Let V be a real vector space. In Note 11 the tensor spaces $T^k(V)$ were defined, together with the tensor product

$$(S,T) \mapsto S \otimes T, \quad T^k(V) \times T^l(V) \to T^{k+l}(V).$$

There is an important construction of vector spaces which resemble tensor powers of V, but for which there is a more refined structure. These are the so-called exterior powers of V, which play an important role in differential geometry because the theory of differential forms is built on them. They are also of importance in algebraic topology and many other fields.

A multilinear map

$$\varphi: V^k = V \times \cdots \times V \to U$$

is called *alternating* if for all $v_1, \ldots, v_k \in V$ the value $\varphi(v_1, \ldots, v_k)$ changes sign whenever two of the vectors v_1, \ldots, v_k are interchanged, that is

$$\varphi(v_1, \dots, v_i, \dots, v_j, \dots, v_k) = -\varphi(v_1, \dots, v_j, \dots, v_i, \dots, v_k). \tag{1}$$

Since every permutation of the numbers $1, \ldots, k$ can be decomposed into transpositions, it follows that

$$\varphi(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = \operatorname{sgn} \sigma \varphi(v_1, \dots, v_k)$$
(2)

for all permutations $\sigma \in S_k$ of the numbers $1, \ldots, k$.

Examples. 1. Let $V = \mathbb{R}^3$. The vector product $(v_1, v_2) \mapsto v_1 \times v_2 \in V$ is alternating from $V \times V$ to V.

2. Let $V = \mathbb{R}^n$. The $n \times n$ determinant is multilinear and alternating in its columns, hence it can be viewed as an alternating map $(\mathbb{R}^n)^n \to \mathbb{R}$.

Lemma 1. Let $\varphi: V^k \to U$ be multilinear. The following conditions are equivalent:

- (a) φ is alternating,
- (b) $\varphi(v_1,\ldots,v_k)=0$ whenever two of the vectors v_1,\ldots,v_k coincide,
- (c) $\varphi(v_1,\ldots,v_k)=0$ whenever the vectors v_1,\ldots,v_k are linearly dependent.

Proof. (a) \Rightarrow (b) If $v_i = v_j$ the interchange of v_i and v_j does not change the value of $\varphi(v_1, \ldots, v_k)$, so (1) implies $\varphi(v_1, \ldots, v_k) = 0$.

(b) \Rightarrow (a) Consider for example the interchange of v_1 and v_2 . By linearity

$$0 = \varphi(v_1 + v_2, v_1 + v_2, \dots)$$

= $\varphi(v_1, v_1, \dots) + \varphi(v_1, v_2, \dots) + \varphi(v_2, v_1, \dots) + \varphi(v_2, v_2, \dots)$
= $\varphi(v_1, v_2, \dots) + \varphi(v_2, v_1, \dots)$.

It follows that $\varphi(v_2, v_1, \dots) = -\varphi(v_1, v_2, \dots)$.

(b) \Rightarrow (c) If the vectors v_1, \ldots, v_k are linearly dependent then one of them can be written as a linear combination of the others. It follows that $\varphi(v_1, \ldots, v_k)$ is a linear combination of terms in each of which some v_i appears twice.

$$(c)\Rightarrow(b)$$
 Obvious. \square

In particular, if $k > \dim V$ then every set of k vectors is linearly dependent, and hence $\varphi = 0$ is the only alternating map $V^k \to U$.

Definition 1. An alternating k-form is an alternating k-tensor $V^k \to \mathbb{R}$. The space of these is denoted $A^k(V)$, it is a linear subspace of $T^k(V)$.

We define
$$A^1(V) = V^*$$
 and $A^0(V) = \mathbb{R}$.

Example. Let $\eta, \zeta \in V^*$. The 2-tensor $\eta \otimes \zeta - \zeta \otimes \eta$ is alternating.

The following lemma exhibits a standard procedure to construct alternating forms.

Lemma 2. For each $T \in T^k(V)$ the element $Alt(T) \in T^k(V)$ defined by

$$Alt(T)(v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn} \sigma T(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$
(3)

is alternating. Moreover, if T is already alternating, then Alt(T) = T.

Proof. Let $\tau \in S_k$ be the transposition corresponding to an interchange of two vectors among v_1, \ldots, v_k . We have

$$\operatorname{Alt}(T)(v_{\tau(1)},\ldots,v_{\tau(k)}) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn} \sigma T(v_{\tau \circ \sigma(1)},\ldots,v_{\tau \circ \sigma(k)}).$$

Since $\sigma \mapsto \tau \circ \sigma$ is a bijection of S_k we can substitute σ for $\tau \circ \sigma$. Using $\operatorname{sgn}(\tau \circ \sigma) = -\operatorname{sgn}(\sigma)$, we obtain the desired equality with $-\operatorname{Alt}(T)(v_1, \ldots, v_k)$.

If T is already alternating, all the summands of (3) are equal to $T(v_1, \ldots, v_k)$. Since $|S_k| = k!$ we conclude that Alt(T) = T. \square

Let e_1, \ldots, e_n be a basis for V, and ξ_1, \ldots, ξ_n the dual basis for V^* . We saw in Note 11 that the elements $\xi_{i_1} \otimes \cdots \otimes \xi_{i_k}$ form a basis for $T^k(V)$. We will now exhibit a similar basis for $A^k(V)$. We have seen already that $A^k(V) = 0$ if k > n.

Theorem 1. Assume $k \leq n$. For each subset $I \subset \{1, ..., n\}$ with k elements, let $1 \leq i_1 < \cdots < i_k \leq n$ be its elements, and let

$$\xi_I = \text{Alt}(\xi_{i_1} \otimes \cdots \otimes \xi_{i_k}) \in A^k(V).$$
 (4)

These elements ξ_I form a basis for $A^k(V)$. In particular, dim $A^k(V) = \frac{n!}{k!(n-k)!}$.

Proof. It follows from the last statement in Lemma 2 that Alt: $T^k(V) \to A^k(V)$ is surjective. Applying Alt to the basis elements $\xi_{i_1} \otimes \cdots \otimes \xi_{i_k}$ for $T^k(V)$, we therefore obtain a spanning set for $A^k(V)$. Notice that

$$\operatorname{Alt}(\xi_{i_1} \otimes \cdots \otimes \xi_{i_k})(v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn} \sigma \ \xi_{i_1}(v_{\sigma(1)}) \cdots \xi_{i_k}(v_{\sigma(k)}),$$

which is 1/k! times the determinant of the $k \times k$ matrix $(\xi_{i_p}(v_q))_{p,q}$. It follows that $\text{Alt}(\xi_{i_1} \otimes \cdots \otimes \xi_{i_k}) = 0$ if there are repetitions among the i_1, \ldots, i_k . Moreover, we can rearrange these numbers in increasing order at the cost only of a possible change of the sign. Therefore $A^k(V)$ is spanned by the elements ξ_I in (4).

Consider a linear combination $T = \sum_{I} a_{I} \xi_{I}$ with some coefficients a_{I} . Applying the k-tensor ξ_{I} to an element $(e_{j_{1}}, \ldots, e_{j_{k}}) \in V^{k}$, where $1 \leq j_{1} < \cdots < j_{k} \leq n$, we obtain 0 except when $(j_{1}, \ldots, j_{k}) = I$, in which case we obtain 1. It follows that $T(e_{j_{1}}, \ldots, e_{j_{k}}) = a_{J}$ for $J = (j_{1}, \ldots, j_{k})$. Therefore, if T = 0 we conclude $a_{J} = 0$ for all the coefficients. Thus the elements ξ_{I} are independent. \square

In analogy with the tensor product $(S,T) \mapsto S \otimes T$, from $T^k(V) \times T^l(V)$ to $T^{k+l}(V)$, there is a construction of a product $A^k(V) \times A^l(V) \to A^{k+l}$. Since tensor products of alternating tensors are not alternating, the construction is more delicate.

Definition 2. Let $S \in A^k(V)$ and $T \in A^l(V)$. The wedge product $S \wedge T \in A^{k+l}(V)$ is defined by

$$S \wedge T = \text{Alt}(S \otimes T).$$

Example Let $\eta_1, \eta_2 \in A^1(V) = V^*$. Then by definition $\eta_1 \wedge \eta_2 = \frac{1}{2}(\eta_1 \otimes \eta_2 - \eta_2 \otimes \eta_1)$.

Since the operator Alt is linear, the wedge product depends linearly on the factors S and T. It is more cumbersome to verify the associative rule for \wedge . In order to do this we need the following lemma.

Lemma 3. Let $S \in T^k(V)$ and $T \in T^l(V)$. Then

$$Alt(Alt(S) \otimes T) = Alt(S \otimes Alt(T)) = Alt(S \otimes T).$$

Proof. We will only verify

$$Alt(Alt(S) \otimes T) = Alt(S \otimes T).$$

The proof for the other expression is similar.

Let $G = S_{k+l}$ and let $H \subset G$ denote the subgroup of permutations leaving each of the last elements $k+1, \ldots, k+l$ fixed. Then H is naturally isomorphic to S_k . Now

$$\operatorname{Alt}(\operatorname{Alt}(S) \otimes T)(v_1, \dots, v_{k+l})$$

$$= \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn} \sigma \operatorname{Alt}(S)(v_{\sigma(1)}, \dots, v_{\sigma(k)}) T(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

$$= \frac{1}{(k+l)!k!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn} \sigma \sum_{\tau \in S_k} \operatorname{sgn} \tau S(v_{\sigma(\tau(1))}, \dots, v_{\sigma(\tau(k))}) T(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

$$= \frac{1}{(k+l)!k!} \sum_{\tau \in H} \sum_{\sigma \in G} \operatorname{sgn}(\sigma \circ \tau) S(v_{\sigma(\tau(1))}, \dots, v_{\sigma(\tau(k))}) T(v_{\sigma(\tau(k+1))}, \dots, v_{\sigma(\tau(k+l))}).$$

Since $\sigma \mapsto \sigma \circ \tau$ is a bijection of G we can substitute σ for $\sigma \circ \tau$, and we obtain the desired expression, since there are k! elements in H. \square

Lemma 4. Let $R \in A^k(V)$, $S \in A^l(V)$ and $S \in A^m(V)$. Then

$$(R \wedge S) \wedge T = R \wedge (S \wedge T) = \text{Alt}(R \otimes S \otimes T).$$

Let $S \in T^k(V)$ and $T \in T^l(V)$.

Proof. It follows from the preceding lemma that

$$(R \wedge S) \wedge T = \text{Alt}(\text{Alt}(R \otimes S) \otimes T) = \text{Alt}(R \otimes S \otimes T)$$

and

$$R \wedge (S \wedge T) = \text{Alt}(R \otimes \text{Alt}(S \otimes T)) = \text{Alt}(R \otimes S \otimes T).$$

Since the wedge product is associative, we can write any product $T_1 \wedge \cdots \wedge T_r$ of tensors $T_i \in A^{k_i}(V)$ without specifying brackets. In fact, it follows by induction from Lemma 4 that

$$T_1 \wedge \cdots \wedge T_r = \operatorname{Alt}(T_1 \otimes \cdots \otimes T_r)$$

regardless of how brackets are inserted in the wedge product.

In particular we see that the basis elements ξ_I in Theorem 1 are given by

$$\xi_I = \xi_{i_1} \wedge \cdots \wedge \xi_{i_k}$$

where $I = (i_1, \ldots, i_k)$ is an increasing sequence from $1, \ldots, n$, and the basis elements ξ_i from V^* are viewed as 1-forms. This will be our notation for ξ_I from now on.

Lemma 5. Let $\eta, \zeta \in V^*$, then

$$\zeta \wedge \eta = -\eta \wedge \zeta. \tag{5}$$

More generally, if $S \in T^k(V)$ and $T \in T^l(V)$ then

$$T \wedge S = (-1)^{kl} S \wedge T \tag{6}$$

Proof. The identity (5) follows immediately from the fact that $\eta \wedge \zeta = \frac{1}{2}(\eta \otimes \zeta - \zeta \otimes \eta)$. Since $A^k(V)$ is spanned by elements of the type $S = \eta_1 \wedge \cdots \wedge \eta_k$, and $A^l(V)$ by elements of the type $T = \zeta_1 \wedge \cdots \wedge \zeta_l$, where $\eta_i, \zeta_j \in V^*$, it suffices to prove (6) for these forms. In order to rewrite $T \wedge S$ as $S \wedge T$ we must let each of the k elements η_i pass the l elements ζ_j . The total number of sign changes is therefore kl. \square