MATTER UNDER THE INFLUENCE OF EXTREMELY STRONG MAGNETIC FIELDS

(with E.H. Lieb and J. Yngvason)

There are huge magnetic fields at the surface of a neutron star - as large as 10^{13} Gauss, as measured spectroscopically. The atoms there are *iron* with nuclear charge Z=26. The natural unit of magnetic field is

$$B^* = m^2 e^3 c/\hbar^3 = 2.35 \times 10^9$$
 Gauss,

so we are talking about large fields.

The cyclotron radius $= a_0(B^*/B)^{1/2}, \ a_0 = \text{Bohr radius}.$

These large fields are trapped by collapsing current loops when the neutron star is born from a collapsing star.

HAMILTONIAN (non-relativistic)

$$H_{N} = \sum_{i=1}^{N} (H_{\mathbf{A}}^{(i)} - Z|x(i)|^{-1}) + \sum_{1 \le i < j \le N} |x(i) - x(j)|^{-1}$$

$$H_{\mathbf{A}} = \left((\mathbf{p} - \mathbf{A}(x)) \cdot \boldsymbol{\sigma} \right)^{2} = (\mathbf{p} - \mathbf{A}(x))^{2} - \boldsymbol{\sigma} \cdot \boldsymbol{B}$$

$$\mathbf{B} = (0, 0, B) = \text{constant}, \quad \mathbf{A} = \frac{1}{2} \mathbf{B} \times x$$

$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We want the ground state energy, E_N of H_N for N (e.g. N=Z) fermions with spin, i.e. $\psi \in \bigwedge^N L^2(\mathbf{R}^3; \mathbf{C}^2)$.

THOMAS-FERMI THEORY

As usual, we hope that we can replace the N-body problem by a functional of the electron density ρ .

$$E_N^{\rm TF} = \inf \left\{ \mathcal{E}^{\rm MTF}(\rho) \middle| \rho : \mathbf{R}^3 \to \mathbf{R}^+, \int \rho = N \right\}$$

$$\mathcal{E}^{\rm MTF}(\rho) = \int \tau_B(\rho) dx - \int \frac{Z}{|x|} \rho(x) dx + \frac{1}{2} \int \rho(x) |x-y|^{-1} \rho(y) dx dy$$

What is $\tau_B(\rho)$? (= $\rho^{5/3}$ when B=0). We first study the one-body problem with Hamiltonian

$$H = H_{\mathbf{A}} - V(x).$$

Generalized Lieb-Thirring inequality:

Theorem 1. There exist universal constants $L_1, L_2 > 0$ such that if we let $e_j(B, V), j = 1, 2, ...$ denote the negative eigenvalues of $H_{\mathbf{A}} - V$ with $0 \le V \in L^{3/2}(\mathbf{R}^3) \cap L^{5/2}(\mathbf{R}^3)$ then

$$\sum_{j} |e_{j}(B, V)| \le L_{1}B \int V(x)^{3/2} dx + L_{2} \int V(x)^{5/2} dx.$$

We can choose L_1 as close to $2/3\pi$ as we please, compensating with L_2 large.

Note: $\sigma \cdot \mathbf{B}$ is a constant. What we are really estimating is the sum of the eigenvalues of $(\mathbf{p} - \mathbf{A})^2 - V(x)$. below +B (the bottom of the continuous spectrum).

SCALING AND SEMI-CLASSICAL LIMIT

$$H = [(h\mathbf{p} - b\mathbf{a}(x)) \cdot \boldsymbol{\sigma}]^2 - v(x),$$

$$a(x) = \frac{1}{2}(0, 0, 1) \times x$$
 and $v \ge 0$.

Theorem 2. Let $e_j(h, b, v), j = 1, 2, ...,$ denote the negative eigenvalues of H, with $0 \le v \in L^{3/2}(\mathbf{R}^3) \cap L^{5/2}(\mathbf{R}^3)$.

Then

$$\lim_{h \to 0} \sum_{j} |e_j(h, b, v)| / E_{\text{scl}}(h, b, v) = 1$$

uniformly in b, where

$$E_{\rm scl}(h,b,v) = \frac{1}{3\pi^2} h^{-2} b \int \left(v(x)^{3/2} + 2 \sum_{\nu=1}^{\infty} [v(x) - 2\nu b h]_+^{3/2} \right) dx.$$

The effective parameter is bh. For $bh \ll 1$, the right side reduces to the standard semiclassical formula

$$\frac{2}{15\pi^2}h^{-3}\int v(x)^{5/2}dx.$$

We take $\tau_B(\rho)$ to be the Legendre transform of the semiclassical function

$$V \mapsto \frac{1}{3\pi^2} B\left(V^{3/2} + 2\sum_{\nu=1}^{\infty} [V - 2\nu B]_+^{3/2}\right).$$
 (*)

Thus, $\tau_B(\rho) = \text{energy/unit}$ volume of free particles in box with magnetic field B.

The many-body Hamiltonian H_N can be reduced to a one-body operator with the mean field potential:

$$V = Z|x|^{-1} - |x|^{-1} * \rho^{\text{MTF}}.$$

From the scaling of the minimizer ρ^{MTF} of \mathcal{E}^{MTF} we find that the effective parameters are

$$h = (B/Z^3)^{1/5}$$
 and $b = (B^2/Z)^{1/5}$.

Thus when $B \ll Z^3$ the semiclassical approach is appropriate and our analysis is consistent.

- 1) $B \ll Z^{4/3}$, (i.e., $hb \ll 1, h \ small$):
 The effect of the magnetic field is negligible. We get standard Thomas-Fermi theory with $\tau_B(\rho) = \rho^{5/3}$.
- 2) $B \sim Z^{4/3}$ (i.e., $hb \sim 1, h$ small):

 J. Yngvason, Lett. Math. Phys. 22, 107 (1991).

 The magnetic field becomes important. The function τ_B is complicated because we have a finite number of terms in (*). The density is still spherical.
- 3) $Z^{4/3} \ll B \ll Z^3$ (i.e., $hb \gg 1$, h small): The magnetic field is increasingly important. (Most electrons will, in a certain sense, be confined to the lowest Landau band.) The function τ_B is simple since the sum is not present in (*) and therefore $\tau_B(\rho) \sim \rho^3/B^2$. The density is spherical and furthermore the atom is getting smaller. The atomic radius behaves as $Z^{1/5}B^{-2/5}$.
- 4) $B \sim Z^3$ (i.e., $h \gtrsim 1$): In this regime one can no longer use semiclassics. The functional \mathcal{E}^{MTF} is not a good approximation to the energy for any $\tau_B(\rho)$. The atom is no longer spherical. A density matrix functional works, however.
- 5) $B \gg Z^3$, (i.e., $h \gg 1$): This is the hyper-strong regime. Atoms are highly cylindrical, almost one-dimensional.

THE NON-SEMICLASSICAL CASE $B \geq Z^3$

The following result is important in the study of the nonsemiclassical case

Theorem 3. Let $B/Z^{4/3} \to \infty$ as $Z \to \infty$. Let Π_0 denote the projection in $\bigwedge^N L^2(\mathbf{R}^3; \mathbf{C}^2)$ onto states in which all N electrons are in the lowest Landau band. Consider

$$\Pi_0 H_N \Pi_0 = \Pi_0 \left(\sum_i p_3(i)^2 - Z|x(i)|^{-1} + \sum_{i < j} |x(i) - x(j)|^{-1} \right) \Pi_0,$$

(using $\Pi_0 H_{\mathbf{A}} \Pi_0 = \Pi_0 ((\mathbf{p} - \mathbf{A}(x)) \cdot \boldsymbol{\sigma})^2 \Pi_0 = \Pi_0 p_3^2 \Pi_0$) and let $E_N^{(0)}$ be the corresponding ground state energy. Then, as $Z \to \infty$,

$$E_N^{(0)}/E_N \to 1.$$

We again reduce to a mean-field Hamiltonian:

$$\Pi_0 \sum_{i} \left(p_3(i)^2 - Z|x(i)|^{-1} + \rho *|x(i)|^{-1} \right) \Pi_0 = \Pi_0 \sum_{i} h_i(x_{\perp}(i)) \Pi_0,$$

where $h_i(x_{\perp}(i))$ is a one-dimensional Schrödinger operator depending on the two-dimensional parameter $x_{\perp}(i) = (x_1(i), x_2(i))$.

Our problem is to find the infimum

$$\inf \langle \Psi, \sum_{i} h_i(x_{\perp}(i)) \Psi \rangle$$

over all Ψ satisfying

$$\Psi \in \bigwedge^N L^2(\mathbf{R}^3; \mathbf{C}^2), \qquad \|\Psi\| = 1, \qquad \Pi_0 \Psi = \Psi.$$
 (**)

Define

$$\gamma_{x_{\perp}}(x_3, y_3) = N \int \Psi^* \Big((x_{\perp}, y_3), x(2), \dots \Big) \Psi \Big((x_{\perp}, x_3), x(2), \dots \Big) dx(2) \dots dx(N).$$

We can consider $\gamma_{x_{\perp}}$ as a trace class operator on $L^2(\mathbf{R})$. Then because of the density of states in the lowest Landau band

$$\|\Psi\| = 1 \Longrightarrow \int \operatorname{Tr}_{L^{2}(\mathbf{R})}[\gamma_{x_{\perp}}] dx_{\perp} = N$$

$$\Psi \in \bigwedge^{N} L^{2}(\mathbf{R}^{3}; \mathbf{C}^{2}), \quad \Pi_{0}\Psi = \Psi \Longrightarrow 0 \le \gamma_{x_{\perp}} \le \frac{B}{2\pi} \mathbf{1}. \ (* * *)$$

We avoid Π_0 by relaxing (**) to the right side of (* * *).

The operator $h(x_{\perp})$ depends on the unknown density $\rho(x)$. We get around this problem again by defining a functional:

$$\mathcal{E}^{\text{DM}}(\gamma) = \int \text{Tr}_{L^{2}(\mathbf{R})} [(p_{3}^{2} - Z|x|^{-1})\gamma_{x_{\perp}}] dx_{\perp} + \frac{1}{2} \int \int \rho_{\gamma}(x)\rho_{\gamma}(y)|x-y|^{-1} dx dy$$
where $\rho_{\gamma}(x) = \gamma_{x_{\perp}}(x_{3}, x_{3})$.

We define the energy

$$E^{\mathrm{DM}}(N,Z,B) = \inf\{\mathcal{E}^{\mathrm{DM}}(\gamma) | \int \mathrm{Tr}_{L^{2}(\mathbf{R})}[\gamma_{x_{\perp}}] dx_{\perp} = N, \ 0 \le \gamma_{x_{\perp}} \le \frac{B}{2\pi} \mathbf{1}\}.$$

The scaling is

$$E^{\text{DM}}(N, Z, B) = Z^3 E^{\text{DM}}(\frac{N}{Z}, 1, \frac{B}{Z^3}).$$

This is the second time that we see the ratio B/Z^3 as a non-trivial parameter in the theory, it also played the role of an effective Planck's constant.

Theorem 1. (Energy) Let $E^{\mathbb{Q}}(N, Z, B)$ denote the quantum energy. If N/Z is fixed and $B/Z^{4/3} \to \infty$ (to ensure confinement in the lowest Landau band) as $Z \to \infty$ then

$$E^{\mathcal{Q}}(N,Z,B)/E^{\mathcal{DM}}(N,Z,B) \to 1$$

Theorem 2. (Regions)

Region 4: If B/Z^3 is fixed then $\gamma_{x_{\perp}}$ has finite rank (depending on B/Z^3) for almost all x_{\perp} .

Region 3: As $B/Z^3 \to 0$ the rank of $\gamma_{x_{\perp}}$ tends to infinity allowing for the semiclassical treatment.

Region 5: There is a critical η_c such that for $B/Z^3 \geq \eta_c$ the rank of $\gamma_{x_{\perp}}$ is one. Then

$$\gamma_{x_{\perp}}(x_3, y_3) = \sqrt{\rho_{\gamma}(x_{\perp}, x_3)} \sqrt{\rho_{\gamma}(x_{\perp}, y_3)}.$$

Thus the energy is in this case again a functional only of the density

$$\mathcal{E}^{\mathrm{DM}}(\gamma) = \mathcal{E}^{\mathrm{SS}}(\rho_{\gamma}).$$

In the limit $B/Z^3 \to \infty$, the functional \mathcal{E}^{SS} reduces after an appropriate rescaling to a functional of a one-dimensional density which can be minimized in closed form. Examples of the conclusions we can draw from this explicit minimization:

As
$$Z \to \infty$$
 and $B/Z^3 \to \infty$ we get

• Maximal number of electrons in atom:

$$\liminf N_c(Z)/Z \ge 2$$
 (non-neutrality)

• Energy:

$$E^{Q}(N, Z, B) \approx \left(-\frac{1}{48} \left(\frac{N}{Z}\right)^{3} + \frac{1}{8} \left(\frac{N}{Z}\right)^{2} - \frac{1}{4} \left(\frac{N}{Z}\right)\right) Z^{3} \left[\ln(B/Z^{3})\right]^{2}$$

- Binding energy of neutral diatomic molecule (Z + Z):
 - (a) Energy of molecule $\approx -\frac{7}{6}Z^3 \left[\ln(B/Z^3)\right]^2$
 - (b) Energy of two atoms $\approx -\frac{7}{24}Z^3 \left[\ln(B/Z^3)\right]^2$
 - (b) Binding energy $\approx \frac{7}{8}Z^3 \left[\ln(B/Z^3)\right]^2$