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Abstract

The concept of stable rank for a unital C∗-algebra was introduced by Rieffel in 1982. The
case of stable rank one has been widely studied and is known to have interesting conse-
quences for the C∗-algebra, especially for the K-theory of the C∗-algebra.

This thesis begins by introducing the concept of stable rank for unital C∗-algebras before
moving on to the special case of stable rank one. The main focus of this thesis is to present
results proving that the reduced group C∗-algebra C∗

r (G) for certain discrete groups has
stable rank one. The main result discussed is that of Dykema, Haagerup, and Rørdam
which shows that C∗

r (G1 ∗ G2) has stable rank one for |G1| ≥ 2 and |G2| ≥ 3. The proofs
use the reduced free product, a concept introduced by Voiculescu during his work with free
probability theory, which is considered non-commutative probability theory. This thesis
introduces and proves the existence of the reduced free product of a family (Ai, ϕi)i∈I of
unital C∗-algebras Ai each equipped with faithful state ϕi. Finally, we discuss more recent
results of Gerasimova and Osin, who showed that C∗

r (G) has stable rank one for a class of
acylindrically hyperbolic groups.
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1 Introduction

Rieffel introduced in his 1982 paper the concept of topological stable rank for Banach al-
gebras. It was firstly motivated by the density of certain functions for the Banach algebra
CR(X) for compact Hausdorff space X, and is in some sense a way to give a C∗-algebra
a dimension. Rieffel shows in his original paper several connections to different kinds of
stable ranks, such as the Bass stable rank, general stable rank and connected stable rank.
This thesis begins with an introduction to the topological stable rank, which we will simply
denote stable rank, and quickly focuses on examples and the particular case of having stable
rank one. It turns out that a C∗-algebra having stable rank one gives several stability results
for the topological K-theory. Most notable, it implies K1 injectivity and the equivalences
Murray-von Neumann equivalence, unitary equivalence and homotopy equivalence are the
same. Moreover, K0(A) of a unital C∗-algebra with stable rank one has the cancellation
property.

Rieffel asked the question: What is the stable rank of C∗
r (Fn) for n ≥ 2? It was later

answered by Dykema, Haagerup and Rørdam who proved that the stable rank of C∗
r (Fn) is

one for n ≥ 2. In fact, they proved that the reduced free product C∗-algebra of a family of
C∗-algebras who have the Avitzour property has stable rank one. In particular, the reduced
group C∗-algebra C∗

r (G) has stable rank one when G = G1 ∗G2 and |G1| ≥ 2, |G2| ≥ 3 for
discrete groups G1, G2. The proofs rely heavily on the properties of the reduced free prod-
uct, a concept introduced by Voiculescu during his work with free probability theory. This
thesis presents the construction of the reduced free product of a family (Ai, ϕi)i∈I of unital
C∗-algebras each equipped with a faithful state ϕi. The main result of Dykema, Haagerup
and Rørdam needs a result of Rørdam concerning the distance to invertible elements in
the case of unital C∗-algebras whose stable rank is not one. The techniques of Dykema,
Haagerup and Rørdam inspired firstly Dykema and de la Harpe, and then Gerasimova and
Osin to further explore for which groups C∗

r (G) has stable rank one, with the acylindrically
hyperbolic groups with trivial finite radical being most notable. It is an open problem if
there exists a group G such that C∗

r (G) is simple and sr(C∗
r (G)) 6= 1.

I would like to thank Mikael Rørdam for his continued collaboration and guidance not only
on this thesis but throughout multiple projects. Furthermore, I would like to thank Nadja
Lausen for correcting parts of this thesis and to Sara Jensen for keeping me company almost
daily during the last four months.
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2 Group C∗-algebras

This section is a short introduction to group C∗-algebras for discrete groups. The reader is
referred to [5, 3] for proofs and further reading.

LetG be a discrete group and consider the Hilbert space `2(G). For g ∈ G, define δg : G→ C
by δg(g) = 1 and δg(h) = 0 for h 6= g. See that for any g, h ∈ G

δgδh = δgh, δ∗g = δg−1 .

The set {δg | g ∈ G} is an orthonormal basis of unitaries for `2(G). The left regular
representation λ : G→ U(`2(G)) is defined by

λg(δh) = δgh,

for all g, h ∈ G.
The group ∗-algebra CG is the set of formal sums

∑
g∈G αgg with only finitely many

αg ∈ C nonzero, where multiplication is defined by∑
g∈G

αgg

(∑
h∈G

βhh

)
=
∑
g,h∈G

αgβhgh.

and involution defined by ∑
g∈G

αgg

∗

=
∑
g∈G

αgg
−1.

The left regular representation extends to an injective ∗-homomorphism CG → B(`2(G)),
also denoted by λ.

Definition 2.1. Let G be a discrete group. The reduced group C∗-algebra C∗
r (G) of G is

the norm-closure of λ(CG) in B(`2(G)).

In this way, with slight abuse of notation, one may view CG as the dense ∗-subalgebra of
C∗
r (G) consisting of sums

∑
g∈G αgδg with only finitely many αg 6= 0. It follows by definition

that C∗
r (G) is isomorphic to the completion of CG with respect to the norm ‖s‖λ = ‖λ(s)‖

for s ∈ CG. A discrete group G is called C∗-simple if the reduced group C∗-algebra C∗
r (G)

is simple.

An important property of C∗
r (G) is that it is equipped with a faithful trace, defined by

τ(x) = 〈xδe, δe〉 for x ∈ C∗
r (G), where e is the identity in G. In this way, {δg | g ∈ G} is an

orthonormal set of unitaries with respect to τ in C∗
r (G).
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Definition 2.2. The universal group C∗-algebra C∗(G) of G is the completion of CG with
respect to the norm

‖x‖u = sup{‖π(x)‖ | π : CG→ B(H) cyclic ∗ −representations}.

The universal group C∗-algebra has the following universal property: Let u : G → B(H)

be any unitary representation of G. Then there is a unique ∗-homomorphism πu : C
∗(G) →

B(H) such that πu(g) = ug for all g ∈ G. It follows that C∗(G) always has a one-dimensional
representation from the trivial representation G→ C.

By definition ‖s‖λ ≤ ‖s‖u for any s ∈ CG, so there exists a natural ∗-homomorphism
C∗(G) → C∗

r (G). This ∗-homomorphism is an isomorphism if and only if G is an amenable
group. For a discrete abelian group G the Pontryagin dual Ĝ of G is the set of all continuous
homomorphisms from G to the circle T. For such groups C∗

r (G) ' C(Ĝ). It is known that
any abelian group is amenable, so for any discrete abelian group G,

C∗(G) = C∗
r (G) ' C(Ĝ).
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3 Stable rank

The notion of topological stable rank was introduced by Rieffel in [17] as a concept of
dimension for Banach algebras which generalizes the classical concept of dimension for
compact spaces. Rieffel introduced the concept of topological stable rank during his work
with the irrational rotation C∗-algebra, wishing to determine wether two projections in
an irrational rotation C∗-algebra which have the same trace are unitarily equivalent. He
describes it as non-stable K-theory, and we will see a connection to the topological K0 and
K1 groups of a unital C∗-algebra. The results of this section can be found in [17, 18].

Definition 3.1. Let A be a unital Banach algebra. Let Lgn(A), respectively Rgn(A), be
the set of n-tuples of elements of A which generate A as a left, respectively right, ideal.

Note that (a1, . . . , an) ∈ Lgn(A) if and only if there exists (b1, . . . , bn) ∈ An such that∑n
j=1 bjaj = 1. Similarly, (a1, . . . , an) ∈ Rgn(A) if and only if there exists (c1, . . . , cn) ∈ An

such that
∑n

j=1 ajcj = 1.

Definition 3.2. Let A be a unital Banach algebra. The left topological stable rank of A,
denoted lsr(A), is the least integer n such that Lgn(A) is dense in An equipped with the
product topology. If no such n exists, we set lsr(A) = ∞. The right topological stable rank,
denoted rsr(A), is defined in an analogous way for Rgn(A).

Remark 3.3. If A is a Banach algebra without unit, let Ã be the unital Banach algebra
obtained from adjoining a unit. Then the topological stable ranks of A are defined to be
the topological stable ranks of Ã. If A has identity element, then A is a direct summand of
Ã, so ltsr(Ã) = ltsr(A). This thesis considers only the case of unital Banach- or C∗-algebras.

Rieffel was led was to the notion of topological stable rank after noticing a connection be-
tween the left topological stable rank of the Banach algebra CR(X), for a compact Hausdorff
space X, and the dimension of X. We recall the definition of Lebesgue covering dimension.

Let (X, d) be a metric space and let S ⊂ X. A covering of S is a finite collection (Uj)
r
j=1

of open subsets of X such that

S ⊂
r⋃
j=1

Uj .

The order of the covering is the largest integer n such that there are n+ 1 members in the
covering which have non-empty intersection. A covering (Vi)

k
i=1 is a refinement of (Uj)rj=1

if every Vi is contained in some Uj .

Definition 3.4. Let (X, d) be a metric space and let S ⊂ X. Then dim(S) ≤ n if every
covering of S has a refinement of order less than or equal to n. We say that S has dimension
n and write dim(S) = n, if dim(S) ≤ n and it does not hold that dim(S) ≤ n− 1.
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The following is a useful equivalence of the Lebesgue covering dimension of a compact
Hausdorff space X. See [16, Proposition 3.3.2].

Theorem 3.5. Let X be a compact Hausdorff space. The dimension of X is the least
integer n such that the set C(X,Rn+1 \ {0}) is norm dense in C(X,Rn+1).

One can identify f : X → Rn+1 with an (n + 1)-tuple of continuous functions fi : X → R.
The assumption that f(X) does not contain 0 is then equivalent to saying that there does
not exist x0 ∈ X such that fi(x0) = 0 for all 1 ≤ i ≤ n+ 1.

Theorem 3.6. Let X be a compact Hausdorff space. The dimension of X is the least
integer n such that Lgn+1(CR(X)) is norm dense in CR(X)n+1.

Proof. Let f1, . . . , fn+1 ∈ CR(X). We claim that CR(X) = 〈f1, . . . , fn+1〉 if and only
if (f1(x), . . . , fn+1(x)) 6= 0 for all x ∈ X. Suppose first that CR(X) = 〈f1, . . . , fn+1〉.
Choose c > 0 and let f be the constant function such that f(x) = c for all x ∈ X.
Clearly f ∈ CR(X), and so by assumption there exists g1, . . . , gn+1 ∈ CR(X) such that
f =

∑n+1
j=1 gjfj . Assume for contradiction that there exists x0 ∈ X such that fj(x0) = 0 for

all 1 ≤ j ≤ n+ 1. Then f(x0) = 0 6= c, which cannot be.
Suppose now, conversely, that (f1(x), . . . , fn+1(x)) 6= 0 for all x ∈ X. Set h =

∑n+1
j=1 f

2
j ,

and see that h ∈ 〈f1, . . . , fn+1〉. By definition, h(x) > 0, hence h is invertible, and in
particular h−1h = 1 ∈ 〈f1, . . . , fn+1〉, implying that 〈f1, . . . , fn+1〉 = CR(X), which proves
the claim.

Assume n is the least integer such that Lgn+1(CR(X)) is norm dense in CR(X)n. Identify
an (n + 1)-tuple of continuous functions such that (f1(x), . . . , fn+1(x)) 6= 0 for all x ∈ X

with a continuous function f : X → Rn+1 \ {0}. The wanted follows from the claim.
Suppose, conversely, that dim X = n. Identifying continuous f : X → Rn+1 \ {0} with

an (n + 1)-tuple of continuous functions such that (f1(x), . . . , fn+1(x)) 6= 0 for all x ∈ X

gives the wanted.

The following is an immediate consequence of Theorem 3.6.

Lemma 3.7. Let X be a compact Hausdorff space. Then

lsr(CR(X)) = dim(X) + 1.

For compact Hausdorff space X consider the C∗-algebra C(X) of continuous functions
f : X → C. Any function f : X → C can be identified with a pair (f1, f2) of functions
fi : X → R. Therefore, any n-tuple of elements in C(X) can be identified with a continuous
function h : X → R2n.
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Proposition 3.8. Let X be a compact Hausdorff space. Then

lsr (C(X)) =

⌊
dim(X)

2

⌋
+ 1.

Proof. By similar argument as in the proof of Theorem 3.6 we see that density of Lgn(C(X))

in C(X)n implies density of C(X,R2n \ {0}) in C(X,R2n). In particular, dim(X) < 2n and
n is the least such integer, i.e. n = bdim(X)/2c+ 1.

Example 3.9. Let Tn be the unit sphere in Rn+1. It is known that Tn is a compact
Hausdorff space with dimension n. Moreover, Zn is a discrete abelian amenable group with
Ẑn ' Tn, and so

C∗(Zn) = C∗
r (Zn) ' C(Tn),

implying that sr(C∗(Zn)) = bn/2c+ 1 by Proposition 3.8.

Proposition 3.10. If A is a unital C∗-algebra, then lsr(A) = rsr(A).

Proof. See first that if a = (a1, . . . , an) ∈ Lgn(A) then a∗ = (a∗1, . . . , a
∗
n) ∈ Rgn(A), as there

exists (b1, . . . , bn) ∈ An such that
∑n

i=1 biai = 1, implying that

n∑
i=1

a∗i b
∗
i = 1.

Assume lsr(A) = n. For c ∈ An and ε > 0, there exists a ∈ Lgn(A) such that

‖c− a‖ = ‖c∗ − a∗‖ < ε,

meaning a∗ ∈ Rgn(A) approximates c∗ ∈ An arbitrarily close, proving the wanted.

As a consequence of Proposition 3.10 we simple say the stable rank of A when A is a unital
C∗-algebra and denote it sr(A).

Before moving on to the special case of stable rank one, we consider examples of unital
C∗-algebras with stable rank ∞. The proofs need the notion of the Bass stable rank.

Definition 3.11. Let A be a ring with identity element. The Bass stable rank of A,
denoted by Bsr(A), is the least integer n such that for any (a1, . . . , an+1) ∈ Lgn+1(A) there
is (b1, . . . , bn) ∈ An such that

(a1 + b1an+1, a2 + b2an+1, . . . , an + bnan+1) ∈ Lgn(A).

If no such integer exists, we set Bsr(A) = ∞.
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The Bass table rank and the right topological stable rank are connected in the following
way. For a proof, see [17, Theorem 2.3].

Theorem 3.12. Let A be a unital Banach algebra. Then

rtsr(A) ≥ Bsr(A).

Proposition 3.13. If a unital C∗-algebra A contains two isometries with orthogonal range
projections, then sr(A) = ∞.

Proof. We prove that Bsr(A) = ∞, as then sr(A) = ∞ by Theorem 3.12.
Let s1, s2 ∈ A be isometries with orthogonal range projections. Define tn = sn2s1 for

n ≥ 1 and see that each tn is an isometry as the si are isometries. If i > j then, as s1, s2
have orthogonal range projections,

t∗i tj = s∗1(s
∗
2)
isj2s1 = s∗1(s

∗
2)
i−js1 = 0.

Similarly, t∗i tj = 0 for i < j, showing that (tn)n≥1 is a sequence of isometries with pair-
wise orthogonal ranges. Thus, for any k ≥ 1, one can from the two isometries produce k
isometries v1, . . . , vk with pairwise orthogonal range projections such that

p0 = 1−
k∑
i=1

viv
∗
i 6= 0.

As the vi’s have orthogonal ranges p0 is a projection, and (v∗1, . . . , v
∗
k, p0) ∈ Lgk+1(A), as

k∑
i=1

viv
∗
i + p0p0 = 1.

Assume for contradiction that (v∗1, . . . , v∗k, p0) can be contracted as in the definition of the
Bass stable rank and let w1, . . . , wk ∈ A be such that (v∗1 +w1p0, . . . , v

∗
k +wkp0) ∈ Lgk(A).

Then there exists z1, . . . , zk ∈ A such that

k∑
i=1

zi(v
∗
i + wip0) = 1.

For any 1 ≤ j ≤ k

p0vj = vj −
k∑
i=1

viv
∗
i vj = vj − vj = 0,

and so
k∑
i=1

zi(v
∗
i + wip0)vj =

k∑
i=1

zi(v
∗
i vj + wip0vj) = zj ,
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implying that zj = vj for all 1 ≤ j ≤ k. Now

k∑
i=1

vi(v
∗
i + wip0) = 1,

and multiplying from the left by p0 implies p0 = 0, a contradiction. We conclude that
Bsr(A) = ∞, hence tsr(A) = ∞.

The Cuntz algebra On for n ≥ 2 is the C∗-algebra generated by n isometries s1, . . . , sn such
that

∑n
i=1 sis

∗
i = 1, which implies that the range projections are pairwise orthogonal. In

particular, sr(On) = ∞ for all n ≥ 2 as a consequence of Proposition 3.13. In fact, any
properly infinite C∗-algebra A contains two isometries with orthogonal ranges, meaning
that sr(A) = ∞ for all properly infinite C∗-algebras.

We will show that the reduced group C∗-algebra of the free group on n ≥ 1 generators,
C∗
r (Fn), has stable rank one for all n ≥ 1. This result was shown by Dykema, Haagerup

and Rørdam in [9], an answer to the question asked by Rieffel in his original paper [17].
Interestingly, Anderson proved the following result for the full group C∗-algebra of the free
group Fn. The original proof of Anderson’s can be found in [17, Theorem 6.7]

Theorem 3.14. Let C∗(Fn) denote the full group C∗-algebra of the free group of n ≥ 2

generators. Then sr(C∗(Fn)) = ∞.

Proof. We give a proof for the case of C∗(Fn) for n ≥ 4.
By definition, O2 is generated by 2 isometries. This implies that O2 is generated by 4

self-adjoint elements, in turn implying that O4 is generated by 4 unitaries v1, . . . , v4. The
full group C∗-algebra C∗(Fn) is the universal C∗-algebra generated by n unitaries u1, . . . un.
Define ∗-homomorphism π : C∗(Fn) → O2 by letting π(ui) = vi for 1 ≤ i ≤ 4 and π(ui) = 1

for i ≥ 5. It is straightforward to see that π indeed defines a ∗-homomorphism which
moreover is surjective, proving that O2 is contained as a quotient of C∗(Fn). It follows from
[17, Theorem 4.3] that C∗(Fn) has stable rank ∞.

One can, using that On is singly generated, give a proof for the case of F2 and F3.

3.1 The special case of stable rank one

This thesis is primarily concerned with determining when certain C∗-algebras have stable
rank one, as it has several different consequences, some related to the K-groups of the unital
C∗-algebra. The first is an equivalent characterization for when a unital C∗-algebra A has
stable rank one. Denote the group of invertible elements in A by GL(A).

Proposition 3.15. A unital C∗-algebra A has stable rank one if and only if the invertible
elements is a norm dense subset of A.
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Proof. Note that Lg1(A) is the set of left invertible elements in A. Thus, if GL(A) ⊂ Lg1(A)
is dense in A, then so is Lg1(A).

Suppose, conversely, that sr(A) = 1, meaning Lg1(A) is dense in A. Let a ∈ Lg1(A) and
let b ∈ A be the element such that ba = 1. As Lg1(A) is dense, there exists c ∈ Lg1(A) such
that ‖b− c‖ < ‖a‖−1 and so

‖ca− 1‖ = ‖ca− ba‖ ≤ ‖c− b‖ ‖a‖ < 1.

Using the Neumann Series, ca is invertible, implying that c, hence also a, is invertible. In
particular a ∈ GL(A) and the wanted follows.

For n ≥ 1, let Mn(A) denote the matrix algebra of n×n matrices with entries in A and let
1n denote the unit in Mn(A). For n, k ≥ 1, let Mn,k(A) denote the set of matrices n × k

matrices with entries in A.

Proposition 3.16. Let A be a unital C∗-algebra and let n ≥ 1 be given. Let k,m ≥ 0 such
that k +m = n. For x ∈Mn(A), write

x =

(
a b

c d

)

with a ∈Mk(A), b ∈Mk,m(A), c ∈Mm,k(A) and d ∈Mm(A). Assume d is invertible. Then(
a b

c d

)
=

(
1k bd−1

0 1m

)(
a− bd−1c 0

0 d

)(
1k 0

d−1c 1m

)
.

and x is invertible if and only if a− bd−1c ∈Mk(A) is invertible.

Proof. That x has the wanted decomposition is a simple calculation.
Suppose first that a− bd−1c is invertible. Then(

a− bd−1c 0

0 d

)

is invertible, and x is a product of invertible matrices, meaning x itself is invertible.
Suppose now, conversely, that x is invertible and see that(

a− bd−1c 0

0 d

)
=

(
1k −bd−1

0 1m

)(
a b

c d

)(
1k 0

−d−1c 1m

)

And so (
a− bd−1c 0

0 d

)
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is invertible. Therefore, there exists y ∈Mk(A) such that(
y 0

0 d−1

)(
a− bd−1c 0

0 d

)
=

(
1k 0

0 1n

)
=

(
a− bd−1c 0

0 d

)(
y 0

0 d−1

)

so y−1 = a− bd−1c, as wanted.

We are now ready to prove the following theorem, which has interesting consequences for
unital C∗-algebras with stable rank one.

Theorem 3.17. Let A be a unital C∗-algebra. Then sr(A) = 1 if and only if there exists a
n ≥ 1 such that sr(Mn(A)) = 1 if and only if sr(Mn(A)) = 1 for all n ≥ 1.

Proof. Assume first that sr (Mn+1(A)) = 1 for some n ≥ 1. Let 0 < ε < 1 be given. For
a ∈ A, consider (

a 0

0 1n

)
∈Mn+1(A),

where 1n is the identity in Mn(A). By assumption, there exists invertible element

x =

(
a0 b

c d

)
∈Mn+1(A)

with a0 ∈ A, b ∈M1,n(A), c ∈Mn,1(A) and d ∈Mn(A) such that∥∥∥∥∥
(
a0 b

c d

)
−

(
a 0

0 1n

)∥∥∥∥∥ < ε,

implying that ‖d− 1n‖ < ε < 1, ensuring that d is invertible with
∥∥d−1

∥∥ < (1 − ε)−1. It
follows from Proposition 3.16 that(

a0 b

c d

)
=

(
1 bd−1

0 1n

)(
a0 − bd−1c 0

0 d

)(
1 0

d−1c 1n

)
.

and a0 − bd−1c is invertible, as x is invertible. See now that

∥∥a− (a0 − bd−1c)
∥∥ ≤ ‖t− a‖+

∥∥bd−1c
∥∥ < ε+ ε2(1− ε)−1 = ε(1− ε)−1,

which shows the wanted.
Suppose now, conversely, that sr(A) = 1. We prove the wanted by induction. It is clear

for n = 1. Let n ≥ 1 be given and consider

y =

(
a b

c d

)
∈Mn+1(A)
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with a ∈ A, b ∈ M1,n(A), c ∈ Mn,1(A) and d ∈ Mn(A). For ε > 0, there exists invertible
a0 ∈ A such that ‖a0 − a‖ < ε and by induction, there exists d0 ∈ Mn(A) such that
‖d− d0‖ < ε and d0 − ca−1

0 b is invertible. It follows by calculations as in the proof of
Proposition 3.16 that

z =

(
a0 b

c d0

)
is invertible. Furthermore, ‖y − z‖ ≤ 2ε, which proves the wanted.

Example 3.18. Clearly GL(C) = C \ {0} is dense in C and so GL(Mn(C)) is dense in
Mn(C) for all n ≥ 1, cf. Theorem 3.17. It is known that each finite dimensional C∗-algebra
is isomorphic to a direct sum of matrix algebras over C [22, Proposition 7.1.5]. Therefore,
any finite dimensional unital C∗-algebra will have stable rank one.

Denote the set of projections in a unital C∗-algebra A by P(A). Two projections p, q ∈ P(A)

are Murray-von Neumann equivalent, written p ∼ q, if there exists v ∈ A such that p = v∗v

and q = vv∗. If there exists unitary u ∈ U(A) such that q = upu∗, then p, q are unitarily
equivalent, written p ∼u q. It is well-known that the two are well-defined equivalence
relations on P(A).

Definition 3.19. Let A be a unital C∗-algebra. A projection p ∈ A is finite if p ∼ q ≤ p

implies q = p, and p is infinite if it is not finite.

Definition 3.20. A unital C∗-algebra A is finite if the unit 1 in A is finite, and A is infinite
if 1 is infinite. A is stably finite if Mn(A) is finite for all integers n ≥ 1.

Proposition 3.21. Let A be a unital C∗-algebra. If sr(A) = 1, then A is stably finite.

Proof. We claim that a non-unitary isometry has distance 1 to the set of invertible elements.
Let v ∈ A be a non-unitary isometry, i.e. v∗v = 1 and vv∗ 6= 1. See first that

dist(v,GL(A)) = inf
y∈GL(A)

‖v − y‖ ≤ ‖v‖+ inf
y∈GL(A)

‖y‖ = ‖v‖ = 1.

For the opposite inequality, see first that if w ∈ A such that ‖v − w‖ < 1, then w is not
invertible. Indeed,

‖1− v∗w‖ = ‖v∗v − v∗w‖ ≤ ‖v − w‖ ‖v∗‖ < 1,

meaning v∗w is invertible. If w was invertible, then v∗ would be invertible, in contradiction
to v being a non-unitary isometry. Therefore, for z ∈ GL(A) it holds that ‖v − z‖ ≥ 1,

implying that dist(v,GL(A)) ≥ 1, and so dist(v,GL(A)) = 1.
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As sr(A) = 1, it follows from Theorem 3.17 that the invertible elements are dense in Mn(A)

for all n ≥ 1. It now follows from the claim thatMn(A) cannot have non-unitary isometries,
meaning all isometries of Mn(A) are unitary. Suppose now that 1n ∼ p, so there exists
v ∈ Mn(A) such that 1n = v∗v and p = vv∗. Then v is an isometry and therefore unitary,
so p = vv∗ = 1n, meaning 1n is finite, hence Mn(A) is finite for all n ≥ 1.

Proposition 3.21 gives a possible obstruction to having stable rank one, as any unital C∗-
algebra which is not stably finite cannot have stable rank one.

For n ≥ 1, let GLn(A) = GL(Mn(A)). Two elements x, y ∈ GLn(A) are homotopic in
GLn(A) if there exists continuous function f : [0, 1] → GLn(A) such that f(0) = x and
f(1) = y, and if so we write x ∼h y. It is well-known that ∼h is an equivalence relation.

Lemma 3.22. Let A be a unital C∗-algebra with sr(A) = 1. For n ≥ 1, if x ∈ GLn(A),
then there exists x1, . . . , xn ∈ GL(A) such that

x ∼h


x1 0

. . .
0 xn

 .

Proof. The proof is by induction over n. It is clear for n = 1. Assume now the claim holds
for some n ≥ 1. For x ∈ GLn+1(A) write

x =

(
a b

c d

)

with a ∈ Mn(A), b ∈ Mn,1(A), c ∈ M1,n(A) and d ∈ A. As sr(A) = 1, we can find
d0 ∈ GL(A) such that ‖d− d0‖ <

∥∥x−1
∥∥−1. Let

x0 =

(
a b

c d0

)
,

with a, b, c as previously. Then ‖x− x0‖ <
∥∥x−1

∥∥−1, implying that x0 ∈ GLn+1(A) and
x ∼h x0. As d0 is invertible, we can, as previously, write(

a b

c d0

)
=

(
1n bd−1

0

0 1

)(
a− bd−1

0 c 0

0 d0

)(
1n 0

d−1
0 c 1

)
.

and x0 invertible forces a− bd−1
0 c to be invertible, cf. Proposition 3.16. Moreover, as(

1n bd−1
0

0 1

)
∼h

(
1n 0

0 1

)
,

(
1n 0

d−1
0 c 1

)
∼h

(
1n 0

0 1

)
,
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we get

x0 ∼h

(
a− bd−1

0 c 0

0 d0

)
.

Since a− bd−1
0 c ∈ GLn(A), we can, by assumption, find diagonal matrix

y =


y1 0

. . .
0 yn


with y1, . . . , yn ∈ GL(A) such that a− bd−1

0 c ∼h y. We now have

x ∼h x0 ∼h

(
y 0

0 d0

)
,

as wanted.

Let A be a unital C∗-algebra and let U(A) denote the group of unitary elements in A. Set
Un(A) = U(Mn(A)) for n ≥ 1 and U∞(A) =

⋃∞
n=1 Un(A). Let n,m ≥ 1, u ∈ Un(A) and

v ∈ Um(A). Define binary operation u ⊕ v = diag(a, b) on U∞(A). Write u ∼1 v if there
exists integer k ≥ max{m,n} such that u ⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A). It is well-known
that ∼1 defines an equivalence relation. Let [u]1 denote the equivalence class containing
u ∈ U∞(A). The K1 group of A is then

K1(A) = {[u]1 : u ∈ U∞(A)}.

Let U0(A) be the connected component of the identity element in U(A). There is a group
homomorphism ω : U(A)/U0(A) → K1(A) making the following diagram commutative

U(A)

U(A)/U0(A) K1(A)

[·]1

ω

The map ω is in general neither injective nor surjective. The unital C∗-algebra A is called
K1-injective if the map ω is injective, and K1-surjective if ω is surjective. Rieffel proved
that it is a consequence of having stable rank one that ω is an isomorphism.

Let U0
n(A) be the connected component of the identity element in Un(A).
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Theorem 3.23 (Rieffel). Let A be a unital C∗-algebra. For all n ≥ sr(A) the map from
Un(A)/U0

n(A) to Un+1(A)/U0
n+1(A) is an isomorphism, and in particular

Un(A)/U0
n(A)

∼= K1(A).

Remark 3.24. Theorem 3.23 is stated and proven in [18, Theorem 2.10] in a slightly different
way, such that for any n ≥ sr(A)

GLn(A)/GL0
n(A)

∼= K1(A)

where GL0
n(A) is the connected component of the identity in GLn(A). That the two are

equivalent for a unital C∗-algebra follows as U(A) is a retract of GL(A).

We include the proof of K1-surjectivity for a unital C∗-algebra A with stable rank one. The
reader is referred to [18] for a complete proof of Theorem 3.23.

Recall that any invertible element x ∈ A has a unique polar decomposition x = u|x|, where
|x| = (x∗x)

1
2 and u ∈ A is unitary.

Proof of K1-surjectivity. Let u ∈ Un(A) for some n ≥ 1. Using Lemma 3.22, there exists
x1, . . . , xn ∈ GLn(A) such that

u ∼h


xi 0

. . .
0 xn

 .

Consider the polar decomposition xj = uj |xj | for each 1 ≤ j ≤ n and as each xj is invertible,
uj ∈ U(A). Using [22, Lemma 2.1.5], we now get

x1 0
. . .

0 xn

 ∼h


u1 0

. . .
0 un

 ∼h

(
u1 · · ·un 0

0 1n−1

)
,

By the standard picture of K1(A), [22, Proposition 8.1.4],

[u]1 =

[(
u1 · · ·un 0

0 1n−1

)]
1

= [u1 · · ·un]1,

proving surjectivity.
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Let A be a unital C∗-algebra and I ⊂ A a closed, two-sided ideal, giving the following short
exact sequence

0 I A A/I 0π

To any such short exact sequence is the six-term exact sequence

K1(I) K1(A) K1(A/I)

K0(A/I) K0(A) K0(I)

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

where δ0 : K0(A/I) → K1(I) is the exponential map and δ1 : K1(A/I) → K0(I) is the
index map.

Proposition 3.25. Let A be a unital C∗-algebra. Assume there exists a closed, two-sided
ideal I ⊂ A with short exact sequence

0 I A A/I 0.π

If sr(A) = 1, then the index map δ1 : K1(A/I) → K0(I) is the zero map.

Proof. Let u ∈ Un(A/I) and let v ∈ Mn(A) such that π(v) = u. As sr(A) = 1, there is
invertible w ∈Mn(A) such that ‖v − w‖ < 1, cf. Theorem 3.17. In particular,

‖u− π(w)‖ = ‖π(v)− π(w)‖ < 1,

implying that u ∼h π(w) in GLn(A/I). Consider polar decomposition w = x|w| and note
that x ∈ Un(A). Then π(w) = π(x)π(|x|) with π(x) unitary, and moreover π(w) ∼h π(x),
implying u ∼h π(x), so [u]1 = [π(x)]1 = K1(π)([x]1). Therefore, K1(π) is surjective and it
follows, using the six-term exact sequence, that δ1 : K1(A/I) → K0(I) is the zero map.

Example 3.26. Consider C(D), where D ⊂ R2 is the unit disk. It is known that C(D)
contains C0(R2) as an ideal with C(D)/C0(R2) = C(T). Therefore, we have the following
short exact sequence

0 C0(R2) C(D) C(T) 0,π
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with corresponding six-term exact sequence

K1(C0(R2)) K1(C(D)) K1(C(T))

K0(C(T)) K0(C(D)) K0(C0(R2))

K1(ι) K1(π)

δ1δ0

K0(π) K0(ι)

One can show that K1(C(T)) = Z and K1(C(D)) = 0, implying that K1(π) cannot be
surjective, and equivalently δ1 is not the zero-map, hence sr(C(D)) cannot be one. In fact,
sr(C(D)) = 2 from Proposition 3.8.

We now have two obstructions to a unital C∗-algebra A having stable rank one: δ1 not
being the zero-map and A not being stably finite. It was an open question for some time
whether every stably finite, simple C∗-algebra has stable rank 1. However, Villadsen gave
a negative answer to this question, as he constructed stably finite, simple C∗-algebras with
stable rank n for all n ≥ 2, see [23]. It is currently an open question if there exists a group
G such that C∗

r (G) is simple and has stable rank n ≥ 2. Note that the non-trivial amenable
groups considered in Example 3.9 are not C∗-simple.

The next consequence for a unital C∗-algebra A with stable rank one is in regard to the
different equivalence relations on projections, which in turn will be used to prove that A
has the cancellation property.

Lemma 3.27. Let A be a unital C∗-algebra with stable rank one. If p, q are projections in
A with p ∼ q, then p ∼u q and 1− p ∼ 1− q.

Proof. Suppose that p, q are projections in A such that p ∼ q. Let u ∈ A such that p = u∗u

and q = uu∗. As sr(A) = 1, there exists invertible x ∈ A which approximates u closely and
so that

‖x∗x− p‖ = ‖x∗x− u∗u‖ = ‖x∗x− x∗u+ x∗u− u∗u‖

≤ ‖x∗(x− u)‖+ ‖(x∗ − u∗)u‖

≤ ‖x∗‖ ‖x− u‖+ ‖x∗ − u∗‖ < 1

and similarly ‖xx∗ − q‖ < 1. Consider the polar decomposition x = v|x|, and as x is
invertible, v ∈ U(A). Then xx∗ = v(x∗x)

1
2 (x∗x)

1
2 v∗ = v(x∗x)v∗, and

‖v(x∗x)v∗ − vpv∗‖ = ‖v(x∗x− p)v∗‖ ≤ ‖x∗x− p‖ < 1.
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It now follows using [22, Proposition 2.2.4] that vpv∗ ∼h q, implying that vpv∗ ∼u q, hence

p ∼u vpv
∗ ∼u q.

Using [22, Proposition 2.2.2], we now have 1− p ∼ 1− q.

Remark 3.28. It is a result of Brown in [4] that unitarily equivalent projections in a C∗-
algebra A with stable rank one are in fact homotopic. This combined with Lemma 3.27
shows that the three equivalences on projections in A are the same when sr(A) = 1.

For n ≥ 1, let Pn(A) = P(Mn(A)) and P∞(A) =
⋃∞
n=1 Pn(A). Suppose p ∈ Pn(A) and

q ∈ Pm(A), then p ∼0 q if there is an element v ∈Mm,n(A) such that p = v∗v and q = vv∗.
Note that ∼0 defines an equivalence relation on P∞(A) and for p, q ∈ Pn(A), p ∼0 q if
and only if p ∼ q. One can use the equivalence relation ∼0 to define an abelian semigroup
D(A) = P∞/ ∼0, which in turn is used to describe the K0 group of A via the Grothendieck
map, see [22, Definition 3.1.4]. For a unital C∗-algebra A,

K0(A) = {[p]0 − [q]0 | p, q ∈ Pn(A), n ∈ N}.

The C∗-algebra A is said to have the cancellation property if and only if for every pair of
projections p, q in P∞, [p]0 = [q]0 if and only if p ∼0 q.

As previously, define binary operation on P∞(A) by p⊕q = diag(p, q). Define relation ∼s on
P∞(A) by the following: If p, q ∈ P∞(A), then p ∼s q if and only if there exists r ∈ P∞(A)

such that p⊕ r ∼0 q⊕ r. Equivalently, p ∼s q if and only if p⊕1n ∼0 q⊕1n for some n ≥ 1.
Note that ∼s defines an equivalence relation on P∞(A) called stable equivalence.

Proposition 3.29. Let A be a unital C∗-algebra with stable rank one. Then A has the
cancellation property.

Proof. See first that if p ∼0 q then [p]D = [q]D in D(A), and so [p]0 = [q]0 by the defintion
of K0(A).

For the converse implication, let p, q ∈ Pn(A) such that [p]0 = [q]0. Then, using the
standard picture of K0(A) [22, Proposition 3.1.7], p ∼s q, so there is r ≥ 1 such that
p⊕ 1r ∼0 q⊕ 1r. Note that p⊕ 1r, q⊕ 1r ∈ Pn+r(A), and so we have p⊕ 1r ∼ q⊕ 1r. Using
Lemma 3.27, we get (

1n − p 0

0 0

)
∼

(
1n − q 0

0 0

)
,

implying that 1n − p ∼ 1n − q, and Lemma 3.27 implies p ∼ q, equivalent to p ∼0 q.
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4 Free probability theory

Free probability theory was introduced by Dan Voiculescu in the 1980’s during his work
with the free group factors and is regarded as non-commutative probability theory [24, 25].

Definition 4.1. Let A be an algebra with unit and let ϕ be a linear functional on A such
that ϕ(1A) = 1. We call (A,ϕ) a non-commutative probability space.

We are particularly interested in the case of A being a unital C∗-algebra. In this case we
consider a state ϕ on A and (A,ϕ) is called a C∗-probability space.

Just like in the classical case of probability theory, elements a of (A,ϕ) are called non-
commutative random variables and ϕ(a) the expectation of a. The notion of independence
in classical probability theory relies heavily on commutativity and is therefore not of much
use in our non-commutative scenario. Therefore, Voiculescu introduced the notion of being
free as an analogue to independence in classical probability theory.

Definition 4.2. Let (A,ϕ) be a a C∗-probability space and let (Ai)i∈I be a family of unital
C∗-subalgebras for some index set I. We say that (Ai)i∈I is free with respect to ϕ if

ϕ(ai1 . . . aik) = 0,

whenever, for k ≥ 1, aij ∈ Aij , ij 6= ij+1 with ϕ(aij ) = 0 for j = 1, . . . , k. A family (ai)i∈I

of random variables is free if the family of unital C∗-algebras (C∗(ai))i∈I is free.

4.1 The reduced free product

Let I be an index set and consider a family (Ai, ϕi)i∈I of unital C∗-algebras Ai each equipped
with a faithful state ϕi. The reduced free product C∗-algebra corresponding to each such
family (Ai, ϕi)i∈I was introduced by Voiculescu in [24] and is denoted by

(A,ϕ) = ∗i∈I(Ai, ϕi).

It is constructed in such a way that (Ai)i∈I is free in A with respect to ϕ.

We will need the definition of a standard orthonormal basis for a unital C∗-algebra. Let
A be a unital C∗-algebra. Given a faithful state ϕ on A, define the following Euclidean
structure corresponding to ϕ

〈a, b〉ϕ = ϕ(b∗a), ‖a‖ϕ = 〈a, a〉1/2ϕ , for a, b ∈ A.
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Definition 4.3. Let A be a unital C∗-algebra equipped with a faithful state ϕ. A subset
X ⊂ A is called a standard orthonormal basis for A if 1 ∈ X and X moreover satisfies

(i) X is an orthonormal set with respect to the Euclidean structure corresponding to ϕ
on A,

(ii) spanX is a norm-dense ∗-subalgebra of A.

We will denote X \ {1} by X◦.

Lemma 4.4. Let A be a separable unital C∗-algebra and assume that F ⊂ A is a finite,
orthonormal set containing 1. Then there exists a countable standard orthonormal basis X
for A which contains F .

Proof. Choose a dense subset {a1, a2, a3, . . .} of A. We will, using this dense subset, induc-
tively construct finite orthonormal sets X0 ⊂ X1 ⊂ X2 ⊂ . . . satisfying the following

(i) an ∈ spanXn,

(ii) spanXn is self-adjoint,

(iii) If x, y ∈ Xn−1 then xy ∈ spanXn,

for all n ≥ 1. Set X0 = F . Suppose now Xn−1 has been constructed and let Vn be
the finite dimensional subspace of A spanned by an, Xn−1, Xn−1 · Xn−1 along with the
adjoints of said elements. Let Xn be an orthonormal basis for Vn which extends Xn−1. Set
now X =

⋃∞
n=0Xn. It is clear that spanX is a ∗-subalgebra. By construction, 1 ∈ X and

{a1, a2, a3, . . .} ⊂ X, ensuring thatX is in fact a norm-dense ∗-subalgebra inX. Lastly, each
Xn is chosen to be an orthonormal extension of Xn−1, ensuring that X will be orthonormal,
proving that X is a countable standard orthonormal basis for A containing F .

The algebraic unital free product of unital C∗-algebras Ai, denoted by A = ∗alg
i∈IAi, is

the unital ∗-algebra equipped with unital inclusions ιi : Ai → A for each i ∈ I with the
following universal property: If B is another unital ∗-algebra equipped with unital inclusions
ζi : Ai → B for each i ∈ I, then there exists a unique ∗-homomorphism ρ : A → B such that
the following diagram commutes for all i ∈ I:

Ai

A B

ιi
ζi

ρ
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A state on a unital ∗-algebra A is a linear map ϕ : A → C such that ϕ(1A) = 1 and
ϕ(a∗a) ≥ 0 for all a ∈ A. We say that ϕ is faithful if ϕ(a∗a) = 0 implies a = 0.

Elements in A = ∗alg
i∈IAi of the form

w = ai1ai2 . . . aik ,

are called words and aij the letters of w. If no aij is followed by a−1
ij

, then w is a reduced
word. If A has a state ϕ and we further assume that for each 1 ≤ j ≤ k, aij ∈ Aij ,
ϕ(aij ) = 0 and ij 6= ij+1 for all 1 ≤ j ≤ k − 1, then w is said to be a centered reduced word
of length k with the convention that 1 ∈ A is the reduced word of length 0. Each word
w ∈ A can be written as a finite linear combination of centered reduced words by writing
a′ij = aij − ϕ(aij )1, which will be in Aij with ϕ(a′ij ) = 0. Therefore, the elements of A can
be expressed as finite linear combinations of centered reduced words.
The following lemma constructs orthonormal set in A from orthonormal sets Xi of Ai.

Lemma 4.5. Let (Ai, ϕi)i∈I be a family of unital C∗-algebras each with state ϕi. Let
A = ∗alg

i∈IAi and assume that A has a state ϕ0 such that ϕ0(w) = 0 for all centered reduced
words w ∈ A. Given orthonormal sets Xi ⊂ Ai for i ∈ I, let Y0 = {1} and for n ≥ 1 let Yn
be the set of words

w = wi1wi2 · · ·win ,

such that wij ∈ X◦
ij
, ϕ(wij ) = 0 for all 1 ≤ j ≤ n and ij 6= ij+1 for all 1 ≤ j ≤ n−1. Define

∗i∈IXi =
⋃∞
n=0 Yn. Then ∗i∈IXi is an orthonormal set with respect to ϕ0(b

∗a) = 〈a, b〉ϕ0
.

Proof. Consider first w ∈ X◦
i , z ∈ X◦

j for some i, j ∈ I with ϕ0(w) = ϕ0(z) = 0. If i 6= j,
then ϕ0(z

∗w) = 0 as z∗w is a centered reduced word. If i = j, then ϕ0(z
∗w) = ϕi(z

∗w) = 0

for z 6= w and ϕ0(w
∗w) = ϕi(w

∗w) = 1, as Xi is an orthonormal set with respect to the
Euclidean structure from ϕi on Ai.

Assume now w, z ∈ ∗i∈IXi of length n,m ≥ 1. Assume without loss of generality that
n ≥ m and write

w = wi1 · · ·win , z = zj1 · · · zjm

where for all l, k, wik ∈ X◦
ik
, zjl ∈ X◦

jl
, ϕ0(wik) = ϕ0(zjl) = 0 and ik 6= ik+1, jl 6= jl+1 for all

1 ≤ k ≤ n− 1, respectively 1 ≤ l ≤ m− 1. We claim that

ϕ0(z
∗w) = δn,mδi1,j1 · · · δin,jnϕ0(z

∗
j1wi1) · · ·ϕ0(z

∗
jmwin).

If i1 6= j1, then z∗w is a centered reduced word and ϕ0(z
∗w) = 0 by assumption. If i1 = j1,

write
(z∗j1wi1)

′ = z∗j1wi1 − ϕ0(z
∗
j1wi1).
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Then

ϕ0(z
∗w) = ϕ0(z

∗
j1wi1)ϕ0(z

∗
jm · · · z∗j2wi2 · · ·win) + ϕ0(z

∗
jm · · · z∗j2(z

∗
j1wi1)

′wi2 · · ·win).

By definition ϕ0((z
∗
j1
wi1)

′) = 0, meaning z∗jm · · · z∗j2(z
∗
j1
wi1)

′wi2 · · ·win is a centered reduced
word, so

ϕ0(z
∗w) = ϕ0(z

∗
j1wi1)ϕ0(z

∗
jm · · · z∗j2wi2 · · ·win).

Therefore,

ϕ0(z
∗w) = δi1,j1ϕ0(z

∗w) = δi1,j1ϕ0(z
∗
j1wi1)ϕ0(z

∗
jm · · · z∗j2wi2 · · ·win).

Iterating this process,

ϕ0(z
∗w) = δi1,j1δi2,j2 · · · δim,jmϕ0(z

∗
j1wi1)ϕ0(z

∗
j2wi2) · · ·ϕ0(z

∗
jmwim)ϕ0(wim+1 · · ·win).

Note that ϕ0(wim+1 · · ·win) = 0, as wim+1 · · ·win is a centered reduced word. In particular,
ϕ0(z

∗w) = 0 for m 6= n, proving that

ϕ0(z
∗w) = δn,mδi1,j1 · · · δin,jnϕ0(z

∗
j1wi1) · · ·ϕ0(z

∗
jnwin).

See now that if ik 6= jk for some k, then z 6= w and the claim shows that ϕ0(z
∗w) = 0.

If ik = jk for all k, we note that each Xik is an orthonormal set, hence ϕ0(z
∗
ik
wik) = 0 for

zik 6= wik and ϕ0(w
∗
ik
wik) = 1. Therefore, ϕ0(z

∗w) = 0 for z 6= w and ϕ0(w
∗w) = 1. We

conclude that ∗i∈IXi is an orthonormal set.

Definition 4.6 (The Hilbert space free product). Let I be an index set. Consider a family
(Hi, ξi)i∈I of Hilbert spaces Hi each with unit vector ξi ∈ Hi. Define

H = Cξ ⊕
⊕
n≥1

 ⊕
(i1,...,in)∈Dn(I)

◦
H i1 ⊗ . . .⊗

◦
H in

 ,

where
◦
H ij is the orthogonal complement of Cξij in Hij , and Dn(I) is the set of n-tuples

(i1, . . . , in) such that ij 6= ij+1 for 1 ≤ j ≤ n − 1 and each ij ∈ I. Moreover, ξ is a
distinguished unit vector in C, corresponding to n = 0. We denote the Hilbert space free
product by (H, ξ) = ∗i∈I(Hi, ξi).

We will, for notational purposes, omit Dn(I). For j ∈ I, set

H(j) = Cξ ⊕
⊕
n≥1

 ⊕
(i1,...,in)
i1 6=j

◦
H i1 ⊗ . . .⊗

◦
H in

 .
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Define unitary operators Vj : Hj ⊗H(j) → H by the following

ξj ⊗ ξ 7→ ξ, h⊗ ξ 7→ h, ξj ⊗ (hi1 ⊗ . . .⊗ hin) 7→ hi1 ⊗ . . .⊗ hin ,

h⊗ (hi1 ⊗ . . .⊗ hin) 7→ h⊗ hi1 ⊗ . . .⊗ hin .

for h ∈
◦
Hj , hik ∈

◦
H ik and (i1, . . . , in) ∈ Dn(I) with i1 6= j. Note that the unitary Vj gives

isomorphism Hj ⊗H(j) ' H for all j ∈ I.

Theorem 4.7. Let (Ai, ϕi) be a family of unital C∗-algebras Ai each with a faithful state
ϕi and let A = ∗alg

i∈IAi be the algebraic free product. Then there exists a unique state ϕ0 on
A such that

(i) ϕ0 ◦ ιi = ϕi for all i ∈ I,

(ii) ϕ0(w) = 0 for all centered reduced words w ∈ A of length k ≥ 1.

Moreover, ϕ0 is faithful on A.

Proof. Uniqueness is clear as A is spanned by the set of centered reduced words.
Let (Hi, ξi, πi) be the GNS-triple associated to ϕi for each i ∈ I. Let (H, ξ) = ∗i∈I(Hi, ξi)

be as in Definition 4.6 and define representation λi of Ai on H by

λi(a) = Vi(πi(a)⊗ IH(i))V
∗
i , a ∈ Ai. (4.1)

It is straightforward to check that each λi is a representation. By the universal property of
the algebraic free product, there exists a unique ∗-homomorphism π : A → B(H) such that
λi = π ◦ ιi for all i ∈ I. Define ϕ0 : A → C by

ϕ0(a) = 〈π(a)ξ, ξ〉 , a ∈ A.

It is clear that ϕ0 is a state on A. We show that ϕ0 has the wanted properties. Let ai ∈ Ai.
Then

(ϕ0 ◦ ι)(ai) = 〈π(ιi(ai))ξ, ξ〉 = 〈λi(ai)ξ, ξ〉 =
〈
Vi(πi(ai)⊗ IH(i))V

∗
i ξ, ξ

〉
.

As Hi =
◦
H i ⊕ Cξi it suffices to check that ϕ0 ◦ ιi = ϕi on each component. Consider first

πi(ai)ξi ∈
◦
H i. Then ϕi(ai) = 〈πi(ai)ξi, ξi〉 = 0 and by the definition of the unitary Vi,

λi(ai)ξ = Vi(πi(ai)⊗ IH(i))V
∗
i ξ = Vi(πi(ai)ξi ⊗ ξ) = πi(ai)ξi,

implying ϕ0(ιi(ai)) = 0 = ϕi(ai). If πi(ai)ξi = αξi for some α ∈ C, then ϕi(ai) = α and

λi(ai)ξ = Vi(αξi ⊗ ξ) = αξ,
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hence ϕ0(ιi(ai)) = α = ϕi(ai). This shows (i).
Consider now centered reduced word w = ai1ai2 . . . aik in A. Then

ϕij (aij ) =
〈
πij (aij )ξij , ξij

〉
= 0,

implying that πij (aij )ξij ∈
◦
H ij for all 1 ≤ j ≤ k. By definition,

π(aij )ξ = λij (aij )ξ = Vij (πij (aij )⊗ IH(ij))V
∗
ijξ = Vij (πij (aij )ξij ⊗ ξ) = πij (aij )ξij .

It is now a simple calculation to see that

π(ai1ai2 . . . aik)ξ = πi1(ai1)ξi1 ⊗ πi2(ai2)ξi2 ⊗ . . .⊗ πik(aik)ξik ∈
◦
H i1 ⊗ . . .⊗

◦
H ik (4.2)

whenever ϕij (aij ) = 0, aij ∈ Aij and j 6= j + 1 for all 1 ≤ j ≤ n − 1, implying that
ϕ0(w) = 0, as wanted.

It remains to show that ϕ0 is faithful. Let x ∈ A and assume that ϕ0(x
∗x) = 0. Write

x =
∑n

k=1 αkwk where each wk ∈ A is a centered reduced word

wk = aki1a
k
i2 . . . a

k
irk
,

with akij ∈ Akij and ϕ0(a
k
ij
) = 0 for 1 ≤ j ≤ rk. Let I0 be the set of all indices i ∈ I such

that i appears as an index ij in a word wk in the decomposition of x. For each i ∈ I0,
let Fi be the set of elements from Ai which appear in a word wk in the decomposition of
x. Set Vi = span{Fi ∪ 1} ⊂ Ai. For each i, ϕi is faithful on Ai, meaning we can equip
Ai with the previously mentioned Euclidean structure corresponding to ϕi. As Vi is finite
dimensional we can find an orthonormal basis Xi of Vi which contains 1 and spans Vi. Define
orthonormal set ∗i∈IXi as in Lemma 4.5. For each k, wk ∈ span ∗i∈IXi, so we can write
x =

∑m
j=1 βjzj where each zj ∈ ∗i∈IXi. Thus,

ϕ0(x
∗x) =

m∑
j=1

m∑
k=1

βjβkϕ0(z
∗
j zk) =

m∑
j=1

|βj |2 = 0

implying βj = 0 for all 1 ≤ j ≤ m, hence x = 0.

As ϕ0 is faithful, we can define the Euclidean structure

ϕ0(b
∗a) = 〈a, b〉ϕ0

, ‖a‖ϕ0
= 〈a, a〉

1
2
ϕ0 for a, b ∈ A.
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As in the case of C∗-algebras, one can to a state ψ on a unital ∗-algebra A associate a
GNS-triple (Hψ, πψ, ξψ) where Hψ is the Hilbert space completion of A with inner product

〈a, b〉ψ = ψ(b∗a)

for a, b ∈ A, πψ : A → B(Hψ) is a faithful ∗-representation and ξψ ∈ Hψ a cyclic unit vector
such that

ψ(a) = 〈π(a)ξψ, ξψ〉ψ .

Any triple (H ′, π′, ξ′) with the same properties is unitarily equivalent to (Hϕ, πϕ, ξϕ).

Note that (4.2) implies that π(A)ξ is dense in H, as each πi(Ai)ξi is dense in Hi. Therefore,
we may take (H,π, ξ) to be the GNS-triple for ϕ0. As ϕ0 is faithful, A embeds into a
C∗-algebra A = π(A) ⊂ B(H). Extend ϕ0 to ϕ on A by ϕ(a) = 〈aξ, ξ〉 for a ∈ A. Then
(A,ϕ) is said to be the C∗-completion of (A, ϕ0). Note that for a ∈ A, b ∈ A,

‖ab‖2ϕ = 〈aπ(b)ξ, aπ(b)ξ〉 = ‖aπ(b)ξ‖2 .

As π(A)ξ is norm-dense in H,

‖a‖ = sup{‖ab‖ϕ : b ∈ A, ‖b‖ϕ ≤ 1}, a ∈ A.

In this way, A embeds into A as a dense ∗-subalgebra via π. However, by slight abuse of
notation, we will identify a ∈ A by a in A via π.

Proposition 4.8. Let (A, ϕ0) be a unital ∗-algebra equipped with a faithful state ϕ0 and let
(A,ϕ) be the C∗-completion of (A, ϕ0). Suppose that (B,ψ) is another unital C∗-algebra
with state ψ and ∗-homomorphism ρ : A → B such that ρ(A) is a dense subalgebra of B
and ψ ◦ ρ = ϕ0. Then ρ extends to a ∗-isomorphism η : A→ B satisfying ψ ◦ η = ϕ.

Proof. By construction, ϕ(a) = ϕ0(a) for a ∈ A, so ‖a‖ϕ = ‖a‖ϕ0
. Moreover, for b ∈ A,

‖b‖2ϕ0
= ϕ0(b

∗b) = ψ(ρ(b∗)ρ(b)) = ‖ρ(b)‖2ψ .

Hence, for a ∈ A,

‖a‖ = sup{‖ab‖ϕ0
: b ∈ A, ‖b‖ϕ0

≤ 1} = sup{‖ρ(a)b‖ψ : b ∈ ρ(A), ‖b‖ψ ≤ 1} = ‖ρ(a)‖ .

Then ρ extends to a ∗-isomorphism η : A→ B with the wanted properties.

With the uniqueness of the C∗-completion (A,ϕ), we are ready to define the reduced free
product.
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Definition 4.9. Let (Ai, ϕi) be a family of unital C∗-algebras Ai each with a faithful state
ϕi. The reduced free product (A,ϕ) = ∗i∈I(Ai, ϕi) is the C∗-completion of (A, ϕ0), with ϕ0

as in Theorem 4.7.

We will be particularly interested in the case where each state is tracial.

Proposition 4.10. Let (Ai, τi)i∈I be a family of unital C∗-algebras each equipped with a
normalized trace τi and let (A, τ) = ∗i∈I(Ai, τi) be the reduced free product. Then τ is a
faithful normalized trace on A.

Proof. Let A = ∗alg
i∈IAi. Consider first w, z ∈ A centered reduced words and write

w = ai1 · · · aik , z = bjm · · · bj1 ,

where for all k, l, aik ∈ Aik , bjl ∈ Ajl , τ(aik) = τ(bjl) = 0 and ik 6= ik+1, jl 6= jl+1 for all
1 ≤ k ≤ n− 1, respectively 1 ≤ l ≤ m− 1. By the claim in the proof of Lemma 4.5,

τ(wz) = δk,mδik,jmδik−1,jm−1 · · · δi1,j1τ(aikbjm) · · · τ(ai1bj1).

Recall that τ|Aj
= τj , which are all assumed tracial, so

τ(wz) = δk,mδik,jmδik−1,jm−1 · · · δi1,j1τ(bjmaik) · · · τ(bj1ai1) = τ(zw).

Consider now x, y ∈ A and write

x =
k∑
j=1

αjwj , y =
m∑
i=1

βizi,

with wj , zi centered reduced words for all i, j. Then

τ(xy) =

k∑
j=1

m∑
i=1

αjβiτ(wjzi) =

k∑
j=1

m∑
i=1

αjβiτ(ziwj) = τ(yx).

For x, y ∈ A, let (xn)n, (yn)n ⊂ A such that limn→∞ xn = x and limn→∞ yn = y. Then

τ(xy) = lim
n→∞

τ(xnyn) = lim
n→∞

τ(ynxn) = τ(yx),

showing that τ is a trace. That τ is normalized follows from τi normalized.
Let x ∈ A and assume τ(x∗x) = 0. For b ∈ A, we have

‖xb‖22 = τ(b∗x∗xb) = τ(xbb∗x∗) ≤ ‖b‖2 τ(xx∗) = ‖b‖2 τ(x∗x) = 0,
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using that bb∗ is self-adjoint, hence bb∗ ≤ ‖bb∗‖ 1 = ‖b‖2 1. As

‖x‖ = sup{‖xb‖2 | ‖b‖2 ≤ 1, b ∈ A} = 0,

we get x = 0, showing that τ is faithful.

Remark 4.11. A more generalized statement than the above, in which the assumption of
the faithful states ϕi being tracial is omitted, was proven by Dykema in [10].

The reduced free product has the following universal property.

Theorem 4.12. Let (A,ϕi)i∈I be a family of unital C∗-algebras Ai each equipped with a
faithful state ϕi.

(1) The reduced free product (A,ϕ) satisfies:

(i) There is a unital inclusion λi : Ai → A for each i ∈ I,

(ii) ϕ ◦ λi = ϕi for all i ∈ I,

(iii) ϕ(w) = 0 for all centered reduced words w ∈ A,

(iv) A = C∗ (⋃
i∈I λi(Ai)

)
.

(2) If (B,ψ) is another unital C∗-algebra with state ψ which satisfies:

(a) There is a unital inclusion ζi : Ai → B for each i ∈ I,

(b) ψ ◦ ζi = ϕi for all i ∈ I,

(c) ψ(w) = 0 for all centered reduced words w ∈ B,

(d) B = C∗ (⋃
i∈I ζi(Ai)

)
,

then there exists a unique ∗-isomorphism η : A→ B such that ψ ◦ η = ϕ, and

Ai

A B

λi
ζi

η

commutes for all i ∈ I.

(3) The state ϕ is faithful and the canonical map ρ : A → A is injective.

We understand a centered reduced word w in A by λi1(ai1) · · ·λin(ain), where ij 6= ij+1 for
all 1 ≤ j ≤ n− 1 and aij ∈ Aij with ϕ(aij ) = 0 for all j. Similarly for B.
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Proof of Theorem 4.12. We begin by proving (1). Let A = ∗alg
i∈IAi and equip A with state

ϕ0 from Theorem 4.7. Let (A,ϕ) be the C∗-completion of (A, ϕ0), and let λi and (H,π, ξ)

be as in the proof of Theorem 4.7. Then A is the norm closure of π(A), and λi = π ◦ ιi
therefore embeds Ai into A. Moreover, ϕ = ϕ0 on A, so (ii) and (iii) follow from Theorem
4.7. For (iv), note that the universal property of the algebraic free product ensures that
A is the ∗-algebra generated by (Ai)i∈I , and so the ∗-algebra generated by

⋃
i∈I λi(Ai) =⋃

i∈I π(ιi(Ai)) will be equal to the ∗-algebra π(A), and (iv) follows. This proves (1).
For (3), see that ϕ faithful follows from Proposition 4.10 and the subsequent remark. By
the universal property of the algebraic free product, π : A → A as before is the unique
∗-homomorphism such that

Ai

A A

ιi
λi

π

commutes for all i ∈ I, and π is faithful, as wanted.

For (2), assume there is a unital C∗-algebra B equipped with state ψ satisfying (a) − (d).
It follows from the universal property of the algebraic free product that there exists unique
∗-homomorphism ρ : A → B such that

Ai

A B

ιi
ζi

ρ

commutes for all i ∈ I. By argument as above, since ζi = ρ ◦ ιi, ρ(A) will be dense in B.
Moreover, ϕi = ψ ◦ ζi = ψ ◦ ρ ◦ ιi, with ψ ◦ ρ(w) = 0 for all centered reduced words w in A.
It follows from Theorem 4.7 that ψ ◦ ρ = ϕ0 on A. Using Proposition 4.8, ρ extends to a
unique ∗-isomorphism η : A→ B satisfying ψ ◦ η = ϕ, and which makes

Ai

A B

ιi
ζi

η

commutative for all i ∈ I. This proves (2).
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5 The distance to the invertible elements in a C∗-algebra

The main result of this section is Theorem 5.4, which shows that unital C∗-algebras whose
stable rank is not one has an element with norm one and distance one to the invertible
elements of A. It plays a crucial role in proofs later on. The results of this section are the
work of Rørdam in [21].

Let A be a unital C∗-algebra and let H be the Hilbert space such that A embeds into B(H)

faithfully. Any x ∈ B(H) has a polar decomposition x = v|x|, where v ∈ B(H) is a partial
isometry and |x| = (x∗x)

1
2 . The partial isometry v has initial space ker(|x|)⊥, meaning v∗v

is a projection on ker(|x|)⊥. We consider first some consequences of the polar decomposition.

Firstly, x∗ = |x|v∗ so xx∗ = vx∗xv∗. Moreover

(v(x∗x)
1/2v∗)2 = v(x∗x)

1/2v∗v(x∗x)
1/2v∗ = v(x∗x)v∗ = xx∗.

Now
x = v|x| = v(x∗x)

1/2 = v(x∗x)
1/2v∗v = (xx∗)

1/2v = |x∗|v,

implying vp(|x|) = p(|x∗|)v for all polynomials p. It is now a simple consequence of Stone-
Weierstrass that vf(|x|) = f(|x∗|)v for all continuous functions f . If f is further assumed to
be such that f(0) = 0, then s = vf(|x|) is in A. Indeed, for polynomial g such that g(0) = 0

there exists polynomial h such that g(t) = th(t). It now follows from Stone-Weierstrass
that f can be approximated by such polynomials, hence vf(|x|) = v|x|h(|x|) = xh(|x|) ∈ A

for some continuous function h. If f in addition is positive, |s| = f(|x|) and |s∗| = f(|x∗|).
To see this, note that

s∗s = f(|x|)v∗vf(|x|) = f(|x|)2

and as f ≥ 0 the positive square root of s∗s is f(|x|), i.e. |s| = f(|x|). Similar calculation
for |s∗| = f(|x∗|). Let λ > 0 and let pλ, qλ be the spectral projections on [0, λ] for |x|,
respectively |x∗|. Then v(1− pλ) = (1− qλ)v and v(1− pλ)v

∗ = (1− qλ).

For x ∈ A, let α(x) be the distance from x to the invertible elements of A,

α(x) = dist(a,GL(A)) = inf
y∈GL(A)

‖x− y‖ .
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For 0 < b < a define f, g : R+ → R+ by

f(t) =

b−1 t ≤ b

t−1 t > b
, g(t) =


0 t ≤ b

(a− b)−1(t− b) b < t ≤ a

1 t > a

.

Theorem 5.1. Let A be a unital C∗-algebra and let x ∈ A with polar decomposition x = v|x|.
If α(x) < a, then there exists s ∈ GL(A) such that

v(1− pa) = s(1− pa).

Proof. Let x ∈ A and let x = v|x| be the polar decomposition of x. Choose b such that
α(x) < b < a. Clearly α(x∗) = α(x), so there exists w ∈ GL(A) such that ‖x∗ − w‖ < b.
Set z = wf(|x∗|). As w is invertible and f > 0, it holds that z ∈ GL(A). Note that 1− qb

is the spectral projection of |x∗| on (b,∞). Therefore, by the defintion of f ,

|x∗|f(|x∗|)(1− qb) = 1− qb.

and moreover, ‖f(|x∗|)‖ ≤ b−1, hence ‖(x∗ − w)f(|x∗|)‖ ≤ ‖x∗ − w‖ ‖f(|x∗|)‖ < 1.

Combining the above and using that v is a partial isometry,

1 > ‖(x∗ − w)f(|x∗|)‖ = ‖x∗f(|x∗|)− z‖ = ‖v∗|x∗|f(|x∗|)− z‖

≥ ‖(v∗|x∗|f(|x∗|)− z)(1− qb)‖ = ‖(v∗ − z)(1− qb)‖ = ‖(v∗ − z)(1− qb)v‖

= ‖(v∗ − z)v(1− pb)‖ = ‖(1− zv)(1− pb)‖ .

Set y = (1−zv)g(|x|) and note that y ∈ A as g(0) = 0. By definition, g(|x|) = (1−pb)g(|x|)
and ‖g(|x|)‖ ≤ 1, so

‖y‖ = ‖(1− zv)(1− pb)g(|x|)‖ ≤ ‖(1− zv)(1− pb)‖ ‖g(|x|)‖ < 1.

Using the Neumann series, the above implies that 1− y is invertible. Furthermore, by the
definition of g, g(|x|)(1− pa) = 1− pa, hence

y(1− pa) = (1− zv)g(|x|)(1− pa) = (1− zv)(1− pa),

and so
(1− y)(1− pa) = 1− pa − (1− zv)(1− pa) = zv(1− pa).

Setting s = z−1(1− y) ∈ GL(A) gives the wanted.
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Corollary 5.2. Let A be a unital C∗-algebra. For each x ∈ A there exists s0 ∈ GL(A)‖·‖

such that ‖x− s0‖ = α(x) and ‖s0‖ = ‖x‖ − α(x).

Proof. Given x ∈ A let x = v|x| be the polar decomposition. For 0 ≤ a ≤ ‖x‖ define
fa : R+ → R+ by fa(t) = max{t− a, 0}. Set xa = vfa(|x|). Note that f(0) = 0, so xa ∈ A.
Moreover, using the continuous functional calculus,

‖x− xa‖ = ‖v|x| − vfa(|x|)‖ = ‖|x| − fa(|x|)‖ = sup
t∈σ(|x|)

|t− fa(t)| = a.

Furthermore,

‖xa‖ = ‖vfa(|x|)‖ = sup
t∈σ(|x|)

|fa(t)| = sup
t∈σ(|x|)
a≤t

|t− a| = sup
t∈σ(|x|)
a≤t

t− a = ‖x‖ − a.

Consider now a > α(x). By definition, (1 − pa)fa(|x|) = fa(|x|). Let s ∈ GL(A) from
Theorem 5.1, and see that

xa = vfa(|x|) = v(1− pa)fa(|x|) = s(1− pa)fa(|x|) = sfa(|x|).

For ε > 0, s(fa(|x|)+ε1) is invertible, implying that xa is a norm limit of invertible elements.
Set α = α(x), then xα is the norm limit of xa for a > α, meaning xα ∈ GL(A)‖·‖. Letting
s0 = xα gives the wanted.

The above corollary shows that the distance from x to GL(A) is attained at some s0 in the
norm closure of GL(A) which furthermore have the least possible norm.

Corollary 5.3. Let A be a unital C∗-algebra. For x ∈ A,

α(x) = inf{λ : v(1− pλ) ∈ GL(A)(1− pλ)}.

Proof. Assume v(1 − pa) = s(1 − pa) for some a ≥ 0 and s ∈ GL(A). Arguing as in the
proof of Corollary 5.2, we see that xa is in the norm closure of GL(A). In particular,

a = ‖x− xa‖ ≥ α(x),

which proves the wanted.

This leads us to the main theorem of this section.
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Theorem 5.4 (Rørdam). Let A be a unital C∗-algebra with sr(A) 6= 1. There exists z ∈ A

such that
‖z‖ = dist(z,GL(A)) = 1.

Proof. Let x ∈ A such that 0 < α(x) = α and let x = v|x| be the polar decomposition of
x. Define continuous function h : R+ → R+ by h(t) = min{α−1t, 1}. Note that h(0) = 0,
meaning z = vh(|x|) ∈ A. Moreover, by the continuous functional calculus,

‖z‖ = ‖vh(|x|)‖ = ‖h(|x|)‖ = sup
t∈σ(|x|)

|h(t)| ≤ 1.

Let pλ, p̃λ be the spectral projections corresponding to the interval [0, λ] for |x|, respectively
|z|. As h is positive, |z| = h(|x|) and h(t) = 0 for t = 0 only, hence |z| and h(|x|) have the
same range projections, implying that z = vh(|x|) is in fact the polar decomposition for z.
For λ < 1, the definition of h implies that p̃λ = pαλ. See now, that if

v(1− p̃λ) = s(1− p̃λ)

for some s ∈ GL(A) and 0 ≤ λ < 1, then

v(1− pαλ) = s(1− pαλ).

Using Corollary 5.3, we get
α = α(x) ≤ αλ < α,

an obvious contradiction. Thus, such s ∈ GL(A) can only exist for λ ≥ 1. It now follows
from Theorem 5.1 that α(z) ≥ 1. Recall that α(z) ≤ ‖z‖ ≤ 1, which finishes the proof.
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6 Stable rank of some reduced free product C∗-algebras

Let (Ai, τi)i∈I be a family of unital C∗-algebras Ai each equipped with a faithful, normal-
ized trace τi and let (A, τ) = ∗i∈I(Ai, τi) be the reduced free product. Equip A with the
Euclidean structure corresponding to τ ,

〈a, b〉 = τ(b∗a), ‖a‖2 = 〈a, a〉
1
2 ,

for a, b ∈ A. Let Xi be a standard orthonormal basis for Ai and recall that X◦
i = Xi \ {1i}.

Define Y = ∗i∈IXi as in Lemma 4.5. We claim Y is a standard orthonormal basis for A.
Clearly 1 ∈ Y and is orthonormal by Lemma 4.5. Moreover, as spanXi is a ∗-algebra for
all i ∈ I, spanY is a ∗-algebra. Lastly, by construction spanY is norm dense in A, proving
that Y is a standard orthonormal basis for A. In this section, we understand by a reduced
word a centered reduced word.

Let a ∈ spanY , and write a =
∑n

j=1 αjwj for wj ∈ Y . Then, as Y is an orthonormal set,

‖a‖22 =

〈
n∑
j=1

αjwj ,

n∑
i=1

αiwi

〉
=

n∑
j,i=1

αjαi 〈wj , wi〉 =
n∑
j=1

|αj |2.

Define orthogonal projections En : spanY → spanYn with Yn defined as in Lemma 4.5.
The first part of this section aims to bound the operator norm by the 2-norm. We start by
showing the following lemma describing En(vw) for v ∈ Yk and w ∈ Yl.

Lemma 6.1. Let v ∈ Yk and w ∈ Yl for some k, l and let n ≥ 0 be given.

(i) Assume |k−l| < n ≤ k+l. Let 0 ≤ q < min{k, l} be the integer such that k+l−n = 2q

or k + l − n = 2q + 1. Write

v = v1xv2, v1 ∈ Yk−q−1, x ∈ X◦
i , v2 ∈ Yq,

w = w2yw1, w1 ∈ Yl−q−1, y ∈ X◦
j , w2 ∈ Yq.

If k + l − n = 2q, then

En(vw) =

〈v2w2, 1〉 v1xyw1 i 6= j

0 i = j
, (6.1)

and if k + l − n = 2q + 1, then

En(vw) =


∑

u∈X◦
i
〈v2w2, 1〉 〈xy, u〉 v1uw1 i = j

0 i 6= j
.
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Note that 〈xy, u〉 6= 0 for at most finitely many u ∈ X◦
i .

(ii) Assume n = |k − l|. Set q = min{k, l} such that k + l − n = 2q. Write

v = v1v2, v1 ∈ Yk−q, v2 ∈ Yq,

w = w2w1, w1 ∈ Yl−q, w2 ∈ Yq.

Then v1 = 1 or w1 = 1 and En(vw) = 〈v2w2, 1〉 v1w1.

(iii) If n < |k − l| or n > k + l, then En(vw) = 0.

Proof. We prove the assertions (i), (ii) and (iii) simultaneously by induction over min{k, l}.
Assume first that min{k, l} = 0, implying that v = 1 or w = 1, and moreover either
n = |k − l| and q = 0 or n < |k − l|, or n > k + l. In all cases the claims are clear.
Assume now that min{k, l} ≥ 1. Write

v = v′x′, v′ ∈ Yk−1, x′ ∈ X◦
s

w = y′w′, w′ ∈ Yl−1, y′ ∈ X◦
t .

Consider first the case of s 6= t. Then vw is a reduced word of length k + l, hence

En(vw) =

vw n = k + l

0 n 6= k + l,
(6.2)

See first that this formula agrees with (iii). If n = k + l or n = k + l − 1 then q = 0 in (i),
implying that v2 = w2 = 1 so 〈v2w2, 1〉 = 1. Moreover q = 0 implies that x′ = x and y′ = y

and i 6= j, so the formulae hold in both cases in (i). If |k− l| ≤ n < k+ l− 1, then q ≥ 1 in
either case of k+ l−n = 2q or k+ l−n = 2q+1. Note that, in the notation of (i) and (ii),

v2 = v′2x
′, v′2 ∈ Yq−1,

w2 = y′w′
2, w′

2 ∈ Yq−1,

meaning that v2w2 = v′2x
′y′w′

2 is reduced of length strictly greater than 0. In particular,
〈v2w2, 1〉 = 0, and the expression for En(vw) in (6.2) agrees with the formulae in (i) and
(ii).

Consider now the case of s = t. As spanXs is a ∗-subalgebra, x′y′ ∈ spanXs, so we can
write

vw = v′x′y′w′ =
〈
x′y′, 1

〉
v′w′ +

∑
u∈X◦

s

〈
x′y′, u

〉
v′uw′,

with 〈x′y′, u〉 6= 0 for only finitely many u ∈ X◦
s . Using this expression, the formulae for

En(vw) holds for n ≥ k + l − 1. Consider now |k − l| ≤ n < k + l − 1. Then q ≥ 1 and we
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again write v2 = v′2x
′, w2 = y′w′

2 with v′2, w′
2 ∈ Yq−1. Then v′ = v1xv

′
2, w′ = w′

2yw1 and

En(vw) =
〈
x′y′, 1

〉
En(v

′w′).

By the induction hypothesis En(v′w′) is given by the formulae in (i) and (ii). Note that

〈v2w2, 1〉 = τ(v′2x
′y′w′

2) = τ(v2
〈
x′y′, 1

〉
1w′

2) + τ(v2(x
′y′ −

〈
x′y′, 1

〉
1)w′

2)

= τ(v2
〈
x′y′, 1

〉
1w′

2) =
〈
x′y′, 1

〉 〈
v′2w

′
2, 1
〉
,

so the formulae for En(vw) in (i) and (ii) hold.
Lastly, if n < |k − l|, then n < |(k − 1)− (l − 1)| and

En(vw) =
〈
x′y′, 1

〉
En(v

′w′) = 0,

as wanted.

Let a ∈ spanY . The the support of a, denoted by supp(a), is the set of elements w ∈ Y

such that 〈a,w〉 6= 0. For i ∈ I let Fi(a) be the set of x ∈ X◦
i which appear as letters in

the words w ∈ supp(a). The support of a is finite, meaning that each Fi(a) is finite and in
particular, Fi(a) 6= ∅ for only finitely many i ∈ I. Define

K(a) = max
i∈I

 ∑
x∈Fi(a)

‖x‖2
 1

2

. (6.3)

Let a ∈ spanY and let k ≥ 1 be the length of the longest word w in the support of a. It is
clear that a ∈ span

(⋃k
j=1 Yj

)
.

Lemma 6.2. Let a ∈ spanYk, b ∈ spanYl and let n ≥ 0 be given. If |k − l| ≤ n ≤ k + l,
then

‖En(ab)‖2 ≤

‖a‖2 ‖b‖2 k + l − n even

K(a) ‖a‖2 ‖b‖2 k + l − n odd
.

If n < |k − l| or n > k + l, then En(ab) = 0.

Proof. See first that it is an immediate consequence of Lemma 6.1 that En(ab) = 0 whenever
n < |k − l| and n > k + l. Assume that |k − l| ≤ n ≤ k + l and consider first the case of
k + l − n = 2q for some integer 0 ≤ q ≤ min{k, l}. Write

a =
∑
v1,v2

αv1v2v1v2, b =
∑
w1,w2

βw2w1w2w1,

summing over v1 ∈ Yk−q, v2 ∈ Yq such that v1v2 is reduced, and over w1 ∈ Yl−q, w2 ∈ Yq
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such that w2w1 is reduced. Note that only finitely many αv1v2 , βw2w1 are non-zero. Using
Lemma 6.1,

En(ab) =
∑
v1,v2

∑
w1,w2

αv1v2βw2w1 〈v2w2, 1〉 v1w1,

now summing over all v1 ∈ Yk−q, w1 ∈ Yl−q and v2, w2 ∈ Yq such that v1v2, w2w1 and v1w1

are all reduced words. As Y is an orthonormal set,

‖En(ab)‖22 ≤
∑
v1,w1

∣∣∣∣∣∑
v2,w2

αv1v2βw2w1 〈v2w2, 1〉

∣∣∣∣∣
2

,

with the right hand side being a sum over all v1 ∈ Yk−q, w1 ∈ Yl−q and v2, w2 ∈ Yq such
that v1v2 and w2w1 are reduced. Using the Cauchy-Schwartz inequality∣∣∣∣∣∑

v2,w2

αv1v2βw2w1 〈v2w2, 1〉

∣∣∣∣∣
2

=

∣∣∣∣∣
〈∑

w2

βw2w1w2,
∑
v2

αv1v2v
∗
2

〉∣∣∣∣∣
2

≤

∥∥∥∥∥∑
w2

βw2w1w2

∥∥∥∥∥
2

2

∥∥∥∥∥∑
v2

αv1v2v
∗
2

∥∥∥∥∥
2

2

=
∑
w2

|βw2w1 |
2
∑
v2

|αv1v2 |
2 .

Thus,

‖En(ab)‖22 ≤
∑
v1,w1

∑
v2

|αv1v2 |
2
∑
w2

|βw2w1 |
2 =

∑
v1,v2

|αv1v2 |
2
∑
w1,w2

|βw2w1 |
2 = ‖a‖22 ‖b‖

2
2 ,

as wanted.
Suppose now that k + l − n = 2q + 1 for some 0 ≤ q < min{k, l}. Write

a =
∑
i∈I

∑
v1,x,v2

αv1xv2v1xv2,
∑
i∈I

∑
w1,y,w2

βw2yw1w2yw1,

summing over v1 ∈ Yk−q−1, x ∈ X◦
i and v2 ∈ Yq such that v1xv2 is reduced, respectively

w1 ∈ Yl−q−1, y ∈ X◦
i , w2 ∈ Yq such that w2yw1 is reduced. Using Lemma 6.1 (i), we see

that
En(ab) =

∑
v1,w1

∑
i∈I

∑
u∈X◦

i

∑
x,y∈X◦

i

∑
v2,w2

αv1xv2βw2yw1 〈v2w2, 1〉 〈xy, u〉 v1uw1,

now summing over all v1 ∈ Yk−q−1, w1 ∈ Yl−q−1, v2, w2 ∈ Yq such that v1xv2 and w2yw1 are
reduced.
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Thus,

‖En(ab)‖22 =
∑
v1,w1

∑
i∈I

∑
u∈X◦

i

∣∣∣∣∣∣
∑

x,y∈X◦
i

∑
v2,w2

αv1xv2βw2yw1 〈v2w2, 1〉 〈xy, u〉

∣∣∣∣∣∣
2

.

Fix v1, w1 and i ∈ I. Set

z =
∑

x,y∈X◦
i

〈∑
w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉
xy ∈ spanXi.

It is a simple calculation to see that for u ∈ X◦
i ,

|〈z, u〉|2 =

∣∣∣∣∣∣
∑

x,y∈X◦
i

∑
v2,w2

αv1xv2βw2yw1 〈v2w2, 1〉 〈xy, u〉

∣∣∣∣∣∣
2

.

As αv1xv2 = 0 for x /∈ Fi(a), we get

‖z‖22 =

∥∥∥∥∥∥
∑

x∈Fi(a)

x
∑
y∈X◦

i

〈∑
w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉
y

∥∥∥∥∥∥
2

2

≤

 ∑
x∈Fi(a)

∥∥∥∥∥∥x
∑
y∈X◦

i

〈∑
w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉
y

∥∥∥∥∥∥
2

2

≤

 ∑
x∈Fi(a)

‖x‖

∥∥∥∥∥∥
∑
y∈X◦

i

〈∑
w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉
y

∥∥∥∥∥∥
2

2

≤

 ∑
x∈Fi(a)

‖x‖2
 ∑

x∈Fi(a)

∥∥∥∥∥∥
∑
y∈X◦

i

〈∑
w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉
y

∥∥∥∥∥∥
2

2


≤ K(a)2

∑
x∈Fi(a)

∑
y∈X◦

i

∣∣∣∣∣
〈∑

w2

βw2yw1w2,
∑
v2

αv1xv2v
∗
2

〉∣∣∣∣∣
2

≤ K(a)2
∑

x,y∈X◦
i

∥∥∥∥∥∑
w2

βw2yw1w2

∥∥∥∥∥
2

2

∥∥∥∥∥∑
v2

αv1xv2v2

∥∥∥∥∥
2

2

= K(a)2
∑
x,v2

|αv1xv2 |
2
∑
y,w2

|βw2yw1 |
2 .
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Now,

∑
u∈X◦

i

∣∣∣∣∣∣
∑

x,y∈X◦
i

∑
v2,w2

αv1xv2βw2yw1 〈v2w2, 1〉 〈xy, u〉

∣∣∣∣∣∣
2

=
∑
u∈X◦

i

|〈z, u〉|2 ≤ ‖z‖22

≤ K(a)2
∑
x,v2

|αv1xv2 |
2
∑
y,w2

|βw2yw1 |
2 .

Thus,

‖En(ab)‖22 ≤
∑
v1,w1

∑
i∈I

K(a)2
∑
x,v2

|αv1xv2 |
2
∑
y,w2

|βw2yw1 |
2

= K(a)2

∑
i∈I

∑
x,v2

|αv1xv2 |
2

(∑
i∈I

∑
y,w2

|βw2yw1 |
2

)

= K(a)2 ‖a‖22 ‖b‖
2
2 ,

as wanted.

Lemma 6.3. For a ∈ spanYk,

‖a‖ ≤ (2k + 1)K(a) ‖a‖2 .

Proof. It follows from the definition of the reduced free product that it suffices to show that

‖ab‖22 ≤ (2k + 1)K(a) ‖a‖2 ‖b‖2

for all b ∈ spanY . Let b ∈ spanY and set bj = Ej(b). Using Lemma 6.2 for all n ≥ 0,

‖En(ab)‖2 =

∥∥∥∥∥∥
n+k∑

j=|n−k|

En(abj)

∥∥∥∥∥∥
2

≤
n+k∑

j=|n−k|

‖En(abj)‖2

≤
n+k∑

j=|n−k|

K(a) ‖a‖2 ‖bj‖2

≤ K(a) ‖a‖2 (2k + 1)
1
2

 n+k∑
j=|n−k|

‖bj‖22

 1
2

,
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with the last inequality following from the Cauchy-Schwarz inequality. Now,

‖ab‖22 ≤
∞∑
n=0

‖En(ab)‖22

≤ K(a)2 ‖a‖22 (2k + 1)

∞∑
n=0

n+k∑
j=|n−k|

‖bj‖22

≤ K(a)2 ‖a‖22 (2k + 1)2
∞∑
n=0

‖bj‖22

= (2k + 1)2K(a)2 ‖a‖22 ‖b‖
2
2 .

Lemma 6.4. For a ∈ span
(⋃k

j=0 Yj

)
,

‖a‖ ≤ (2k + 1)
3
2K(a) ‖a‖2 .

Proof. Let aj = Ej(a) and note that a =
∑k

j=1 aj . Moreover, K(aj) ≤ K(a), which follows
simply by the definition. Using Lemma 6.3,

‖a‖ ≤
k∑
j=1

‖aj‖ ≤
k∑
j=1

(2j + 1)K(aj) ‖aj‖2

≤ (2k + 1)K(a)

k∑
j=1

‖aj‖2

≤ (2k + 1)K(a)(k + 1)
1
2

 k∑
j=1

‖aj‖22

 1
2

≤ (2k + 1)
3
2K(a) ‖a‖2 .

Lemma 6.4 plays a crucial role in the proof of the main theorem of this section. The strategy
of the proofs of Lemma 6.4 and Lemma 6.3 follows the work of Uffe Haagerup in [13], in
which he shows that the free group of finitely many generators, Fn for 1 ≤ n <∞, has the
rapid decay property, which will be touched upon later.
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Lemma 6.5. Suppose

v = a1a2 · · · ar, w = b1b2 · · · bs z = ctct−1 · · · c1,

are reduced words in A of length r, s and t such that s < min{r, t}. Then uwz is a linear
combination of reduced words in A of the form

a1a2 · · · ar′−1ar′b
′
1b

′
2 · · · b′sct′ct′−1 · · · c2c1

and of, possibly unreduced, words of the form

a1a2 · · · ar′−1ar′ct′ct′−1 · · · c2c1,

where t′ ≥ t− s and r′ ≥ r − s in both cases.

Proof. We prove the wanted by induction over s. Consider first s = 0. Then w = 1 and

vwz = vz = a1a2 · · · arctct−1 · · · c1,

which is of the wanted form. Let s > 0. Now

ar ∈ Ai, b1 ∈ Aj , bs ∈ Ak, ct ∈ Al

for some i, j, k, l ∈ I. We consider the following cases;
i) i 6= j and k 6= l, ii) i = j and k 6= l, iii) i 6= j and k = l, iv) i = j and k = l.

The case i) is clear as then vwz is reduced. Consider now the case of iv). If s = 1, then
i = j = k = l. Set b′1 = arb1ct − 〈arb1ct, 1〉 1 ∈ Ai and note that τ(b′1) = 0. Then

uwz = a1a2 · · · ar−1b
′
1ct−1ct−2 . . . c1 + 〈arb1ct, 1〉 a1a2 · · · ar−1ct−1ct−2 · · · c1,

which is of the wanted form. If s ≥ 2, set

b′1 = arb1 − 〈arb1, 1〉 1 ∈ Ai, b′s = bsct − 〈bsct, 1〉 1 ∈ Ak.

and τ(b′1) = τ(b′s) = 0. Then

uwz = a1a2 . . . ar−1b
′
1b2 · · · bs−1b

′
sct−1ct−2 · · · c1

+ 〈arb1, 1〉 a1a2 · · · ar−1b2 · · · bs−1b
′
sct−1ct−2 · · · c1

+ 〈bsct, 1〉 a1a2 · · · ar−1b
′
1b2 · · · bs−1ct−1ct−2 · · · c1

+ 〈arb1, 1〉 〈bsct, 1〉 a1a2 · · · ar−1b2 · · · bs−1ct−1ct−2 · · · c1.
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We see that the first term is reduced and the rest are, by the induction hypothesis, linear
combinations of words of the wanted form. The cases of ii) and iii) follow by similar
argument.

Lemma 6.6. Assume for some distinct pair of indices i1, i2 ∈ I that there exist at least one
unitary x ∈ X◦

i1
and at least two unitaries y, z ∈ X◦

i2
. Then for each a ∈ spanY there exist

unitaries u, v ∈ spanY and a constant K <∞ such that

‖(uav)n‖2 = ‖a‖n2 , K((uav)n) ≤ K,

for all n ≥ 1.

Proof. Let x ∈ X◦
i1

and y, z ∈ X◦
i2

be distinct unitary elements. Let k ≥ 1 be the length of
the longest word in the support of a, ensuring a ∈ span

(⋃k
j=1 Yj

)
and k is the least such

integer. Choose integer l such that l ≥ (k+3)/2. Define

u′ = (xy∗)l, v = (xz)l,

and note that u′, v ∈ spanY are both of length 2l. We begin by showing that whenever
w ∈ Yj and j ≤ k, then u′wv is a linear combination of reduced words in Y starting with x
and ending with z. For s, r ≤ 2l, let u′s be the word consisting of the first s letters of u′ and
vr the word consisting of the last r letters of v. It now follows from Lemma 6.5 that u′wv is
a linear combination of reduced words of the form u′sw

′vr and of possibly unreduced words
of the form u′svr, for s, r ≥ 2l−j ≥ 3 in either case. Letting w′ = w−τ(w)1 and noting that
w ∈ Y , we get w′ ∈ spanY hence u′sw′vr ∈ spanY . Now, by construction, each u′sw′vr is a
linear combination of elements in Y starting with x and ending with z. It remains to show
that the possibly unreduced words u′svr are of the same form whenever s, r ≥ 3. Consider
first the cases of s, r both even or s, r both odd. Then, by the choice of u′ and v, u′svr will
be a reduced word starting with x and ending with z. Assume now that s is even and r is
odd, then

u′svr = u′s−1y
∗zvr−1,

and if s is odd and r is even,

u′svr = u′s−2y
∗x2zvr−2 = u′s−2y

∗(x2 −
〈
x2, 1

〉
1)zvr−2 +

〈
x2, 1

〉
u′s−2y

∗zvr−2.

Hence, in all cases u′svr is a linear combination of words in Y beginning with x and ending
with z. We now have

u′av =

N∑
j=1

αjwj ,

where w1, . . . , wN are distinct elements of Y starting with x and ending with z each of
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length no greater than 2l + k. Choose now integer m ≥ (2l+k+1)/2 and consider

r = (xy)(xz)m(xy),

which is a unitary element in Y . For each n ≥ 1 and choice of j1, . . . , jn ∈ {1, . . . , N},
rwj1rwj2 . . . rwjn is a reduced element of Y . Furthermore, by the choice of r and properties
of the reduced free product,

rwj1rwj2 . . . rwjn = rwi1rwi2 . . . rwin

for some n ≥ 1 implies that i1 = j1, . . . , in = jn.
Set u = ru′. For n ≥ 1, we now have

(uav)n =

N∑
j1=1

N∑
j2=1

. . .

N∑
jn=1

αj1αj2 . . . αjnrwj1rwj2 . . . rwjn ,

where the words rwj1rwj2 . . . rwjn are reduced and distinct elements of Y . Hence the above
is the unique way to express (uav)n as a linear combination of basis elements in Y . By the
defintion,

K((uav)n) = K(uav),

for all n ≥ 1. Therefore, we may set K = K(uav). Moreover,

‖(uav)n‖2 =
N∑
j1=1

|αj1 |2
N∑
j2=1

|αj2 |2 . . .
N∑

jn=1

|αjn |2 = ‖a‖n2 .

For each a ∈ A let r(a) denote the spectral radius of a. For u, v ∈ U(A),

‖(uav)n‖ = ‖uavuav . . . uav‖ = ‖v(uav)v∗v(uav)(v∗v) . . . v∗v(uav)v∗‖

= ‖(vuavv∗)n‖ = ‖(vua)n‖ ,

meaning r(uav) = r(vuavv∗) = r(vua). Therefore,

inf
u,v∈U(A)

r(uav) = inf
ũ∈U(A)

r(ũa). (6.4)

For a ∈ A and u ∈ U(A),

dist(ua,GL(A)) = inf
x∈GL(A)

‖ua− x‖ = inf
x∈GL(A)

‖a− u∗x‖ = inf
y∈GL(A)

‖a− y‖ = dist(a,GL(A)).
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as u∗x ∈ GL(A) for any x ∈ GL(A). Moreover, for a ∈ A,

dist(a,GL(A)) ≤ dist(a, {a− λ1|λ ∈ C} ∩GL(A))

= inf
λ∈ρ(a)

‖a− (a− λ1)‖ = inf
λ∈ρ(a)

|λ| ≤ r(a),

where ρ(a) is the resolvent of a. Therefore,

r(ua) ≥ dist(ua,GL(A)) = dist(a,GL(A)). (6.5)

Theorem 6.7 (Dykema-Haagerup-Rørdam). Let (Ai, τi)i∈I be a family of unital C∗-algebras
Ai each equipped with a faithful normalized trace τi. Suppose that for some distinct pair of
indices i1, i2 ∈ I there exist unitary elements x ∈ Ai1 and y, z ∈ Ai2 such that

0 = τi1(x) = τi2(y) = τi2(z) = τi2(z
∗y).

Consider the reduced free product C∗-algebra (A, τ) = ∗i∈I(Ai, τi). Then sr(A) = 1.

Proof. For each Ai there exists an increasing separable net (Bi,α)α whose union is dense
in Ai. We may further assume that each Bi1,α contains x and each Bi2,α contains y, z.
Consider the reduced free product (Aα, φ) = ∗α(Bi,α, φi). Then (Aα)α is an increasing net
in A whose union is dense in A. Furthermore, if each Aα has stable rank 1, then so does A.
Therefore, we may assume that each Ai is separable. Using Lemma 4.4 on the orthogonal
sets {1, x} and {1, y, z} in Ai1 , respectively Ai2 , we can find standard orthonormal basis Xi

for each i ∈ I such that x ∈ X◦
i1

and y, z ∈ X◦
i2
. Let Y = ∗i∈IXi as previously defined. We

begin by proving the following inequality for a ∈ spanY :

inf
u∈U(a)

r(ua) ≤ ‖a‖2 .

Let a ∈ spanY and let k ≥ 1 be such that a ∈ span
⋃k
j=0 Yj . Let now u, v ∈ spanY be the

unitaries and K < ∞ the constant as in Lemma 6.6 and choose integer l ≥ 1 large enough
so that u, v ∈ span

⋃l
j=0 Yj . Then for each n ≥ 1, (uav)n ∈ span

⋃n(k+2l)
j=0 Yj . It follows from

Lemma 6.6 and Lemma 6.4 that

‖(uav)n‖ ≤ (2n(k + 2l) + 1)
3
2K((uav)n) ‖(uav)n‖2 ≤ (2n(k + 2l) + 1)

3
2K ‖a‖n2 .

Using (6.4) and (6.5), we see that

dist(a,GL(A)) ≤ inf
u∈U(A)

r(ua) ≤ r(uav) = lim inf
n→∞

‖(uav)n‖
1
n

≤ lim inf
n→∞

(2n(k + 2l) + 1)
3
2nK

1
n ‖a‖2 = ‖a‖2 .
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Having established the desired inequality, we will now show that sr(A) = 1. Assume for
contradiction that sr(A) 6= 1. It follows from Theorem 5.4 that there exists b ∈ A such that

1 = ‖b‖ = dist(b,GL(A)).

As Y is a standard orthonormal basis for A, there exists sequence (ak)k≥1 ⊂ spanY such
that ak converges to b in norm. Using the claim, we get

dist(ak,GL(A)) ≤ ‖ak‖2

for all k ≥ 1, which will in turn hold for b. It is an easy calculation to see that ‖a‖2 ≤ ‖a‖
for all a ∈ A, implying ‖b‖2 = ‖b‖ = 1. Moreover,

τ(1− b∗b) = τ(1− bb∗) = 1− ‖b‖2 = 0.

Note that 1−b∗b, 1−bb∗ are positive and τ is faithful, so 1 = b∗b = bb∗, meaning b is unitary,
hence also invertible, in contradiction to dist(b,GL(A)) = 1, proving that sr(A) = 1.

The condition on the family (Ai, τi)i∈I of existence of unitaries with the properties in The-
orem 6.7 is called the Avitzour condition and was considered by David Avitzour in [1]. One
of the consequences of the Avitzour conditions is that A is a simple C∗-algebra.

Theorem 6.8. Let A1, A2 be unital C∗-algebras with faithful tracial states ϕ1 and ϕ2.
Suppose there exist unitary elements x ∈ A1 and y, z ∈ A2 such that

0 = ϕ1(x) = ϕ2(y) = ϕ2(z) = ϕ2(z
∗y).

Let (A,ϕ) = (A1, ϕ1) ∗ (A2, ϕ2) be the reduced free product. Then A is simple.

A proof of Theorem 6.8 can be found in [1, Proposition 3.1], although in a slightly more
general setting than the above.

Corollary 6.9. Let G be a discrete group. Suppose that G = G1 ∗G2 of two groups G1, G2

satisfying |G1| ≥ 2 and |G2| ≥ 3. Then the reduced group C∗-algebra C∗
r (G) of G has stable

rank one.

Proof. It follows by the construction of the reduced free product and its universal property
that

(C∗
r (G), τ) ' (C∗

r (G1), τ1) ∗ (C∗
r (G2), τ2),

where τ1, τ2 are the canonical traces on G1, respectively G2. Recall that C∗
r (Gj) contains

{δgj | gj ∈ Gj} as an orthonormal set of unitaries with respect to the Euclidean structure
arising from the trace τj . Hence the conditions in Theorem 6.7 are satisfied, showing that
C∗
r (G) has stable rank 1.
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Let n ≥ 2 and consider the free group of n generators Fn. It is known that Fn ∼= Z∗n, the
n-fold free product of Z, and so it follows from Corollary 6.9 that sr(C∗

r (Fn)) = 1.
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7 Stable rank of C∗
r (G) for certain groups G

Taking inspiration from the proofs of Dykema, Haagerup and Rørdam in [9], Gerasimova and
Osin expanded the results in [12] to show that sr(C∗

r (G)) = 1 for acylindrically hyperbolic
groups with trivial finite radical and finite direct products of such groups. The proof of
Gerasimova and Osin rely on a result of Dykema and de la Harpe in [11]. The groups
considered in this section are assumed discrete.

Definition 7.1. Let G be a group and let F be a non-empty subset of G. Then

〈F 〉 = {f1 · · · fn | n ∈ N, fi ∈ F}

is the subsemigroup of G generated by F . We say that F is semifree if the subsemigroup
of G generated by F is free over F , i.e. if n,m ∈ N, f1, . . . , fn, f ′1, . . . , f ′m ∈ F then
f1 · · · fn = f ′1 · · · f ′m implies that n = m and fi = f ′i for all 1 ≤ i ≤ n.

Definition 7.2. A group G has the free semigroup property if for every finite subset F of
G there exists t ∈ G such that tF = {tf | f ∈ F} is semifree.

Denote by r2(a) the spectral radius of a ∈ C∗
r (G) corresponding to the 2-norm:

r2(a) = lim sup
k→∞

k

√
‖ak‖2.

Since ‖a‖2 ≤ ‖a‖,
r2(a) ≤ r(a),

where r(a) denotes the spectral radius of a with respect to the operator norm.

Definition 7.3. Let G be a group and F ⊂ G. We say that F has the `2-spectral radius
property if, for every a ∈ CG with supp(a) ⊂ F , it holds that r2(a) = r(a).

The following theorem of Dykema and de la Harpe [11, Theorem 1.4] describes a different
class of groups G with sr(G) = 1. The strategy of the proof follows those of the proofs of
Dykema, Haagerup and Rørdam presented in the previous section. It will play a crucial
role later on.

Theorem 7.4 (Dykema-de la Harpe). Let G be a group and suppose for every finite subset
F ⊂ G there exists t ∈ G such that tF is semifree and has the `2-spectral radius property.
Then sr(C∗

r (G)) = 1.

Proof. Recall that for any a in a unital C∗-algebra A we have

dist(a,GL(A)) ≤ r(a).
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Let G be a group and let c =
∑

g∈X cgδg ∈ CG for a semifree subset X of G. We claim that
r2(c) = ‖c‖2. Indeed, see that cn =

∑
y∈Xn cyδy with cy = cg1 · · · cgn for y = g1 · · · gn ∈ Xn.

It now follows as X is semifree that

‖cn‖22 =
∑
y∈Xn

|cy|2 =
∑
g1

|cg1 |2
∑
g2

|cg2 |2 . . .
∑
gn

|cgn |2 = ‖c‖2n2 ,

for all n ≥ 1. Hence
r2(c) = lim sup

k→∞

k

√
‖ck‖2 = ‖c‖2 .

Suppose now that for every finite subset F ⊂ G there exists t ∈ G such that tF is semifree
and has the `2-spectral radius property. Assume for contradiction that sr(C∗

r (G)) 6= 1.
Then there exists a ∈ C∗

r (G) with 1 = ‖a‖ = dist(a,GL(C∗
r (G))), cf. Theorem 5.4. As

in the proof of Theorem 6.7, ‖a‖2 = 1 would imply that a is unitary, in contradiction to
1 = dist(a,GL(C∗

r (G))). Hence, 0 < ‖a‖2 < 1. Let ε = 1 − ‖a‖2 and see that 0 < ε < 1.
Let b =

∑
g∈X βgδg ∈ CG with X = supp(b) such that ‖b− a‖ < ε

3 . Then

1 = dist(a,GL(C∗
r (G))) ≤

ε

3
+ dist(b,GL(C∗

r (G))),

implying that
1− ε

3
≤ dist(b,GL(C∗

r (G))).

Moreover, using again that ‖ba‖2 ≤ ‖b− a‖,

‖b‖2 ≤ ‖a‖2 + ‖b− a‖ < 1− ε+
ε

3
< 1− ε

3
≤ dist(b,GL(C∗

r (G))).

By defintion of the support, X is a finite subset. Thus, by assumption, there exists t ∈ G

such that tX is semifree and has the `2-spectral radius property. Let now c = δγb ∈ CG.
Then, as δγ is unitary, ‖c‖2 = ‖b‖2 and dist(c,GL(C∗

r (G))) = dist(b,GL(C∗
r (G))). Using

the claim, r2(c) = ‖c‖2 = ‖b‖2 , and as tX has the `2-spectral radius property,

‖b‖2 < dist(b,GL(C∗
r (G))) = dist(c,GL(C∗

r (G))) ≤ r(c) = r2(c) = ‖b‖2 ,

which cannot be. We conclude that sr(C∗
r (G)) = 1.

A combing on a group G generated by a set S is a map that to each pair of elements g, h ∈ G

assigns a path γg,h from g to h in the Cayley graph of G with respect to the generating
set S. A combing yields a map G×G→ P(G) which associates a path γg,h with its set of
vertices.
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Definition 7.5. Let G be a group. A generalized combing of G is a map C : G×G→ P(G).
The combing C is symmetric if C(x, y) = C(y, x) for all x, y ∈ G, and is G-equivariant if
C(gx, gy) = gC(x, y) for all x, y, g ∈ G.

Definition 7.6. Let G be a group. A map ` : G→ [0,∞) is a pseudolength function if

(i) `(g−1) = `(g) for all g ∈ G,

(ii) `(gh) ≤ `(g) + `(h) for all g, h ∈ G.

We say that ` is a length function if ` is a pseudolength function which furthermore satisfies
`(g) = 0 if and only if g = 1.

From now on, all pseudolength functions ` are assumed to take values only in N ∪ {0}.
Fix a group G with pseudolength function ` : G→ [0,∞). For n ∈ N, define

B(n) = {g ∈ G|`(g) ≤ n}.

Let C : G×G→ P(G) be a generalized combing. We associate to C two growth functions
γ, ρ : N → N ∪ {∞} defined by

γ(n) = sup
g∈G

|C(1, g) ∩B(n)|, ρ(n) = sup
g∈B(n)

sup
x∈C(1,g)

`(x).

Note that γ and ρ can in general take infinite values.
As previously, we wish to bound the operator norm by the 2-norm.

Proposition 7.7. Let G be a group with a pseudolength function ` : G→ [0,∞) and let S
be a subset of G. Suppose that there exists a symmetric G-equivariant generalized combing
C : G×G→ P(G) such that

C(1, s) ∩ C(s, g) ∩ C(1, g) 6= ∅

for all s ∈ S and g ∈ G, and the associated growth functions γ and ρ take only finite values.
Then for every a ∈ CG and n ∈ N such that supp(a) ⊂ S ∩B(n), it holds that

‖a‖ ≤ γ(ρ(n))
3
2 ‖a‖2 .

Further, if S is a subsemigroup of G and limk→∞
k
√
γ(ρ(k)) = 1, then r(a) = r2(a).

The following two lemmas are needed in order to prove Proposition 7.7
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Lemma 7.8. Let G be a group with a pseudolength function ` : G→ [0,∞) and a generalized
combing C : G × G → P(G) such that the associated growth functions γ and ρ only take
finite values. Then, for any n ≥ 1 and any s ∈ B(n), |C(1, s)| ≤ γ(ρ(n)).

Proof. By definition of γ and ρ, which furthermore only take finite values, we get C(1, s) ⊂
B(ρ(n)) for every s ∈ B(n). Thus

|C(1, s)| = |C(1, s) ∩B(ρ(n))| ≤ γ(ρ(n)).

Denote by R+G the subset of CG consisting of linear combinations
∑

g∈G αgδg with αg ∈ R+

and only finitely many αg 6= 0.

Lemma 7.9. Under the assumptions of Proposition 7.7, suppose further that a ∈ R+G.
Then, for every b ∈ R+G,

‖ab‖2 ≤ γ(ρ(n))
2
3 ‖a‖2 ‖b‖2 .

Proof. Fix integer n ≥ 1 and a ∈ R+G such that supp(a) ⊂ S ∩ B(n). For notational
purposes we define

Xg = C(1, g) ∩B(ρ(n))

for each g ∈ G. Furthermore, for g ∈ G and x ∈ Xg set

Sg,x = {s ∈ supp(a)|x ∈ C(1, g) ∩ C(s, g)}.

We claim that for any g ∈ G,
supp(a) ⊂

⋃
x∈Xg

Sg,x.

To see this, note that for s ∈ supp(a) we have C(1, s) ⊂ B(ρ(n)), as noted in the proof of
Lemma 7.8. By assumption

C(1, s) ∩ C(s, g) ∩ C(1, g) ∩B(ρ(n)) = C(1, s) ∩ C(s, g) ∩Xg 6= ∅.

Let x ∈ C(1, s) ∩ C(s, g) ∩ Xg. Then s ∈ Sg,x, implying s ∈
⋃
x∈Xg

Sg,x, which proves
the claim. We note that |Xg| ≤ γ(ρ(n)) for any g ∈ G. Write a =

∑
s∈supp(a) αsδs and

b =
∑

g∈G βgδg, with only finitely many βg 6= 0.
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Using that αs, βg ≥ 0 and the Cauchy-Schwarz inequality, we see that

‖ab‖22 =
∑
g∈G

|(ab)(g)|2 =
∑
g∈G

 ∑
s∈supp(a)

αsβs−1g

2

≤
∑
g∈G

∑
x∈Xg

∑
s∈Sg,x

αsβs−1g

2

≤
∑
g∈G

∑
x∈Xg

12

∑
x∈Xg

 ∑
s∈Sg,x

αsβs−1g

2
≤ γ(ρ(n))

∑
g∈G

∑
x∈Xg

 ∑
s∈Sg,x

αsβs−1g

2

≤ γ(ρ(n))
∑
g∈G

∑
x∈Xg

 ∑
s∈Sg,x

α2
s

 ∑
s∈Sg,x

β2s−1g


For x, g ∈ G, let

Tg,x = {s−1g|s ∈ Sg,x}.

Substituting t = s−1g, we see that

‖ab‖22 ≤ γ(ρ(n))
∑
g∈G

∑
x∈Xg

 ∑
s∈Sg,x

α2
s

 ∑
t∈Tg,x

β2t

 = γ(ρ(n))
∑
s∈G

∑
t∈G

Cs,tα
2
sβ

2
t ,

for some Cs,t ≥ 0. We claim that Cs,t is bounded from above by γ(ρ(n))2. Note that each
term α2

sβ
2
t appears at most once in the product

(∑
s∈Sg,x

α2
s

)(∑
t∈Tg,x β

2
t

)
. For fixed s and

t we see that Cs,t is bounded by the number of pairs (g, x) ∈ G×G such that x ∈ Xg, s ∈ Sg,x

and t ∈ Tg,x. If s ∈ Sg,x, then s ∈ supp(a) ⊂ B(n) and x ∈ C(1, s) ∩ C(s, g) ⊂ C(1, s).
Using Lemma 7.8, we see that |C(1, s)| ≤ γ(ρ(n)). Hence, for fixed s, there are at most
γ(ρ(n)) elements x such that s ∈ Sg,x.

Fix now x and t. See that t ∈ Tg,x is equivalent to gt−1 ∈ Sg,x, hence gt−1 ∈ supp(a).
Using that C is G-equivariant, we see that

x ∈ C(1, gt−1) ∩ C(gt−1, g) = g(C(g−1, t−1) ∩ C(t−1, 1)).

As ` is a pseudolength function, `(tg−1) = `(gt−1) ≤ n, implying that C(1, tg−1) ⊂ B(ρ(n)).
As C is G-equivariant and symmetric, we now have

g−1x ∈ C(g−1, t−1) ∩ C(t−1, 1) = t−1(C(tg−1, 1) ∩ C(1, t))

= t−1(C(1, tg−1) ∩ C(t, 1)) ⊂ t−1(B(ρ(n)) ∩ C(1, t)).

By the definition of γ,
|B(ρ(n)) ∩ C(1, t)| ≤ γ(ρ(n)),
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meaning that for any fixed x, t there exist at most γ(ρ(n)) elements g satisfying t ∈ Tg,x.
All combined, we have Cs,t ≤ γ(ρ(n))2. In conclusion,

‖ab‖22 ≤ γ(ρ(n))3
∑
s∈G

α2
s

∑
t∈G

β2t = γ(ρ(n))3 ‖a‖22 ‖b‖
2
2 .

Proof of Proposition 7.7. Given f =
∑

g∈G ηgδg ∈ CG, we define f+ =
∑

g∈G |ηg|δg ∈ R+G.
As previously, write a =

∑
s∈supp(a) αsδs and b =

∑
g∈G βgδg, with only finitely many βg 6= 0.

See first that for any f ∈ CG,

‖f‖2 =
∑
g∈G

|ηg|2 =
∥∥f+∥∥

2
.

By similar calculations as in the previous proof,

‖ab‖2 =
∥∥(ab)+∥∥

2
=
∑
g∈G

∣∣∣∣∣∣
∑

s∈supp(a)

αsβs−1g

∣∣∣∣∣∣
2

≤
∑
g∈G

 ∑
s∈supp(a)

|αs||βs−1g|

2

=
∥∥a+b+∥∥

2
.

Recall that CG is dense in C∗
r (G), and as the above inequality holds for arbitrary b ∈ CG,

we obtain using Lemma 7.9 that

‖a‖ = sup
b∈CG\{0}

‖ab‖2
‖b‖2

≤ sup
b∈CG\{0}

‖a+b+‖2
‖b+‖2

= sup
c∈R+G\{0}

‖ac‖2
‖c‖2

≤ sup
c∈R+G\{0}

γ(ρ(n))
3
2 ‖a+‖2 ‖c‖2
‖c‖2

= γ(ρ(n))
3
2 ‖a‖2 .

Assume now that S is a subsemigroup of G and limk→∞
k
√
γ(ρ(k)) = 1. Using that ` is a

pseudolength function, supp(ak) ⊂ S ∩B(nk). Then

‖ak‖ ≤ γ(ρ(nk))
3
2 ‖ak‖2,

and in particular

r(a) = lim
k→∞

k

√
‖ak‖ ≤ lim sup

k→∞
γ(ρ(nk))

3
2k ‖ak‖

1
k
2 = r2(a).

As previously noted r(a) ≥ r2(a), implying that r2(a) = r(a).
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As in [12], define a class C of groups in the following way:

Definition 7.10. Let C be the class of groups G with the following property: For any finite
subset F ⊂ G there exists pseudolength function ` on G, an element t ∈ G and a symmetric
G-equivariant generalized combing C : G×G→ P(G) such that

(i) tF is semifree,

(ii) C(1, s) ∩ C(s, g) ∩ C(1, g) 6= ∅ for all g ∈ G and s ∈ S,

(iii) The growth functions γ and ρ associated to C and computed with respect to ` are
bounded from above by some polynomials in n.

Corollary 7.11. Let G ∈ C. Then sr(C∗
r (G)) = 1.

Proof. Let G ∈ C and let F be a finite subset of G. By assumption, the growth functions
are bounded from above by some polynomials, meaning

1 ≤ k
√
γ(ρ(k)) ≤ k

√
p(k) → 1, k → ∞,

for some polynomial p. Moreover, tF is by assumption semifree and has the `2-spectral
property by Proposition 7.7. As F is arbitrary, it now follows from Theorem 7.4 that
sr(C∗

r (G)) = 1.

Definition 7.12. A group G has the rapid decay property, written property (RD), if there
exists a length function ` on G and constants s, c ≥ 0 such that for all a =

∑
g∈G αgδg ∈ CG,

it holds that

‖a‖ ≤ c

∑
g∈G

|(1 + `(g))sαg|2
 1

2

.

Rapid decay was, as previously mentioned, first established for free groups of finitely many
generators by Haagerup in [13], and was formalized and studied as a concept by Jolissaint
in [14]. Dykema and de la Harpe show in [11] that groups with property (RD) have the
`2-spectral radius property:

Proposition 7.13. Let G be a group with property (RD). For every a ∈ CG,

r(a) = lim
n→∞

n

√
‖an‖2 = r2(a).

In particular, G has the `2-spectral radius property.

Proof. Let ` be the length function for whichG has property (RD). Define `(a) = maxg∈supp(a) `(g)

and let c, s ≥ 0 be the constants such that for every a ∈ CG,

‖a‖ ≤ c

∑
g∈G

|(1 + `(g))sαg|2
 1

2

≤ c(1 + `(a))s ‖a‖2 .
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As
∥∥ak∥∥

2
≤
∥∥ak∥∥ and `(ak) ≤ k`(a) for all integers k ≥ 1,

r2(a) ≤ r(a) = lim
k→∞

k

√
‖ak‖ ≤ lim sup

k→∞

k

√
c(1 + `(ak))s ‖ak‖2

≤ lim sup
k→∞

k

√
c(1 + k`(a))s ‖ak‖2 = r2(a),

with the last equality following from the fact that k
√
c(1 + k`(a))s → 1 as k → ∞.

7.1 Acylindrically hyperbolic groups

This section presents the definition of acylindrically hyperbolic groups and the main theorem
of Gersimova and Osin in [12]. For further reading on acylindrically hyperbolic groups, the
reader is referred to [12, 15, 8].

Definition 7.14. Let δ > 0. A metric space X is δ-hyperbolic if it is geodesic and if for any
geodesic triangle ∆ in X every side of ∆ is contained in the union of the δ-neighborhoods
of the the two other sides.

Definition 7.15. Let G be a group and X a metric space. An isometric action of G on
X is acylindrical if for every ε > 0 there exist R,N > 0 such that for every x, y ∈ S with
d(x, y) ≥ R, there are at most N elements g ∈ G satisfying

d(x, gx) ≤ ε, d(y, gy) ≤ ε.

A subgroup is virtually cyclic if it contains a cyclic subgroup of finite index.

Definition 7.16. A group G is acylindrically hyperbolic if it admits an acylindrical action
on a hyperbolic space X which has unbounded orbits and G is not virtually cyclic.

Examples of acylindrically hyperbolic groups can be found in [12] and [8].
It was shown by Dahmani, Guirardel and Osin in [8] that every acylindrically hyperbolic

group G contains a unique maximal finite normal subgroup called the finite radical of G,
which is denoted by K(G). As noted in [12], the acylindrically hyperbolic groups with
trivial finite radical and direct products of such groups are C∗-simple.

Theorem 7.17 (Gerasimova-Osin). Let G1, . . . , Gk be acylindrically hyperbolic groups with
K(Gi) = {1} for all 1 ≤ i ≤ k. Then sr(C∗

r (G1 × · · · ×Gk)) = 1. In particular, C∗
r (G) has

stable rank one for any acylindrically hyperbolic group with trivial finite radical.

The following proposition is the main result of Section 4 in [12], but the proof is beyond
the scope of this thesis.
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Proposition 7.18. Let G be an acylindrically hyperbolic group with trivial finite radical
K(G) and let F be a non-empty finite subset of G. Then there exists length function ` on G,
an element t ∈ G and a symmetric G-equivariant generalized combing C : G × G → P(G)

such that

(i) tF is semifree,

(ii) C(1, s) ∩ C(s, g) ∩ C(1, g) 6= ∅ for all g ∈ G and s ∈ S,

(iii) The growth functions γ and ρ associated to C and computed with respect to ` are
bounded from above by a linear function.

It remains to show that the reduced group C∗-algebra of finite direct products of such
groups also has stable rank one. In fact, C is closed under taking finite direct product.

Lemma 7.19. C is closed under taking finite direct products.

Proof. It suffices to prove that G = G1 ×G2 ∈ C for any G1, G2 ∈ C.
Let finite F ⊂ G be given. Let Fi be the projection of F to Gi for i = 1, 2 and see that

F ⊂ F1 × F2. As G1, G2 ∈ C, there exist t1 ∈ G1 and t2 ∈ G2 such that t1F1, respectively
t2F2, is semifree in G1, respectively G2. We claim that (t1, t2)(F1 × F2) is semifree in G,
which in turn implies that (t1, t2)F is semifree in G. To prove the claim, let t1F1 = {fi}i
and t2F2 = {gj}j . Assume that

(fi1 , gj1) . . . (fin , gjn) = (fk1 , gl1) . . . (fkm , glm),

equivalent to fi1 . . . fin = fk1 . . . fkm and gj1 . . . gjn = gk1 . . . gkm . As each tiFi is semifree,
the equality implies that n = m and is = ks, js = ls for all 1 ≤ s ≤ n, which proves the
claim. Letting t = (t1, t2) proves (i) in Definition 7.10 for G.

Let `i, Ci be the pseudolength functions and symmetric Gi-equivariant generalized comb-
ings on Gi for i = 1, 2 such that

Ci(1, s) ∩ Ci(s, g) ∩ Ci(g, 1) 6= ∅,

for all g ∈ Gi and s ∈ Si, where Si is the subsemigroup generated by tiFi. Define generalized
combing C : G×G→ P(G) by

C((g1, g2), (h1, h2)) = C1(g1, h1)× C2(g2, h2)

for all (g1, g2), (h1, h2) ∈ G. It follows immediately from the fact that each Ci is symmetric
and Gi-equivariant that C is symmetric and G-equivariant, proving (ii) in Definition 7.10.

Define ` : G → [0,∞) by `((g, h)) = max{`1(g), `2(h)} for all (g, h) ∈ G. As `1, `2
are pseudolength functions, so is `. It remains to show that the corresponding growth
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functions γ, ρ on G are bounded from above by some polynomials. Let Bi(n), respectively
B(n), denote the balls of radius n centered at 1 in Gi, respectively G, with respect to
the pseudolength functions `i, `. Then B(n) = B1(n) × B2(n) for all n ∈ N. For every
g = (g1, g2) ∈ G,

B(n) ∩ C(1, g) = (B1(n)×B2(n)) ∩ (C1(1, g1)× C2(1, g2))

= (B1(n) ∩ C1(1, g1))× (B2(n) ∩ C2(1, g2)).

Thus

γ(n) = sup
g∈G

|B(n) ∩ C(1, g)| = sup
(g1,g2)∈G1×G2

|(B1(n) ∩ C1(1, g1))× (B2(n) ∩ C2(1, g2))|

= sup
(g1,g2)∈G1×G2

|B1(n) ∩ C1(1, g1)||B2(n) ∩ C2(1, g2)|

≤ γ1(n)γ2(n).

Recall that for g = (g1, g2) ∈ B(n) and x = (x1, x2) ∈ C(1, g) we have `i(xi) ≤ ρi(n). Thus

`(x) ≤ max{ρ1(n), ρ2(n)},

and so
ρ(n) = sup

g∈B(n)
sup

x∈C(1,g)
`(x) ≤ ρ1(n)ρ2(n),

using that ρi(n) ≥ 1 for all n ≥ 1. By assumption γi, ρi are bounded from above by
polynomials, so the above implies that the same holds for γ, ρ. We conclude that G ∈ C.

Combining Proposition 7.18, Lemma 7.19 and Corollary 7.11 proves Theorem 7.17.

Examples 7.20. Consider the free group of two generators, F2. We will show that F2 ∈ C.
Let `(g) for g ∈ F2 be the word length of the reduced word g.

Let F ⊂ F2 be a finite subset, and let n be the length of the longest word in F . We
claim that the subsemigroup S =

〈
(ba)n+1F

〉
is semifree. Note that elements in S begin

with ba. Assume that x, y ∈ S with x = y. Write

x = (ba)n+1f1(ba)
n+1f2 · · · (ba)n+1fk, y = (ba)n+1f ′1(ba)

n+1f ′2 · · · (ba)n+1f ′r,

with fi, f ′j ∈ F for all i, j. After (possibly) reducing, write

x = (ba)n+1x1(ba)
n+1x2 · · · (ba)n+1xk, y = (ba)n+1y1(ba)

n+1y2 · · · (ba)n+1y2.

Thus, x = y implies, using the properties of the free group, that r = k and xi = yi for all
1 ≤ i ≤ k, in turn implying fi = f ′i for all 1 ≤ i ≤ k.
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Consider combing on F2 which to each pair of elements in g, h ∈ F2, assigns the shortest
path γg,h in the Cayley graph of F2. One can do so, as the Cayley graph of F2 is a tree. Let
C : F2 × F2 → P(F2) be the generalized combing corresponding to the described combing.
That C is symmetric and equivariant follows simply as the Cayley graph is a tree. Note
that if g, h ∈ F2 start with different letters then C(g, h) must contain 1. If g, h start with
the same letter, C(g, h) will contain said letter. In either case,

C(1, g) ∩ C(g, h) ∩ C(1, h) 6= ∅.

Let n ≥ 1 and assume g ∈ B(n). Then for all x ∈ C(1, g) we have `(x) ≤ `(g) ≤ n, implying

ρ(n) = sup
g∈B(n)

sup
x∈C(1,g)

`(x) ≤ n.

Moreover, see that |C(1, g)| is equal `(g) + 1. Therefore,

γ(n) = sup
g∈G

|C(1, g) ∩B(n)| = n+ 1,

which proves that F2 ∈ C.
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