntz when A is simple.

It is shown that the property of being purely infinite is preserved under extensions,
Morita equivalence, inductive limits, and it passes to quotients, and to hereditary
sub-C*-algebras. It is shown that A @ Oy is purely infinite for every C*-algebra
A. Purely infinite C*-algebras admit no traces, and, conversely, an approximately
divisible exact C*-algebra is purely infinite if it admits no non-zero trace.

1 Introduction

Joachim Cuntz introduced in [7] what is now called the Cuntz algebra O,, (the universal
C*-algebra generated by n isometries whose range projections add up to the unit), and he
showed that these C*-algebras have the property that for every non-zero = in O, there exist
a,bin O, such that 1 = axb. Later, in [9], he showed that this property is equivalent to the
property that every non-zero hereditary sub-C*-algebra of the given C*-algebra contains
an infinite projection, provided that the C*-algebra is simple. He named this property
“purely infiniteness”.

Being simple and purely infinite has been reformulated in several other ways since then.
S. Zhang showed that a simple C*-algebra is purely infinite if, and only if, it is of real rank
zero and every non-zero projection is properly infinite ([29], see also [21] for other equivalent
conditions).

The list of examples of simple purely infinite C*-algebras increased over the years. To
this list belong the Cuntz-Krieger algebras O4 corresponding to irreducible shifts of finite
type ([10]). It was shown in [5] that simple, unital C*-algebras with a certain nice property
(approximate divisibility) are either stably finite or purely infinite. It remains an important
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open problem to decide if there exists a simple unital C*-algebra which is neither stably
finite nor purely infinite.

In 1989, George Elliott showed that a certain class of C*-algebras (inductive limits of
circle algebras of real rank zero) are classified up to *-isomorphism by their K-theory, [11].
Elliott’s paper started a comprehensive research in what is now called the classification
program of Elliott. The following results have been obtained for purely infinite simple
C*-algebras:

e If A and B are purely infinite, simple, nuclear, separable C*-algebras, then A and
B are stably isomorphic if and only if they are KK-equivalent. If, moreover, the
UCT holds for A and B, and they are unital, then A is isomorphic to B if and
only if there are isomorphisms «og: K¢(A) — Ko(B) and «;: K;(A) — K;(B) with
ao([1a]) = [1s]- (See [16], [26], [15]).

e For every pair of countable Abelian groups Gy and G and for every gy in G there
exists a purely infinite, simple, nuclear, separable, unital C*-algebra A satisfying the
UCT such that there are isomorphisms ag: Gy — K¢(A4) and o : G; — K;(A) with
ap(go) = [1a]. (See [28, Theorem 3.6]).

e If Aisasimple, separable, nuclear, unital C*-algebra, then A is isomorphic to AQO
if and only if A is purely infinite. (See [16], [18], [15]).

The purpose of this paper is to provide a possible frame for an extension of these results
to non-simple C'*-algebras. The right definition of being purely infinite in the non-simple
case should at least lead to the following:

(a) a purely infinite C*-algebra admits no non-zero trace,
(b) A® O is purely infinite for every C*-algebra A.

A trace or a quasi-trace on a C*-algebra is here understood to be a function whose domain
is an algebraic, not necessarily dense, ideal in the C*-algebra. Our definition (as described
in the abstract — see also Section 4) meets these requirements. We know of no example
of a traceless C*-algebra which is not purely infinite, and it may be realistic to hope that
a C*-algebra A is purely infinite if its ultra power A, corresponding to a free ultra filter
w on N, admits no non-zero lower semi-continuous quasi-traces. We show a partial result
in this direction that an exact approximately divisible C*-algebra indeed is purely infinite
if it admits no non-zero trace. It could be true that A is isomorphic to A ® O, if A is a

purely infinite, separable, nuclear C*-algebra. In a forthcoming paper we show that if A is
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a purely infinite, separable, nuclear C*-algebra of real rank zero, then A is isomorphic to
A® O.

It has been suggested in [1], [20], and [19] to call a non-simple C*-algebra purely
infinite if all its non-zero hereditary sub-C*-algebras contain an infinite projection. With
this definition, (a) and (b) above do not hold. Indeed, Cy(R) ® Oy does not contain any
non-zero projections, let alone infinite projections, and this C'*-algebra should be purely
infinite if (b) is true. It is easy to construct examples of C*-algebras that are purely infinite
in the sense of [1], [20], and [19] and which admit a non-zero trace thus violating (a) (see
Example 4.6).

We show that a C*-algebra A is purely infinite (in the sense of this paper) if every
non-zero hereditary sub-C*-algebra of every quotient of A contains an infinite projections,
cf. Proposition 4.7.

It would be desirable to have classification results for non-simple purely infinite C*-
algebra analogous to those for simple purely infinite C*-algebras. A number of partial
results in this direction have been obtained — see for example J. Mortensen’s paper [24].

Our definition of pure infiniteness is based on the comparison theory for positive ele-
ments defined by J. Cuntz. This theory is reviewed and further developed in Section 2.
Section 3 contains a discussion of finite, infinite, respectively, properly infinite positive
elements in a C*-algebra, being generalizations of the similar concepts for projections in
a C*-algebra. Pure infiniteness is defined in Section 4, and this section contains results
on inductive limits, extensions, and Morita equivalence of purely infinite C*-algebras. In
Section 5 the relation between absence of traces and being purely infinite is treated, and

this section also contains some tensor product results.

2 Preliminaries

With the purpose of constructing dimension functions and traces on C*-algebra, Joachim
Cuntz introduced in [8] a notion of comparison of (positive) elements in a C*-algebra,
that generalizes the comparison of projections in von Neumann algebras and in C*-algebra
defined by Murray and von Neumann. We shall make extensive use of Cuntz’ ideas, and
we will therefore spend some time explaining the main points (as developed in [8], [27] and
[2]).

Denote the set of positive element in a C*-algebra A by A™.



Definition 2.1 (Cuntz) Let A be a C*-algebra, and let a,b be positive elements in A.
Write a 3 b if there exists a sequence {xy}32, in A with x3bry — a.

More generally, if a is a positive element in M,(A) and if b is a positive element in
M,,(A), then write a 3

~J

b if there exists a sequence of rectangular matrices {Tg}32, in
My, (A) with bz — a (using obvious matriz multiplication).
Write a = b ifa 3 b and b 3 a.

The relation = is clearly transitive and reflexive, and = is an equivalence relation.

Lemma 2.2 Let A be a C*-algebra

(i) For every a € A" and for every continuous function p: Rt — R with ¢(0) = 0, we
have ¢(a) 3 a.

(ii) a =~ a® for everya € AT.

(iii) If B is a hereditary sub-C*-algebra of A, and if a,b are positive elements in B such
that a 2 b relatively to A, then a 3 b relatively to B.

Proof: (i). We can find a sequence of continuous functions ¢ : Rt — R with 1,(0) = 0,
and such that #1;(t) converges uniformly to ((t) on the spectrum of a. Put z; = v (a)/2.
Then z}ax, — ¢(a).

(ii) follows from (i).

(iii). If @ 2 bin A, then o X b2 by (ii). Find x4 in A with z}b%z;, — a/2. Put

yr = b*/2x,a'/*. Then y, belongs to B and y}by; — a, thus showing that a X b in B. O

We let M(A) denote the multiplier algebra of A. The lemma above shows that if a, b
are positive elements in A and if ¢ 3 b in M(A), then ¢ X b in A.

If p, g are projections in a C*-algebra A, then p 3 ¢ (in the sense of Definition 2.1) if
and only if p is equivalent to a sub-projection of ¢, thus agreeing with the usual definition
of comparison of two projection (cf. Proposition 2.7 below). Observe that p ~ ¢ in the
sense of Definition 2.1 does not imply that p and ¢ are Murray-von Neumann equivalent —
unless A is finite. Another notion of equivalence of positive elements, that clearly extend

Murray-von Neumann equivalence of projections, is given as follows:

Definition 2.3 If a,b are positive elements in a C*-algebra A, then write a ~ b if there
exists x in A such that x*x = a and rx* = b.

Similarly, if a in M,(A) and b in M,,(A) are positive, then a ~ b if there exists x in
My (A) such that v*x = a and xz* = b.



It was shown by G. K. Pedersen in [25] that ~ is an equivalence relation.

Notice also that a ~ b implies that a ~ b. Indeed, if *x = a and xx* = b, then
*bx = a? and so a 3 a® X b, and vice versa.

For a in M,,(A) and b in M,,(A) let a @ b denote the element

a 0
(0 b) € Myim(A).

Let a ® 1) denote the element a @ a @ -- - ® a (with k£ summands).

Let a € A*. Then aAa is the hereditary sub-C*-algebra of A generated by a, and AaA
denotes the closed two-sided ideal in A generated by a, where AaA implicitly is understood
to be the linear span of the set of elements of the form xzay, where z,y lie in A.

Consider again a positive element a in A, and let £ > 0 be given. Let (a — &), be the
positive part of the self-adjoint element a — -1, where 1 is the unit of Z, the unitazation
of A. Equivalently, (a —¢); = ¢(a), where p: Rt — R* is given by ¢(t) = max{t — ¢, 0}.

The lemma below is well-known. We include a brief sketch of its proof.

Lemma 2.4 Let a,b be positive elements in a C*-algebra A. If a ~ b, then there is an

isomorphism : aAa — bAb with ¢(a) = b.

Proof: We have a = x*x and b = zz* for some z in A. Let z = v|z| be the polar decom-
position for z, where v is a partial isometry in the enveloping von Neumann algebra A**.

Then ¢ — vev* defines an isomorphism from aAa to bAb that maps a onto b. O

The next lemma contains information about continuity properties of the relation 3.

Lemma 2.5 Let A be a C*-algebra, and let a be a positive element in A. Then
(i) ((a=e1)4 —e2)y = (a— (61 +&2))4 for all e1,65 € RT,

(ii) of e > 0 and b is a positive element in A with ||a — b|| < &, then (a — &)y = x*bx for

some x € A, and in particular, (a —e)y 3 b,

(iii) if {bn} is a sequence of positive elements in A so that b, — a, and if 0 < &1 < &o,
then (a —€2)+ 2 (bn —e1)4 and (b, — €2)+ 2 (a —e1)4 for all sufficiently large n.

~J

Proof: (i) is straightforward, and (ii) is contained in [27, Proposition 2.2].
(iii). If b, — a, then |[(b, — €1)+ — (@ —€1)+]|| < €2 — €1 when n is large enough. For

such n we have (a —e9)y 2 (b, —€1)4 and (b, —e2)4 3 (a —e1)4 by (i) and (ii). O
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Proposition 2.6 ([27, Proposition 2.4]) Let A be a C*-algebra, and let a,b be positive

elements in A. The following are equivalent:
(i) a 30,
(ii) for alle >0, (a—¢€); 2,
(iii) for all e > 0 there exists 6 > 0 such that (a —e)y 2 (b—9)4,

(iv) for all e > 0 there exist 6 > 0 and x in A such that (a — ) = z*(b— ) 2.

It is a consequence of this proposition that if p is a projection, and if a is a positive element
in A with p 3 a, then p = z*az for some z € A — because (p — %)+ = Ip.

If 0 < e < &9 and if a and b are positive elements in A with (a —e1)4 2 b, then by
Proposition 2.6 (iv) and Lemma 2.5 (i) there exist § > 0 and z in A with (a — &3), =
z*(b— ) .

Recall that an element a in a C*-algebra A is strictly positive if p(a) > 0 for every
non-zero positive linear functional on A. Equivalently, a is strictly positive if and only if

aAa = A.
Proposition 2.7 Let A be a C*-algebra.
(i) If a is a positive element in A and if b is a positive element in aAa, then b 3 a.
(ii) If a is a strictly positive element in A, then b 3 a for every positive element b in A.

(iii) If a,b are positive elements in A satisfying b 3 a, then for each ¢ > 0 there ezists a

positive element ay in aAa with (b — )4 ~ ag.

(iv) If b= Ele riax; for some T, Tg, ..., Tk in A, thenb 3 a®1y.

(v) If a is a positive element in A, and if b is a positive element in AaA, then for each
e > 0 there exists k in N such that (b—¢); 3 a® 1.

Proof: (i). Find a sequence z, in A with az,a — b2, and put y, = z,az’. Then
each y, is positive and ay,a — b. As shown in [27, Lemma 2.3], if ¢ < d, then ¢ 3 d.
Since ayna < ||ynlla® 3 a, we get ayya 3 a for all n. Using Lemma 2.5, this shows that
(b—¢€); Zaforall e >0, and by Proposition 2.6, we conclude that b X a.

(ii) is an immediate consequence of (i).

(iii). Use Proposition 2.6 to find y in A with y*ay = (b—¢),, and put z = a'/?y. Then
(b—¢€), = x*z, and z2* belongs to aAa.



(iv). Let z in My ;(A) be the column matrix with entries z,2s,...,24. Then b =
z*(a® 1j)x.
(v). If b is a positive element in AaA and if € > 0, then there exist xy,xs,..., 2, in A

such that ||b — Z?:l rjaz;|| <e. From (iv) and Lemma 2.5 we get

k
(b—e); 2 Zm;-axj 2 a® 1.
j=1

0

Lemma 2.8 Let A be a C*-algebra.
(i) If a € AT and if p is a projection in M(A), then a 3 pap+ (1 — p)a(1 — p).
(ii) If a,b are positive elements in A, then a +b 2 a @ b.

(iii) If a,b are positive and mutually orthogonal elements in A, then a +b ~ a @ b.

Proof: (i). Let s be the symmetry p — (1 — p) in M(A). Then
a < a+sas = 2(pap+ (1 —pla(l —p)) 3 pap+ (1 —p)a(l —p),

and this shows (i) — recalling that b < ¢ implies b < ¢, cf. Proposition 2.7.
(ii). Put z = (a*/? b1/2) € M, 5(A). Then, by (i),

a pL/241/2
= * ~ * = <
a+b = zx Tz (al/zbl/Q ; ) S a®b.

(iii). If @ and b are orthogonal, then z*z = a®b, when z is as in the proof of (ii) above. O

Lemma 2.9 Let ay,as,b1,by be positive elements in a C*-algebra A with a; 3 bj. Then
a1 @ ag 3 by ®be. If also a; L as and by L by, then a1 + as 2 by + bs.

Proof: If z} b1z, — a1 and y;byy, — as, then
(-Tn S yn)*(bl ® bZ)(xn S yn) — a1 D as.

The second statement, which is contained in [8, Proposition 1.1], can be derived from the

first statement and from Lemma 2.8 (iii). O



3 Finite, infinite and properly infinite positive ele-
ments

Recall that a projection p in a C*-algebra A is said to be infinite if it is equivalent to
a proper sub-projection of itself, and p is finite otherwise. If p has mutually orthogonal
sub-projections ¢; and g such that p ~ ¢ ~ @9, then p is said to be properly infinite.
Equivalently, p is properly infinite if p is non-zero and p@® p 3 p. A unital C*-algebra A is
said to be finite, infinite, respectively, properly infinite, if the unit of A has this property.

Lemma 3.1 Let p be a projection in a C*-algebra A. Then p is infinite if and only if there

exists a non-zero positive element a in A such that p® a 3 p.

Proof: If p is infinite, then p is equivalent to a proper sub-projection py of p. Put ¢ =
p—po # 0. Then p® g ~ py + ¢ = p, and so in particular, p ® q 3 p.

Assume that there exists a non-zero positive element a with p ® a X p. Choose ¢ in
(0,1) such that (a — )y # 0, and put b = (a —)4. Since (pDa) —e)r =1 —e)p Db,
it follows from Proposition 2.6 that there exists 7 = (1 r3) in M; o(A) with p® b = r*pr.

This entails that
p O Ty ( ) ripri Tipro
= * p\ri r2) = * * .
0 b s TSPT1L THPTY

Put v = pr;. Then v*v = p, and (py =) vv* < p. Assume that pg = p. Then
b = ripro = ryvvry = rypriviry =0,

a contradiction. Hence pq is a proper sub-projection of p, and p is infinite. [

Definition 3.2 A positive element a in a C*-algebra A is called infinite if there erists a
non-zero positive element b in A such that a ®b 3 a. If a is not infinite, then we say that

a is finite. If a is non-zero and if a ® a 2 a, then a is said to be properly infinite.

Lemma 3.1 above shows that being finite and infinite in the sense of Definition 3.2 extends
the usual definition of finite and infinite projections, and also, a properly infinite projection
is clearly properly infinite in the sense of Definition 3.2.

Every properly infinite positive element is infinite. If I is a closed two-sided ideal in A
and if a is a properly infinite element in A, then a 4+ I is either zero or properly infinite in

A/I (because the relation a @ a 3 a is preserved under *~homomorphisms).
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Proposition 3.3 Let A be a C*-algebra, and let a be a non-zero positive element in A.

The following conditions are equivalent:
(i) a is properly infinite,
(i) (a—e)y+®(a—¢e)+ 2 a for everye >0,

(iii) for every e > 0 there exist mutually orthogonal positive elements a1, as in aAa such
that (a —e)y4 3 aj,

(iv) there are sequences {z,} and {y,} in aAa with v}z, — a, yiyn — a, and x5y, — 0,
(v) for every e > 0 there are x,y in aAa with z*z = y*y = (a — &), and zx* L yy*.
Moreover, (i) — (v) are implied by
(vi) M(aAa) is properly infinite.
Proof: We show
(i) = (v) = (iv) = (i), (v) = (iii) = (ii) = (i), (vi) = (iv).

(i) = (v). Assume a ®a 3 a. Let ¢ > 0. There is, by Proposition 2.6, an element
r = (st)in M;o(A) with (a—¢); @ (a—¢);+ = r*ar, or, equivalently, s*as = t*at = (a—¢)+
and s*at = 0. Hence condition (v) holds with z = a'/?s and y = a'/?t.

(v) = (iv). Take z, and y, as in (v) corresponding to € = 1/n.

(iv) = (i). Let {z,} and {y,} be given as in (iv). In particular, each z,, and y, lie in

al/2A, and we can therefore find s, and ¢, in A with ||a*/2s, —2,|| — 0 and ||a'/?t, —y,|| —
0. Then s;as, — a, tiat, — a, and siat, — 0. Put 2z, = (s, t,) in M;2(A). Then
ztaz, — a @ a, showing that a ® a 3 a.
(v) = (iii). Find z,y in aAa with 2*2 = y*y = (a — €) 4, and x2* | yy*. Put a; = zz*
and az = yy*. Then a; and ay belong to ada, a; L ay, and (a — &)y ~ aj, so (iii) holds.
(iii) = (ii). Assume a;,as are mutually orthogonal positive elements in aAa with
(@ —¢€)+ 2 a; for some € > 0. Then

(@a—e)t@®(a—e)y T a®a ~at+a 3 a

by Proposition 2.7 (i) and Lemma 2.8 (iii).
(i) = (). f (a—e); ®(a—e); 2 aforevery € > 0, then a®a 3 a by Proposition 2.6.



(vi) = (iv). Let sy, so be isometries in M(aAa) with orthogonal range projections, and

put x = s,a/2, y = spa/2. Then z,y lie in aAa, ¥z = y*y = a, and 2*y = 0. Hence (iv)

holds. O

Question 3.4 Is M(aAa) properly infinite if a is properly infinite?
Proposition 3.5 Let a be a properly infinite positive element in a C*-algebra A. Then:
(i) a® 1 2 a for every k in N.
(ii) b X a for every b in AaA.
Proof: (i). If a is properly infinite and if a ® 15—, 3 a for some k in N, then
a®ly 2 a®(a®1lk-1) 2 ada 3 a

by Lemma 2.9. (i) therefore follows by induction on k.
(ii). Combining (i) with Proposition 2.7 (v) yields (b —¢); = a for every b in AaA and
for every € > 0. By Proposition 2.6, this implies b < a. O

Definition 3.6 A positive element a in a C*-algebra A is called stable if aAa is a stable
C*-algebra.

Proposition 3.7 FEvery stable positive element is properly infinite.

Proof: The multiplier algebra of a stable C*-algebra is properly infinite (because it contains
the bounded operators on an infinite-dimensional Hilbert space as a unital sub-C*-algebra).

The proposition therefore follows from Proposition 3.3 (vi). O

We see from Proposition 3.7 that the C*-algebra K of all compact operators on a separable
infinite-dimensional Hilbert space contains properly infinite elements. This may conflict
with the intuition that /C is a finite C*-algebra. The finiteness of K can be recovered from
the fact that the Pedersen ideal of K contains no infinite elements (and no properly infinite
elements).

Lemma 3.8 Let a be a properly infinite positive element in a C*-algebra A, and let b be

a positive element in AaA satisfying a 2 b. Then b is properly infinite.
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Proof: If b is a positive element in AaA, then b 3 a by Proposition 3.5. If, in addition,
a 3 b, then a = b, and this clearly entails that b is properly infinite. [J

Lemma 3.9 Let a,b be properly infinite positive elements in a C*-algebra A. Then a®b is
a properly infinite element in My(A), and if a L b, then a+b is a properly infinite element
in A.

Proof: The first claim follows from Lemma 2.9, and the second claim follows from the first
and the fact that a + b ~ a @ b when a and b are orthogonal (cf. Lemma 2.8 (iii)). O

Question 3.10 Is the sum of two (not necessarily orthogonal) positive properly infinite

elements always properly infinite?

Definition 3.11 Let A be a C*-algebra, and let a be a positive element in A. Put
Ja)={r€A:a®|z| Za}.

Lemma 3.12 Let A be a C*-algebra, let a be a positive element in A, and let J(a) be as
in Definition 3.11 above. Then:

(i) J(a) is a closed two-sided ideal in A.
(ii) a® |z| 2 a for every k in N and for every x in My(J(a)).
(iii) J(a) is contained in AaA.

(iv) a is finite if and only if J(a) = 0, a is infinite if and only if J(a) # 0, and a is
properly infinite if and only if J(a) = AaA # 0.

Proof: (i). We show first that

lzy| 3z, (3.1
lyz| 3 |, (3.2)
z+yl 3 lzl@ Yyl (3.3)

for every pair of elements z, 7 in A. Using ¢ = ¢, cf. Lemma 2.2, we calculate

lyal ~ ay'yz < |yllPe’e 3 Jal* 3 Jal,
zyl ~ yatzy ~ ayy'et < lylffeat ~ lylfete 3 e 3 sl
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This proves (3.1) and (3.2). Since |z + y| belongs to the hereditary sub-C*-algebra of A
generated by |z| + |y, (3.3) follows from Proposition 2.7 (i).

It follows from (3.1), (3.2), and (3.3) that J(a) is a two-sided ideal in A. The set of
positive elements b in My(A) for which b 3 a is norm-closed, and the map = +— a @ |z| is
continuous. Hence J(a) is norm-closed.

(ii). Assume that z belongs to My(J(a)) for some k in N. Let by,bo,...,b; be the
diagonal entries of |z|. Then each b; lies in J(a), and |z| X by @ by @ --- @ by by Lemma
2.8. Hence

a®r] 3000 b Ob T aDbOBO---Ob I - 3 a

~J

(iii). If @ ® |z| =X @, then |z| X a. Hence |z| and = belong to AaA.

(iv). By definition, a is properly infinite if and only if @ € J(a) and a is non-zero. The
former is clearly equivalent to J(a) being equal to AaA. The claims about a being finite,
respectively, infinite, follow immediately from the definition of a being finite, respectively,
infinite. [

Lemma 3.13 The element a + J(a) in A/J(a) is finite for every C*-algebra A and for

every positive element a in A.

Proof: Denote by 7 the quotient mapping A — A/J(a). Assume, to reach a contradiction,
that 7(a) is infinite. Then 7(a) @ ¢ X 7(a) for some non-zero positive element ¢ in A/J(a).
Let € > 0. Find s in M; 5(A/J(a)) with

s'm(a)s = (m(a) — €)1 B (c—€)y = (m(a) B ec—e).
Lift ¢ to a positive element b in A, lift s to an element r in M; 5(A), and put
z=(a—¢e)y ®(b—¢e); —rrar.
Then z belongs to Ms(J(a)), and so, by Lemma 2.8 (ii),
(a—e);®b—¢)y =r'ar+z < rfar+|z] T rfar®z] 3 a® |z 3 a
This holds for all € > 0 and therefore a ® b X a. Hence b lies in J(a) in contradiction with

the assumption that ¢ = 7(b) # 0. O
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Proposition 3.14 A non-zero positive element a in a C*-algebra A is properly infinite if
and only if the element a + I in A/I is either zero or infinite for every closed two-sided
tdeal I in A.

Proof: The relation a @ a X a passes to quotients, and so, if a is properly infinite, then

a + I is either zero or properly infinite for every closed two-sided ideal I in A.
Conversely, if a is non-zero and not properly infinite, then J(a) is a proper ideal in AaA

by Lemma 3.12, and a+ J(a) is then a non-zero finite element in A/.J(a) by Lemma 3.13. O

The corollaries below are contained in Proposition 3.14. Since these results may be of
independent interest we add an alternative proof (of Corollary 3.16) that does not use the

theory of comparison of positive elements.

Corollary 3.15 A non-zero projection p in a C*-algebra A is properly infinite if and only
if the element p+ I in A/I is either zero or infinite for every closed two-sided ideal I in

A.

Observing that a projection p in A is properly infinite if and only if the corner algebra
pAp contains a unital copy of the Cuntz algebra O, we get the following reformulation
of Corollary 3.15:

Corollary 3.16 A unital C*-algebra A contains a unital copy of O if and only if every

non-zero quotient of A contains a non-unitary isometry.

Proof: Denote by P the set of projections in A which are of the form 1 — ss* for some
isometry s in A. Let J be the closed two-sided ideal in A generated by P.
We claim that the set
X={s'pzx |z €A, peP}

is dense in JT. A standard argument shows that the additive span of X is dense in J*, and
we need therefore only show that X + X is contained in X. Let p,q be in P and let z,y be
in A. Let s and ¢ be isometries in A with p = 1—ss* and ¢ = 1 —t*. Put r =1 — (st)(st)*
and put z = pr+ sqy. Then r belongs to P, r = p+ sqs*, and z*rz = x*pxr +y*qy, showing
that x*pxr + y*qy belongs to X.

We proceed to show that A/J contains no non-unitary isometries (if J # A). Assume,
to reach a contradiction, that v is a non-unitary isometry in A/J. Lift v to a contraction

a in A. Then 1 — a*a is positive and belongs to J, but 1 — aa* does not belong to J. Since
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1—a*a lies in the closure of X we can find p in P and z in A such that ||(1—a*a)—2*pz|| < 1.

Let s in A be an isometry with p =1 — ss*, and put b = sa + px. Then
11 =070l = [|[(1 — a”a) — 2"pz| <1,

and so b*b is invertible. Put u = b(b*b)"*/2. Then u*u = 1, and so 1 — uu* belongs to J.
That implies that the elements v+ .J and b+ J in A/J are invertible. But b+ J = (s+ J)v
is a product of a unitary and a non-unitary isometry, and hence non-invertible.

We conclude that J = A. Then 1 lies in the closure of X and we can find p in P
and z in A such that |1 — 2*pz|| < 1. Let s be an isometry in A with p = 1 — ss*. Put
t = px(zrpx)~V2.
orthogonal range projections, and the C*-algebra generated by s and ¢ contains a unital

Then ¢ is an isometry with ¢t* < p. Hence s,t are isometries with

copy of Oy. O

Lemma 3.17 Let A be a C*-algebra, let a be a positive element in A, and let p be a
projection in A satisfying p 3 a.

(i) If p is equivalent to a sub-projection py of p, then p — py belongs to J(a).
(ii) If p is properly infinite, then p belongs to J(a).

Proof: (i). If p 2 a, then p = r*ar for some r in A by Proposition 2.6. It follows that p

12 in aAa, and we may for this reason assume

is equivalent to the projection p' = a'/?rr*a
that p lies in aAa.
The two projections ¢ = (1 — p) + py and 1 = (1 — py) + p are equivalent in M (aAa).

Let v in M(aAa) be such that v*v = 1 and vv* = ¢q. Then
a® (p—po) ~ vav" @ (p—po) ~ vav" +(p—m) 3 a,

where the last claim follows from Proposition 2.7 (i).

(ii). If p is properly infinite, then there exist mutually orthogonal sub-projections p1, po
of p, which are equivalent to p. It follows from (i) that p — ps lies in J(a). This shows that
p lies in J(a) being equivalent to p; which is less than p — py. O

It follows from Lemma 3.17 that if A is a C*-algebra, p is a projection in A, and a is a
positive element in A such that p 3 a, then ¢ is infinite if p is infinite. In other words, a
positive element is infinite if it dominates an infinite projection. The examples below show

that the assumption that p is a projection cannot be omitted:
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Example 3.18 We find examples of positive elements a, b in a C*-algebra such that b 3 a,
a is finite, and b is infinite — even properly infinite.

As the first example, let A be the C*-algebra IE, the unitazation of the compact opera-
tors on an infinite dimensional separable Hilbert space. Let b be a strictly positive element
in KC, and let a be the unit of C. Then b < a, a is finite, being a finite projection, and b is
properly infinite by Proposition 3.7.

In the next example, b is even more infinite, in that (b—¢) is properly infinite whenever
0 < e < ||b]| (and b is non-zero). Let here A be the unitazation of Oy ® Cy(R). Let a be
the unit of A, and let b be any non-zero positive element in Oy ® Cy(R). Then b <X a, and
a is finite being a minimal projection in A, cf. Lemma 3.1. Also, (b — ¢), is a non-zero
positive element in Oy @ Cy(R) whenever 0 < € < ||b]|, and so (b — €) is properly infinite,
cf. Proposition 4.5 below.

4 Purely infinite C*-algebra

Joachim Cuntz considered in [9] the property of a simple C*-algebra that each of its non-
zero hereditary sub-C*-algebras contain an infinite projection, and he called simple C*-
algebras with this property purely infinite. We extend his definition to cover non-simple

C*-algebras as follows:

Definition 4.1 A C*-algebra A is said to be purely infinite if there are no characters on
A and if for every pair of positive elements a,b in A, such that a lies in the closed two-sided
tdeal generated by b, there exists a sequence {Tj}j-‘;l in A with ribr; — a.

The latter condition can, with the terminology of Section 2, be rephrased as: For every

pair of positive elements a,b in A, a X b if and only if a belongs to AbA.

This definition agrees with Cuntz’ definition in the simple case as shown in Proposition 5.4
— a fact which is also contained in [21]. Our definition entails that the zero C*-algebra
is purely infinite. Whether one should exclude the zero C*-algebra from the list of purely
infinite C*-algebras is a matter of taste, but it is actually convenient to include it as a

purely infinite C*-algebra.

Lemma 4.2 If A is a C*-algebra in which every non-zero positive element is properly

infinite, then A is purely infinite.

Proof: To see that A has no characters it suffices to show that no non-zero quotients of A

are Abelian. A properly infinite element in A is under a quotient homomorphism mapped
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to a properly infinite element or to zero. But an Abelian C*-algebra contains no properly
infinite elements (this is an easy consequence of Proposition 3.3). This shows that no
non-zero quotient of A is Abelian.

Proposition 3.5 (ii) shows that b < a whenever b lies in AaA and a is properly infinite.
It follows that A is purely infinite. [

Proposition 4.3 FEvery ideal in a purely infinite C*-algebra, and every quotient of a purely

infinite C*-algebra are again purely infinite.

Proof: Let A be a purely infinite C*-algebra and let I be an ideal in A. Notice that A/I
cannot have any characters, because A does not have characters, being purely infinite.
Also, I cannot have characters. Indeed, if I admitted a character, then there would be
a closed two-sided ideal J in I such that I/J = C. Then I/J would a closed two-sided
unital ideal in A/J and hence a direct summand of A/J. That would imply that A/J has
a character, but we know that no such exists.

Let a, b be positive elements in A/I such that b lies in (A/1)a(A/I). Lift a to a positive
element ¢ in A. The quotient mapping 7: A — A/I maps AcA onto (A/T)a(A/T), and we
can therefore lift b to a positive element d in AcA. Since A is purely infinite, d X ¢. The
*-homomorphism 7 preserves this relation, thus yielding b = a in A/I as desired.

If a, b are positive elements in I such that b lies in Tal, then b lies in Aa A, which implies
that b < a relatively to A. But then b X a relatively to I, cf. Lemma 2.2 (iii). O

Proposition 4.4 No C*-algebra of type I is purely infinite.

Proof: Notice first that simple type I C*-algebras, i.e., C*-algebras isomorphic to C(H),
the compact operators on a Hilbert space H, are not purely infinite. Indeed, if dim(H) > 2,
and if e and f are projections in C(H) of dimensions 1, respectively, 2, then f £ e although
f lies in the ideal generated by e. If dim(H) = 1, then K(H) has a character.

If A is a non-simple C*-algebra not of type I, then there are ideals I and J in A with
I C J C A such that J/I is simple and of type I. Therefore J/I is not purely infinite, and
so A cannot be purely infinite by Proposition 4.3. [J

Proposition 4.5 Let A be a unital, simple, separable, purely infinite, nuclear C*-algebra,
and let B be any C*-algebra. Then A ® B 1is purely infinite. In particular, O ® B and
O, ® B are purely infinite for every C*-algebra B.
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Proof: Tt is a consequence of [16] (see also [18] and [15]) that
A2 A® (®72,0).

In particular there exists a sequence of unital *-homomorphisms ¢, : Oy — A®B satisfying
on(a)b — bp,(a) — 0 for every a in Oy and every b in A ® B. Let now ¢ be a positive
element in A ® B, let s1, s, be isometries in O, with orthogonal range projections, and
set z, = c/*p,(s1)ct/* and y, = c/*@,(s2)c'/*. Then z*x, — ¢, yiy, — ¢, and 2y, — 0,
and so c is properly infinite (or zero) by Proposition 3.3. This shows that A ® B is purely
infinite.

The last claims follows from the facts that O, and O, are simple, separable, purely
infinite and nuclear, cf. [7]. O

Example 4.6 The property that every non-zero hereditary sub-C*-algebra contains an
infinite projection is, for non-simple C*-algebras, neither weaker nor stronger than being
purely infinite (in the sense of Definition 4.1).

The C*-algebra A obtained by adjoining a unit to O, ® K has the property that every
non-zero hereditary sub-C*-algebra of A contains an infinite projection, but it is not purely
infinite, having a character. For another such example — that does not have characters
— let, for instance, B be a UHF-algebra and consider A ® B. Now, A ® B still has the
property that all its non-zero hereditary sub-C*-algebras contain infinite projections, but
A ® B is not purely infinite. Indeed, A ® B has a quotient isomorphic to B, and B is not
purely infinite, and therefore A ® B cannot be purely infinite, cf. Proposition 4.3.

The C*-algebra Oy ® Cy(R) is purely infinite (by Proposition 4.5) and this C*-algebra

contains no non-zero projections.

The following mild — and obvious — strengthening of the property that all hereditary
sub-C*-algebras contain infinite projections, we do get a condition that is stronger than

pure infiniteness:

Proposition 4.7 Let A be a C*-algebra with the property that every non-zero hereditary
sub-C*-algebra in every quotient of A contains an infinite projection. Then A is purely

infinite.

Proof: Tt follows from Lemma 4.2 that A is purely infinite if every non-zero positive element

a in A is properly infinite. By Proposition 3.14 this is the case if a + I is infinite or zero
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in A/I for every ideal I in A. Let I be a closed two-sided ideal in A that does not contain
a. The (non-zero) hereditary sub-C*-algebra (a + I)A/I(a+ I) contains by assumption

an infinite projection p, and p X a + I by Proposition 2.7 (i). Lemma 3.17 (i) yields that
J(a + I) is non-zero, hence a + I is infinite. [J

Question 4.8 Is it true that a C*-algebra A is purely infinite if and only if every non-zero

hereditary sub-C*-algebra in every quotient of A contains an infinite positive element?

We shall in the following establish the converse to Proposition 4.7, that every non-zero
positive element in a purely infinite C*-algebra is properly infinite, and at the same time we
shall show that the class of purely infinite C*-algebras is closed under forming extensions.
This, together with Proposition 4.3, shows that the “only if” part of Question 4.8 is true.

Proposition 4.9 (Loring [22, Theorem 10.2.1], [23, Theorem 3.5]) The C*-algebra
M, (Cy((0,1])) is projective for each n € N. That is, for every short-exact sequence

0 1 A B 0

of C*-algebra, and for every *-homomorphism ¢: M,(Cy((0,1])) — B there exists a *-
homomorphism : M,(Cy((0,1])) = A so that ¢ = 7o 1.

Proposition 4.10 (Glimm) Let A be a C*-algebra not of type I. Then A contains a
sub-C*-algebra isomorphic to the C*-algebra M, (Co((0,1])) for each n € N.

Proof: Glimm’s classical theorem says that there exists a sub-C*-algebra B of A and a
closed two-sided ideal I in B such that the CAR-algebra embeds into B/I. From this we
get an embedding 1, : M, (C) — B/I such that the CAR-algebra embeds unitally into the
relative commutant B/I N ¢, (M,(C))". Since the C*-algebra Cy((0,1]) can be embedded
into the CAR-algebra, there is an embedding ), of Cy((0,1]) into B/I Ny, (M, (C))". The
*-homomorphism

Y: M,(C) ® Cy((0,1]) — B

given by ¥(a ® f) = ¥1(a)e(f) is an embedding of M, (Cy((0,1])) into B. Use now the
result of Loring (Proposition 4.9) to lift this embedding to an embedding of M, (Cs((0, 1]))
into B. [J
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Lemma 4.11 Let A be a purely infinite C*-algebra.

(i) Let a be a positive element in A and assume that there are mutually orthogonal

positive elements a1, ay in A such that a 3 aj. Then a is properly infinite.

(ii) Let a be a properly infinite element in A. Then every positive element in AaA is

properly infinite.

(iii) Let vp: My(Co((0,1])) — A be a *-homomorphism. Then every element in the ideal
in A generated by the image of v is properly infinite.

Proof: (i). Let ¢ > 0. By Proposition 2.6 there exist elements ry, 7o in A such that
(a —¢e)y = rja;r;. Put b; = ajl-/2rjr;a;/2. Then by L by, and (a — &) ~ by ~ by. Now,

by + by lies in Ab; A, and because A is purely infinite, we get
(a—e)sy@(@a—e)y ~ b1 @by ~ bi+by 3 b ~ (a—¢); 3 a

Since € > 0 was arbitrary, it follows from Proposition 3.3 that a is properly infinite.

(ii). Let b be a positive element in AaA. Then b 3 a by Proposition 3.5. Let ¢ > 0,
and find 6 > 0 such that (b —¢); =X (a — d)4, cf. Proposition 2.6. By Proposition 3.3 we
can find mutually orthogonal positive elements a;, ay in aAa with (a — 6); < a;. We then
have (b—¢); 3 a;, and by (i) this entails that (b —¢). is properly infinite. It follows that
(b—e)y ®(b—e)y 2 bfor every € > 0, and therefore b is properly infinite by Proposition
3.3.

(iii). Let d be the canonical generator of Cy((0,1]), and let dy,dy in Ms(Cy((0,1])) be
the two diagonal elements that have d in one corner and zero in the other corner. Then
¥(dy) is properly infinite in A by (i). Since d; is full in M5(Cy((0,1])), the ideal in A gen-
erated by the image of 1 is equal to W, and every element in this ideal is properly
infinite by (ii). O

Lemma 4.12 Let A be a C*-algebra, let I be a closed two-sided ideal in A, and let m: A —
A/I be the quotient mapping. Let a,b be positive elements in A, let € > 0 be given, and
suppose that w((a — €)4) 3 w(b). Then for each § > € there exists a positive element ¢ in
I with (a —6)y Sbdec.

Proof: Use Proposition 2.6 (and the remarks below it) to find y in A/I with 7((a —9)4) =
y*m(b)y. Lift y to an element z in A. Then 7(z*bz — (@ — §);) = 0. It follows that
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¢ = |z*bx — (a — J)4| is a positive element in I, and

(a—90)y < z'bx+c 2 zbxdec 3 bDe.

Lemma 4.13 Let a be a properly infinite positive element in a C*-algebra A. Let n € N

be given. Let d be the canonical generator of the C*-algebra Cy((0,1]), and let d; be the

diagonal element in M, (Cy((0,1])) with d in the (j, j)th position and zeros elsewhere.
Then for each ¢ > 0 there exists a *-homomorphism ¢: M,(Cy((0,1])) — aAa with

(a =)~ p(d).

Proof: By [22, p. 6], M,(Co((0,1])) is the universal C*-algebra generated by elements
{w; }1, satisfying ||w;|| < 1, wyw; = 0, wjw; = §;;wiw,. Moreover, di = wiw;.

As in the proof of “(i) = (v)” in Proposition 3.3, and using that « ® 1,, X a when a
is properly infinite, we find elements 1, s, ..., 2, in aAa such that Tixj = (a —€); and
ziz; = 0 when i # j. Put z; = z;2}/||zz}]| for i = 2,3...,n. Then z; belongs to aAa,
and for all 4, 7,

||ZZ” <1, Ri&j = 0, Z;Zj = 5@'252’2.

There is a *~homomorphism ¢: M, (Cy((0,1])) — aAa with ¢(w;) = z;. Now,

o(d1) = 2fz = mi(a—e);at/||zizi]]® =~ z1(a—e)iaf,
and
(a—e)s = (a—¢e)} = zizi(a—e)zizy 3 zla—e)x} 3 (a—e)s

This shows that ¢(d;) ~ (a —¢)4. O

Lemma 4.14 Let

0 I A-"~RB 0 (4.1)

be a short-exact sequence of C*-algebras, and assume that all non-zero positive elements in
B are properly infinite. Then for each positive non-zero element a in A and for each € > 0
there exist mutually orthogonal, positive elements ay, as, asz in aAa, and a positive element

cin ala with a; ~ as ~ az, and (¢ — )4 3 a; Dec.
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Proof: Upon replacing (4.1) with

0 ala aAa 7(a)Bn(a) —=0, (4.2)

we can assume that a is a strictly positive element in A, and this will ensure that the
elements a1, as, as, ¢, found below, all belong to aAa.

Since 7(a) is properly infinite we can use Lemma 4.13 to find a *-homomorphism
©: M3(Co((0,1])) — 7w(a)Bn(a) so that (m(a) —/2); 3 ¢(d;) for j = 1,2,3 (with the
notation of Lemma 4.13). It follows from Loring’s lifting result, Proposition 4.9, that ¢
lifts to a *-homomorphism t: M3(Cy((0,1])) — aAa. Put a; = 1(d;). Then a; ~ ay ~ a3,
7w((a —¢/2);) 2 7w(ay), and there is a positive element ¢ in I with (a — ), 3 a1 © ¢ by
Lemma 4.12. [J

Lemma 4.15 Let
T

0 1 A B 0

be a short-exact sequence of C*-algebra, and assume that all non-zero positive elements
in I and B are properly infinite. Then all non-zero positive elements in A are properly

infinite.

Proof: Let a be an arbitrary non-zero positive element in A, and let ¢ > 0 be given.
By Lemma 4.14 we can find mutually orthogonal, positive elements a1, as, a3 in A, and a

positive element ¢ in I with
c 3 a, a; 3 a, a; ~ ag ~ as, (a—¢/2)y Za;dec.

By Proposition 2.6, and the remarks below it, there is a 6 > 0 such that (¢ —¢); =3
(a; — 8)+ @ (c = ). B
Let I, be the hereditary sub-C*-algebra of I consisting of those elements in ala that

are orthogonal to (a; — )4 + (ag — §)4. Then I is full in ala. Indeed, Iy contains azlas,

and the ideal generated by I, will therefore contain ay/a; and aslas, cf. Lemma 2.4 and
its proof. We can therefore find a (non-zero) positive element d in I so that (¢ — §/2),
belongs to IdI. By hypothesis, d is properly infinite, and so (¢ —6/2)4 =< d by Proposition
3.5. Hence (¢ —d);+ 2 (d —n)4 for some n > 0 by Proposition 2.6. By Proposition 3.3 we
can find mutually orthogonal positive elements dy,dy in dId with (d — 1), 3 d;.
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Put b; = (a; — 0)+ + dj. Then by, by are orthogonal elements in aAa, and, because d;

is orthogonal to (a; — d), we get
(@a—¢e)y 3 (a;=06)+®(c—=06)y T (a;-0)+®d; 3 b;

This shows that a is properly infinite, cf. Proposition 3.5. [

Theorem 4.16 A C*-algebra A is purely infinite if and only if every non-zero positive

element in A is properly infinite.

Proof: The “if”-part is contained in Lemma 4.2.

Assume that A is purely infinite. Let Z be the collection of all closed two-sided ideals
I in A for which all non-zero positive elements in I are properly infinite. We must show
that A belongs to Z. The set 7 is upwards directed: if I and J lie in Z, then so does I + J.

To see this, consider the short-exact sequence
0—>I—>I+J—>{I+J)/I—0.

By assumption, all non-zero positive elements of I and J are properly infinite, and (I+J)/I
is isomorphic to J/(I N J). Being properly infinite passes to quotients, so all non-zero
positive elements of (I + J)/I are properly infinite. It therefore follows from Lemma 4.14
that I 4 J lies in 7.

Let I be the closure of the union of all ideals in Z. We show that I lies in Z. Let a be
a non-zero positive element in Iy and let ¢ > 0. Then (a — ¢) lies in the Pedersen ideal
of Iy, and hence in some [ in Z. This entails that (a — ¢), is either properly infinite or
zero, and in both cases (a —€)+ @ (a —€)4+ 2 (@ — €)4 3 a. This shows that a is properly
infinite in I, cf. Proposition 3.3.

We claim that Iy = A (and this will complete the proof). Assume, to reach a con-
tradiction, that Iy # A. It follows from Proposition 4.3 that the quotient A/I, is purely
infinite. Use Glimm’s lemma (Proposition 4.10) combined with Proposition 4.4 to find an
injective *-homomorphism ¢: M5(Cy((0,1])) — A/I,. The closed two-sided ideal, J, of
A/I, generated by the image of ¢ has the property that all its non-zero positive elements
are properly infinite by Lemma 4.11 (iii). Letting I; be the pre-image of J under the
quotient mapping A — A/I,, we obtain a short-exact sequence 0 — Iy — I; — J — 0. All
non-zero positive elements in I and in .J are properly infinite. Apply Lemma 4.15 to con-

clude that I; belongs to Z. Hence Iy = I which is a contradiction because J is non-zero. [J
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One can easily prove the proposition below without Theorem 4.16 — one needs only show
that a hereditary sub-C*-algebra of a purely infinite C*-algebra does not admit a character

— but the proof becomes pleasantly trivial with Theorem 4.16:

Proposition 4.17 FEvery non-zero hereditary sub-C*-algebra of a purely infinite C*-algebra

15 again purely infinite.

Proof: Let B be a non-zero hereditary sub-C*-algebra of a purely infinite C*-algebra A.
Then b b 3 b relatively to A for every (non-zero) positive element b in B by Theorem
4.16. By Lemma 2.2, b&® b 3 b relatively to B, and this shows that B is purely infinite. [J

Proposition 4.18 Let A be the inductive limit of a directed system of purely infinite C*-
algebras { A; }ier with arbitrary connecting *-homomorphisms ¢; ;: A; = A; fori < j. Then
A s purely infinite.

Proof: Denote the inductive limit map A; — A by ;. Let a be a non-zero positive element
in A and let € > 0. It follows from Lemma 2.5 (iii) that there exist i in I and a positive
element b in A; such that (@ —¢); 2 ¥i((b—¢/2)4)

(b —€/2) is properly infinite or zero by Theorem 4.16, and in either case we have

< a. Since A; is purely infinite,

~J

(@a—e)r@(a—e)r 3 villb—e/2)1) @vi((b—¢/2)1) T ¢i((b—e/2)4) T a

Hence a is properly infinite, cf. Proposition 3.3. (J

Theorem 4.19 Given a short exact sequence

0 1 A B 0

of C*-algebras. Then A is purely infinite if and only if both I and B are purely infinite.

Proof: The “only if” part follows from Propositions 4.3 and 4.17. The “if” part follows
from Lemma 4.15 and Theorem 4.16. [

To a family, {A;}icr, of C*-algebras one associates the product C*-algebra, J],.; A;, and
the sum C*-algebra, ) . ; A;, being the set of all tuples {a; }sc1, with a; in A;, where {||a;||}
is bounded, respectively, where ||a;|| tends to zero outside finite subsets of I.
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To a C*-algebra A let £, (A) be the C*-algebra of all bounded sequences {ay, }nen, Where
each a, lies in A. If w is a filter on N, then let ¢,(A) be the ideal in £, (A) consisting of
those sequences for which lim,, ||a,|| = 0, and put A, = f5(A)/c,(A). The C*-algebra A,

is called an ultra power of A.

Proposition 4.20 If {A;}icr is a family of purely infinite C*-algebras, then ]
Y ic1 Ai are purely infinite C*-algebras.

A; and

1€l

If A is a purely infinite C*-algebra, then (. (A) is purely infinite, and A, is purely

infinite for every filter w on N.

Proof: If A is a purely infinite C*-algebra, then each non-zero positive element a in

A is properly infinite by Theorem 4.16. For each € > 0 there exist elements z,y in

(a —€¢/2)1A(a —€/2); such that z*z = y*y = (e — ¢€)+ and z*y = 0, cf. Proposition 3.3
and Lemma 2.5 (i). Let ¢.: R" — [0, 1] be the continuous function given by

0, t<eg,
pe(t) =9 et —¢), e<t< 2, (4.3)
1, t > 2e.

Set e = ¢./4(a), and notice that ex = ze = x and ey = ye = y.
Assume that all A; are purely infinite. Let a = {a;}:c1 be a positive non-zero element
in [[,c; Ai, and let € > 0 be given. Set e; = ¢.4(a;). Find z;,y; in A; such that

* * *
T, i = Y; Yi — (Ub - 5)+, z;y; =0, €Ty = T4€; = Ty, €ilYi = Yi€i = Y-

Notice that ||z;]| = ||yi]| = ||(a; — €)+]|'/?. This shows that z = {z;} and y = {;} both lie
in J[,.; Ai. Put e = ¢./4(a), and observe that e = {e;}, ex = ze = z, and ey = ye = y.

Therefore z and y belong to the hereditary sub-C*-algebra of [ [, A; generated by a. Also,

i€l
z*r = y*y = (a — €)4, and z*y = 0. Tt follows from Proposition 3.3 that a is properly
infinite. Hence [[,.; A; is purely infinite.
The C*-algebra ) .| A; is purely infinite because it is a closed two-sided idealin [ [, ; A;.
The C*-algebra ((A) is equal to [[,.y A, and is therefore purely infinite. Finally, A,

is purely infinite being a quotient of the purely infinite C*-algebra £, (A). O

Proposition 4.18 can be improved as follows:

24



Proposition 4.21 Let

©1

AP 4, P4, PR (4.4)

be a sequence of C*-algebras, and let A be its inductive limit. Then A is purely infinite if

and only if for every n in N, for every positive element a in A,, and for every € > 0 there

are m >mn and T,y in O m(a)Ap@nm(a) such that

|2°2 — ppm(@)ll <&, Y'Y= pumla)ll <&, 27yl <e, (4.5)
where Qpm: An — Ay, are the connecting map from the sequence (4.4).

Proof: Denote the inductive limit map A, — A by ¢,,. We begin by showing the “only if”
direction. We show first that every positive non-zero element a in (J,- , ¢, (A,) is properly
infinite. Let such an element a be given, and let € > 0. Find n in N and a positive element
bin A, such that ¢,(b) = a. Find next m > n and z,y in ¢, 1, (b) Am@n,m(b) with

"2 = onm®)l <&, |ly'y — eam®)ll <&, 2"yl <e.

Put s = ¢, (z) and t = ¥,,,(y). Then s,t lie in aAa, and ||s*s — a|| < ¢, |[t*t — a|| < &, and
||s*t|| < e. Since € > 0 was arbitrary, this proves that a is properly infinite, cf. Proposition
3.3.

Consider now an arbitrary positive non-zero element ¢ in A, and let ¢ > 0. By Lemma
2.5 we can find a positive element b in | J77 | ¢, (4,) with (¢ —¢);+ 3 (b—¢/2); 3 a. The

element (b—¢/2); also lies in | ;- , ¢»(A,) and is therefore properly infinite or zero. Hence
(@a—e)s@(a—e)r 3 (b-e/2);0(b—-¢/2)y 3 (b-¢/2)y T a

This shows that a is properly infinite.

To prove the “if” part, assume that A is purely infinite, and let n in N, a positive element
a in A,, and € > 0 be given. Then, by Proposition 3.3, there exist s,¢ in m SO
that ||s*s — ¥, (a)|| < /3, ||t*t — ¥n(a)|| < €/3, and ||s*t|| < £/3. Find k > n and u,v in
Onk (@) Agpn k(a) with ¥ (u) and ¢ (v) close enough to s and ¢ to ensure that

[k () "k (u) = Ynla)|| < 2¢/3, || (v) i (v) = Yula)ll <2¢/3,  |vok(w) ()] < 2¢/3.

Then, by choosing m > k large enough, and letting z = ¢y ,(u) and y = @y, (v), (4.5) is
satisfied. [J
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Corollary 4.22 Let A be a purely infinite C*-algebra, and let X be a countable subset of
A. Then there is a separable, purely infinite sub-C*-algebra B of A that contains X.

Proof: We construct inductively an increasing sequence {X,}>° ; of countable subsets of
A, and an increasing sequence of separable sub-C*-algebras { B, }5°; of A as follows. Let
X; = X, let B, be the sub-C*-algebra generated by X,,, and choose for each n a countable
dense subset Y;, of B;'. We describe now how one obtains X, from X, and Y.

Since A is purely infinite we can for each a in Y, find elements z(a), y(a) in aAa such
that

z(a)*z(a) —all <1/n,  ly(a)*y(a) —all <1/n,  [lz(a)*y(a)l <1/n,
cf. Proposition 3.3. Put
Xny1 ={z(a) |a e YV,} U{yla) |a € Y} UX,.

Let B be the closure of the union of the C*-algebras B,. Then B is isomorphic to the
inductive limit of the sequence By — By — B3 — ..., where the connecting maps are
inclusion maps, and B is a separable sub-C*-algebra of A that contains X. From the con-
struction of { B, }5°, we see that for every n € N and for every (non-zero) positive element
a in B, there exist elements x,y in B, such that ||z*z —a|| < 1/n, ||y*y —al| < 1/n, and
|lz*y|| < 1/n. It follows from Proposition 4.21 that B is purely infinite. [J

Theorem 4.23 If A and B are stably isomorphic C*-algebra, and if A is purely infinite,
then B is purely infinite.

Proof: We show first that if A is purely infinite, then M, (A) is purely infinite for every n
in N.

Let a be a positive element in M,(A), and let £ > 0. Let b in A* be the sum of the
diagonal entries in a. Then, viewing A as a hereditary sub-C*-algebra of M, (A), a lies in
the ideal generated by b. Since b is properly infinite, a X b by Proposition 3.7 (iii). By
Proposition 2.7 (ii) we can find an element by in the hereditary sub-C*-algebra bM, (A)b
such that (a — €); ~ by, and by lies in A because b lies in A. Being properly infinite is

preserved under the equivalence =, and therefore also under the equivalence ~. Hence
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(a — €)4 is properly infinite for every ¢ > 0. This shows that a is properly infinite, cf.
Proposition 3.3.

Use Proposition 4.18 to conclude that A® K is purely infinite when A is purely infinite.
Hence B ® K is purely infinite, and B is (isomorphic to) a hereditary sub-C*-algebra of
B ® K. Therefore B is purely infinite by Proposition 4.17. [J

The next result is a generalization of S. Zhang’s dichotomy, [30], that a o-unital purely

infinite simple C*-algebra is either unital or stable.

Theorem 4.24 Let A be a o-unital purely infinite C*-algebra. Then A is stable if and

only if no non-zero quotient of A is unital.

Proof: If A is stable, then every quotient of A is stable and hence no quotient of A can be
unital. Suppose conversely that no non-zero quotient of A is unital. It then follows from
[14, Proposition 5.1] that A is stable if for every full hereditary sub-C*-algebra B of A and
for every positive element a in A, for which there exists a positive element e in A with
ea = a, there is a positive element b in B such that b ~ a.

Let ¢, be given as in (4.3). Put e; = ¢1/4(e) and e3 = ¢1/2(e). Then e;a = a and e, lies
in the Pedersen ideal of A, and hence in the algebraic ideal generated by B. In particular,
e; lies in Ab; A for some positive element b; in B. Hence e; = by because by is properly
infinite, and consequently (e; — 3)+ = y*biy for some y in A. Next, e; = w*(e; — §)4w for
some w in A, and this shows that e, = z*b;z for some z in A. Put x = bi/?zal/2 and put

b= xz*. Then b lies in B, x*x = a, and so b ~ a as desired. [

5 Approximate divisibility and traces

We shall here investigate the relations between having no (quasi-)traces and being purely
infinite.

By a trace on a C*-algebra A we shall here understand a trace whose domain I is a
(not necessarily closed or dense) two-sided ideal in A. A trace 7 with domain I extends
uniquely to a trace on M, (I) for every n in N.

A dimension function on A is a function d: | J72, M,(I)* — R*, where I as above is
an algebraic ideal in A, satisfying d(a @ b) = d(a) + d(b), and d(a) < d(b) when a 3 b. The

ideal I is called the domain of d. A dimension function is lower semi-continuous if and
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only if

e—0t

d(a) = lim d((a—¢);), a€|JM(D" (5.1)

If d is a dimension function on A with domain I, then

d(a) = lim d((a—¢);), a€|JM(D" (5.2)

e—0t

defines a lower semi-continuous dimension function with domain I, cf. [4].

Let 7 be a trace on A with domain I. For each positive a in M, (I) set

d,(a) = lim 7(p.(a)),

e—0t

where ¢, is as defined in (4.3). Then d, is a lower semi-continuous dimension function (or
rank function) with domain I, cf. [8, Proposition 2.1]. If 7 is non-zero, then d, is non-zero.
Conversely, as shown in [4], if d is a lower semi-continuous dimension function, then

d = d, for some quasi-trace T given by

[al|
T(a):/o d(a—1).)dt, ae A

We refer to a theorem of Uffe Haagerup in [12] (see also [13]) that every quasi-trace on a
unital ezact C*-algebra is, in fact, a trace. Following the methods of [4] one should be able
to extend quasi-traces on non-unital exact C*-algebras to certain unital exact C*-algebras
and in this way obtain that every quasi-trace on every exact (unital and non-unital) C*-

algebra is a trace. This is done in [17] for simple stably projectionless C*-algebras.

Proposition 5.1 A purely infinite C*-algebra admits no non-zero dimension function and
no non-zero trace.

Proof: Assume that A is a purely infinite C*-algebra and that d is a dimension function on
A with domain I. Let a be a positive element in I. Then a @ a < a, and so d(a) + d(a) =
d(a ® a) < d(a), whence d(a) = 0. This shows that A admits no non-zero dimension
functions.

If 7 were a non-zero trace on A, then it would induce a non-zero dimension function

d,, but no such exists. [l
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Question 5.2 Does there exist a C*-algebra with no non-zero (quasi-)trace that is not

purely infinite?

It is not known if all simple C*-algebras fall into the two classes: the stably finite C*-
algebras, and the purely infinite C'*-algebras. Every stably finite C*-algebra has a quasi-
trace, but it is not known if all quasi-traces are traces (for non-exact C*-algebras). Question
5.2 could be answered in the affirmative by constructing an example of a non-simple C*-
algebra without (quasi-)traces that is not purely infinite, thus leaving the question for
simple C*-algebras unanswered. We are more optimistic about a positive answer to the

following:

Question 5.3 Let A be a C*-algebra such that A, has no quasi-traces for some free ultra-
filter w on N. Does it follow that A is purely infinite?

We can answer Question 5.3 in the affirmative for simple C'*-algebras and for C*-algebras
of real rank zero. These results will be contained in a sequel to this paper. For the converse
to Question 5.3 notice that A, is purely infinite when A is purely infinite by Proposition
4.20, and that A, therefore has no quasi-traces by Proposition 5.1.

Proposition 5.4 If A is a simple C*-algebra, which is purely infinite in the sense of
Definition 4.1, then every non-zero hereditary sub-C*-algebra of A contains an infinite

projection.

Proof: Tt is shown in [3] that A ® K contains an infinite projection if A is a simple C*-
algebra and A ® K admits no non-zero dimension function defined on its Pedersen ideal.
Assuming that A is simple and purely infinite, we conclude from this and from Proposition
5.1 that A ® K contains an infinite projection p.

Let B be a non-zero hereditary sub-C*-algebra of A, and view B as a hereditary sub-
C*-algebra of A ® K. Since p, being a projection, lies in the algebraic ideal generated by
B, there exists a positive element b in B so that p lies in (closed two-sided) ideal gener-
ated by b. Now, p X b because b is properly infinite (Theorem 4.16 and Proposition 3.7).
Thus p = z*bx for some = in A ® K (using Proposition 3.3 and that p is a projection).
Put v = b'/2z and put ¢ = vv*. Then p = v*v and ¢ lies in B. Finally, ¢ is an infinite

projection, because p is an infinite projection and ¢ ~ p. [J

We establish below a converse to Proposition 5.1 for approzimate divisible C*-algebras.
Approximate divisibility for unital C*-algebras was considered in [5]. We extend this
property to non-unital C*-algebras as follows, where M(A) denotes the multiplier algebra
of A.
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Definition 5.5 A C*-algebra A is called approximately divisible if for every n in N, for

every finite subset F' of A, and for every ¢ > 0 there exists a unital *-homomorphism
¢: Mp(C) & M,11(C) — M(A)
so that ||ap(b) — p(b)a|| < £||b|| for every a in F and every b in M,(C) & M,1(C).

If A is approximately divisible, then the *-homomorphisms ¢: M, (C)® M, ; (C) — M(A)

can always be chosen to be injective. Indeed, given n in N, then for each m > n(n+1) there

are injective *~homomorphisms from M, (C) & M,,;(C) into M,,(C) and into M,,;(C).
Using that M(A4) ® M(B) is contained in M(A ® B) (both tensor products are the

minimal tensor products) we get:

Lemma 5.6 Let A be an approximately divisible C*-algebra, and let B be any C*-algebra.
Then A ® B is approximately divisible.

The three next results, and their proofs, are similar to the results of [27, Section 5.

Proposition 5.7 Let A be a C*-algebra with no non-zero, lower semi-continuous dimen-
ston functions. Then for each non-zero positive a in A and for each € > 0 there exists kg
in N such that ((a — €)1 ® (a —€)4) @ 1y 2 a® 1y for every k > k.

Proof: If A admits no non-zero dimension functions (lower semi-continuous or not), then
a variation of the proof given below will show that (¢ ® a) ® 1, 2 a ® 1 for all sufficiently
large k£ in N, showing that a ® 1j is properly infinite. It is — at least not a priory — clear
if A could admit a non-zero dimension function but no non-zero lower semi-continuous
dimension functions. In the proof, given below, we allow for the possibility that A does
admit non-zero (non lower semi-continuous) dimension functions.

Let a and € > 0 be given as in the proposition. Let I be the two-sided, not necessarily
closed, ideal in A generated by a. Let T be the set of all positive elements in | J >, M,(I),
and let S be the set of equivalence classes of elements from 7" with respect to the equivalence
relation ~. Let (b) in S denote the equivalence class containing b in 7. Define + and <
on S by (b1) 4+ (ba) = (b1 & by), and (by) < (by) if by 3 be. Then (S, +,<,{a)) is an
ordered Abelian semi-group with distinguished order unit {(a). A state p on (S, +, <, (a})
is an order preserving semi-group homomorphism p: S — R with p((a)) = 1. There is a
one-to-one connection between states p on S and dimension functions d on A with d(a) =1
given by d(b) = p((b)). We know that if d is a dimension function on A, then d (from (5.2))

is a lower semi-continuous dimension function on A, and by assumption d must be zero.
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Therefore d((a —¢),) < d(a) = 0. We conclude that p({(a — ), )) = 0 for every state p on
S.

Let Sg be the sub-semigroup of S generated by (a) and ((a — ), ). It follows from [6,
Corollary 2.7] that every state on Sy extends to a state on S. Hence p({(a —¢)4)) = 0 for

every state p on Sy. We can now use [6, Lemma 2.8] (with z = 3((a — ¢)+) and y = (a))
to find n in N and (z) in Sy with

3n{(a —e)4) + (2) < nla) + (2).

Write z = ((a —€)+ ®1;) ® (e ®1;) for appropriate j, in N, and reorganize the expression
above — and rephrase it in 7" — to obtain

((a—€)+®Lsn) @ (a®L) 3 ((a—€)+® 1) & (a® Lnp).
Iterating this expression m times yields
((@=¢€)sy ®lamnyj) ®(@® 1) T ((a—e)1 ®15) & (a® lymati),
and using (a — €); 3 a, we get
(a—¢€)s ® lsmnijrt 2 a® lpnijy, meN (5.3)

There exists kg so that

[ko,00) C G [mn+j+1,3mn+j+1)/2].

m=1

If £ > ko, then 2k < 3mn + j+4+ 1 and kK > mn + j + [ for some m € N. In combination
with (5.3) this yields ((a —€)y ® (@ —€)4) ® 1, 3 a® 1y, for every k > ky as desired. [J

Lemma 5.8 Let A be a unital C*-algebra, let B be a sub-C*-algebra of A that contains
the unit of A, and such that AN B' contains a unital copy of My(C) & My1(C). Let a,b
be positive elements in some matriz algebras over B and assume that a ® 1, 2 b® 1y and
a® g1 2b® 1,y relatively to B. Then a 2 b relatively to A.

Proof: For each ¢ > 0 there are x = (z;5) in Mk(B) and y = (yij) in Mj41(B) with
(a—e)y @1, =2"(b® 1)z and (a — &)y ® 1g11 = ¥* (b ® 1x41)y, cf. Proposition 2.6. Let
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e;; } and {f;;} be matrix units for the copies of M (C) and M;{(C) in AN B'. Put
j j +

k k+1
r= E Tijeij + E Yij fi-
ij=1 ij=1

Then r belongs to A, and a direct calculation shows that r*br = a. O

Theorem 5.9 Let A be an approximately divisible C*-algebra with no non-zero lower semi-
continuous dimension functions. Then A is purely infinite.
In particular, if A is an exact, unital, approrimately divisible C*-algebra with no non-

zero traces, then A is purely infinite.

Proof: As mentioned above, by the theorems of Haagerup, [12], and of Blackadar and
Handelman, [4], if A is exact and unital without traces, then A has no non-zero lower semi-
continuous dimension function. It therefore suffices to show that if A is an approximately
divisible C*-algebra without non-zero lower semi-continuous dimension functions, then A
is purely infinite.

Let a be a non-zero positive element in A, let ¢ > 0, and use Proposition 5.7 to find &
in Nso that (a —¢/4); ® 1, 2a® 1, for { =k, k+ 1. Then

((a—¢/3);®(a—¢€/3)s) QL =xz]((a—06)+ @ 1)z, 1=k k+1, (5.4)

for some 0 > 0, some x, in My, 2k (A) and zg1q in Myt 2.6+1)(A), cf. Proposition 2.6. Let
F be the finite subset of A consisting of @ and of all matrix entries of x; and zg, 1.

Since A is approximately divisible, there is a sequence of unital *-homomorphisms
©n: Mi(C) & My11(C) — M(A) satistying ||dp,(b) — ©n(b)d|| — 0 for all d in C*(F') and
all bin My (C) & My11(C). Let

E,: A— M(A) NIm(p,)

be conditional expectations such that ||E,(d) — d|| — 0 for all d in F. Extending E, to
square and rectangular matrices over A we get from (5.4) that

I((En(a) —¢/3)+ @ (En(a) —€/3)4) ® L = By (27)((En(a) = )4 ® L) Ep(z)]| = 0
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for | =k, k + 1. Tt follows from Lemma 2.5 that
((Bn(a) —2¢/3)+ @ (Bn(a) —2¢/3)4) @ 1y 3 (En(a) =6)+® 1L, I=kk+1, (5.5)
in M(A) NIm(p,)" when n is sufficiently large. By Lemma 5.8 and (5.5) we get
(En(a) —2¢/3); @ (En(a) —2¢/3)+ 3 (En(a) = 6)4. (5.6)
From Lemma 2.5, by choosing n large enough, we obtain
(@a—¢)y T (Bnla) —2¢/3)y,  (En(a) =0)1 3 a,

in M(A). Combining this with (5.6), we get (¢ — &)+ ® (a — €)1 2 a in M(A) and hence
in A by Lemma 2.2. Since € > 0 was arbitrary, this shows that a is properly infinite, cf.
Proposition 3.3. [

Lemma 5.10 Let A and B be two C*-algebras, where one of them is purely infinite and
one of them is exact. It follows that the minimal tensor product A ® B does not admit a
non-zero lower semi-continuous dimension function.

Proof: Observe first that if A and B are any pair of C*-algebras, and if a is a positive,
properly infinite element in A and b is a positive non-zero element in B, then a®b is properly
infinite in A ® B. To see this, let {x,,} and {y,} be sequences in aAa satisfying 2>z, — a,
Yy, — a, and 2y, — 0, cf. Proposition 3.3. Put s, = z, ® b*/? and t, = y, ® b*/? in
A ® B. Then s, and t, lie in the hereditary sub-C*-algebra generated by a ® b, and

SpSn = TpTn @b = a®b, tyln = YnYn ®b = a ® b, Sptn = TpYn @ b — 0.

Hence a ® b is properly infinite by Proposition 3.3.

Assume that A is purely infinite and that d is a lower semi-continuous dimension func-
tion on A ® B with domain /. Let I be the closure of the algebraic ideal I,. We shall
show that d is zero. By the observation above, for every positive elementary tensor a ® b
in I, we have d(a ® b) = 0, because a ® b is either zero or properly infinite (cf. the proof
of Proposition 5.7).

Let M be the set of all z in I, for which d(z*z) = 0. Then M is a two-sided ideal in
A ® B. Moreover, M is closed in in I;. Indeed, let z be an element in I; that lies in the

closure of M. Find a sequence {z,} in Iy with x, — z. Then z}z, — z*z, and for each
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e > 0 there exists n in N with (z*z —¢); 3 z;z,. Hence d((z*z —¢)4) < d(z}z,) = 0.
Because d is lower semi-continuous, this implies that d(z*z) = 0, and so x lies in M.

We show next that IpN(J ® K) C M for every rectangular (or elementary) ideal J @ K
in A® B contained in I. The Pedersen ideal of J ® K is contained in [;. We can therefore
find approximate units {e;} for J and {f;} for K such that e; ® f; lie in I for all 4 and
j. If ¢ is a positive element in (e; ® f;)(A ® B)(e; ® f;), then ¢ X e; @ f;, and hence
d(c) < d(e; ® f;) = 0. This shows that (e; ® f;)(A ® B)(e; ® f;) is contained in M for all
i,j. The union of these hereditary sub-C*-algebras is dense in Iy N (J ® K), and we know
that M is closed in I;. Hence Iy N (J ® K) is contained in M.

Let {J; ® K;}ier be the family of all rectangular ideals in A ® B that are contained in
I. By the assumption that one of A and B is exact, it follows from [15, Proposition 2.13|
that I is generated as an ideal by this family. As shown above, Ip N (J; ® K;) is contained
in M for all ¢ in I. Hence J; ® K; is contained in M, the closure of M, for all 4; whence
I C M. Consequently, I is contained in M NI,. Since M NI, is contained in M, as shown
above, we conclude that M = I, and that d is zero. [

The theorem below extends Proposition 4.5:

Theorem 5.11 Let A be an exact, purely infinite, approximately divisible C*-algebra.
Then the minimal tensor product AQ® B is a purely infinite C*-algebra for every C*-algebra
B.

Proof: This is a immediate consequence of Lemmas 5.6 and 5.10 and of Theorem 5.9. [

Question 5.12 Is the minimal tensor product A ® B purely infinite if one of A and B is
purely infinite?
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