MATTER UNDER THE INFLUENCE OF EXTREMELY
STRONG MAGNETIC FIELDS
(with E.H. Lieb and J. Yngvason)

There are huge magnetic fields at the surface of a neutron
star - as large as 10'® Gauss, as measured spectroscopically.
The atoms there are iron with nuclear charge 7 = 26. The

natural unit of magnetic field is
B* =m?e’c/h® = 2.35 x 10° Gauss,
so we are talking about large fields.
The cyclotron radius = aog(B*/B )1/ > ap = Bohr radius.

These large fields are trapped by collapsing current loops when

the neutron star is born from a collapsing star.



HAMILTONIAN (non-relativistic)

N

Hy =Y (HY - Zlz@)™)+ Y Je(@) —2(4)|™

i=1 1<i<j<N
2 2
Ha=((p-A(2)-0) =(p-Ax))’ -0 B
B = (0,0, B) = constant, A:%Bxa:
0 1 0 —2 1 0
w=(1 o) 2= 7) m=(o 5)

We want the ground state energy, Ey of Hy for N (e.g. N =
N
Z) fermions with spin, i.e. v € A\ L*(R>; C?).

THOMAS-FERMI THEORY

As usual, we hope that we can replace the N-body problem

by a functional of the electron density p.

Eyx" =inf{EMF (p)|p: R® — R+,/p =N}

(o) = [ rplo)da= [ Zpla)dats [ ola)la—sl " o(w)dedy



What is 75(p)? (= p°/3 when B = 0). We first study the

one-body problem with Hamiltonian
H =Ha —V(x).

Generalized Lieb-Thirring inequality:

Theorem 1. There exist universal constants Ly,Ly > 0
such that if we let e;(B,V), j = 1,2,... denote the negative
eigenvalues of Ha —V with 0 <V € L32(R3)NL°/2(R?) then

S ey (B,V)] < LlB/V(x)3/2da:+L2/V(a:)5/2da:.

J

We can choose L1 as close to 2/3m as we please, compensating
with Lo large.

Note: o - B is a constant. What we are really estimating
is the sum of the eigenvalues of (p — A)? — V(z). below +B

(the bottom of the continuous spectrum).



SCALING AND SEMI-CLASSICAL LIMIT
1 = [(hp — ba()) - o — v(z),
a(z ):%(O 0,1) x z and v > 0.
Theorem 2. Let e;j(h,b,v),7 = 1,2,..., denote the neg-

ative eigenvalues of H, with 0 < v € L3?(R?) N L*/2(R3).
Then

%ii%z |ej(h,b,v)|/ESC1(h,b,v) =1
J

uniformly in b, where

Escl(h,b,v) 37/2 2b/< 3/2+22 —2 bh 3/2> dz.

The effective parameter is bh. For bh < 1, the right side

reduces to the standard semiclassical formula

2
o h~3 / v(x)5/2dx.



We take 75(p) to be the Legendre transform of the semi-

classical function

VHSTB <V3/2—|—2Z — 2w B3/2> ()

Thus, 75(p) = energy/unit volume of free particles in box with
magnetic field B.
The many-body Hamiltonian Hy can be reduced to a one-

body operator with the mean field potential:
V= Zz|™t — |z|7! % pMTF,

From the scaling of the minimizer pMTE of eMTF e find that

the effective parameters are
h=(B/Z>'% and b= (B%/Z)'/°.

Thus when B < Z2 the semiclassical approach is appropriate

and our analysis is consistent.



1)

B < Z*/3, (i.e., hb < 1,h small):
The effect of the magnetic field is negligible. We get stan-

dard Thomas-Fermi theory with 75(p) = p5/3,

B ~ Z%/3 (i.e., hb ~ 1,h small):

J. Yngvason, Lett. Math. Phys. 22, 107 (1991).

The magnetic field becomes important. The function 75
is complicated because we have a finite number of terms

in (*). The density is still spherical.

743 « B < Z3 (i.e., hb>> 1,h small):

The magnetic field is increasingly important. (Most elec-
trons will, in a certain sense, be confined to the lowest
Landau band.) The function 7p is simple since the sum
is not present in (x) and therefore 75(p) ~ p°>/B?. The
density is spherical and furthermore the atom is getting

smaller. The atomic radius behaves as Z1/5B~2/5,

B~ 7% (ie., h 2 1):

In this regime one can no longer use semiclassics. The
functional EMTF is not a good approximation to the energy
for any 7p(p). The atom is no longer spherical. A density

matrix functional works, however.

B> 73, (i.e., h>>1):
This is the hyper-strong regime. Atoms are highly cylin-

drical, almost one-dimensional.



THE NON-SEMICLASSICAL CASE B > 73
The following result is important in the study of the non-

semiclassical case
Theorem 3. Let B/Z*/3 — oo as Z — oo. Let Il

N
denote the projection in )\ L?>(R>; C?) onto states in which all

N electrons are in the lowest Landau band. Consider
MoHnTlo =T | > ps(i)* = Zl2(d)| ™" + ) _ [2(d) —=(5)|7" | Mo,
i i<j

(using TgHallg = Io((p — A(z)) - 0)*I1y = Hgp3lly) and let
Eg\(,)) be the corresponding ground state energy. Then, as Z —
OO?

We again reduce to a mean-field Hamiltonian:
o3 (ps()=ZL(0)| = +p[(0)] =) Ty = Tho MO

where h;(z (7)) is a one-dimensional Schrédinger operator de-

pending on the two-dimensional parameter = (i) = (z1(¢), z2(7)).



Our problem is to find the infimum
inf(W,> " hi(zL(i)V

over all ¥ satisfying

N
ve ANL*(R%C?), ||¥=1, MU =0. ()

Define

P}/H’JJ_(:E37 y3> —

N/ (#1,95),2(2), - ) U ((21,23),2(2), ... ) du(2) ... dz(N).

We can consider v, , as a trace class operator on L?(R). Then

because of the density of states in the lowest Landau band

V]| =1= /TI'LZ(R)I:”}/ZEJ_]dCE_L =N

N
B
Ue ANIL*(R%C?), MU =0 =0<n,, < oL (k%)

We avoid Il by relaxing () to the right side of (x  x).
The operator h(z, ) depends on the unknown density p(x).
We get around this problem again by defining a functional:

EPM () :/TI”L?(R)[(P?,—Z|33|_1)%L]d$L+%//py(x)py(y)|x—y|_1dxdy

where p,(z) = 75, (23, 23).



We define the energy

B
EPM(N, Z, B) = inf{£PM () /TrLQ(R) [, Jdw =N, 0< 9., < —1}
T

The scaling is

N B
EPM(N 7 B) = Z3EPM(_ 1. ).
( I ) ) (Z’7Z3)

This is the second time that we see the ratio B/Z® as a non-
trivial parameter in the theory, it also played the role of an

effective Planck’s constant.

Theorem 1. (Energy) Let EQ(N, 7, B) denote the quantum
energy. If N/Z is fized and B/Z*/®> — co (to ensure confine-

ment in the lowest Landau band) as Z — oo then
EX¥(N, 7, B)/EPM(N,Z,B) — 1

Theorem 2. (Regions)

Region 4: If B/Z> is fived then vy, , has finite rank (depending
on B/Z3) for almost all z, .

Region 3: As B/Z% — 0 the rank of v,, tends to infinity

allowing for the semiclassical treatment.



Region 5: There is a critical n. such that for B/Z3 > n. the

rank of v, s one. Then

’YJ:J_ Qfg,yg \/p’)/ 33_L7:E3 \/p’)/ QJJ_,yg

Thus the energy 1s in this case again a functional only of the

density
gDM(,y) — SSS(Py)-

In the limit B/Z3 — oo, the functional £5° reduces after
an appropriate rescaling to a functional of a one-dimensional
density which can be minimized in closed form. Examples of
the conclusions we can draw from this explicit minimization:

As Z — oo and B/Z? — oo we get

e Maximal number of electrons in atom:
liminf N.(Z)/Z > 2 (non-neutrality)

e Energy:

BN, 2, B) (‘% (%) *s (%) - (%)) 78 n(B/7°)]”

¢ Binding energy of neutral diatomic molecule (Z + 7):
(a) Energy of molecule ~ —Z 2% [ln(B/Z?’)]
(b) Energy of two atoms = —ﬂZg’ [ln(B/Z3)]
(b) Binding energy ~ gZS [ln(B/Z?’)}2
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