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Categories Catl.1

Categories

1. Categories.

(1.1). Here are a few concepts from the jungle of categories. Explaiat they mean.

Identity; morphism, isomorphism, endomorphism, autorh@m; monomorphism, epi-
morphism; subobject, quotient object; initial object, fiobject, zero object; equalizer or ker-
nel, coequalizer or cokernel; sum, product; fibered produgtillback diagram, amalgamated
sum or pushout diagram; opposite categéf§ of a category¢; functor and contravariant
functor; transformation of functors;

(1.2) Examples. Fundamental are the categorigstsof sets andib of abelian groups.

Basic examples from set theory and combinatorics: the oage&fets) of pointed (based)
sets, the categoryiniteSetsof finite sets; the categolyOS of partially ordered sets (with
strictly increasing maps as morphisms); the cate@ayof small categories (with functors
as morphisms).

Basic algebraic examples: the categ@y of groups; the categorfRings of (unital)
commutative rings; the categoryAlg of k-algebras (of some given fixed type, for instance
associative and unital (also, fér= 7Z called noncommutative rings), or Lie, or Jordan, or
... ); the categoryyMod of R-modules.

Basic geometrical examples: the categ@oy of topological spaces, the categdiyp,)
of pointed topological spaces, the categbtjd of manifolds (of some given fixed type, for
instance topological manifolds, pl-manifolds, algebraignifolds (over a given field); *°-
manifolds (real or complex), analytic manifolds, ); the categorySchemesof schemes
(possibly over a fixed base scheme).

Some very small examples: the categ@nyith no objects; the categofy(or x) with one
object and the identity as the only morphism; the cate@ory 1 with two objects, say 0 and
1, and two morphisms 6> 1 (and two identities).

Every setM defines aliscrete categoryits objects are the elements &f and the only
morphisms are the identities. An additional category aetifrom M has the same objects,
and exactly one morphisin— j for any pair of element§, j) in M.

Every pre-ordered séM, <) defines a category, denotéft its objects are the elements
of M, and for elements j € M there is a single morphisin— j if i < j, and no morphism
otherwise. In fact, a pre-ordered sets may be indentified savitategories in which, for any
pair of objects, j, there is at most one morphism- ;.
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Catl1l.2 Categories

(1.3) Example. For every nonnegative integer denote by ] the finite set,
[7] =1{0,1,...,n}.

Three important categories, ss andsss have as objects the set of honnegative integers
0,1, 2,...;the sets of morphisms,

Homs(p, g), Homss(p, q), Homssdp, q),

are the sets of all mapp] — [¢] that are, respectively, arbitrary, weakly increasing, or
strictly increasing.

(1.4) Diagram categories.A quiver D is an oriented multigraph. It consists of a $ebf
vertices a setE of edgesor arrows, and two map#,e¢: E — V. Foru,v € V anda € E,
we writea : u — v for the statementi(«) = u ande(a) = v.

If D is a quiver, then @-diagramin the category is function F associating with every
vertexv of D an objectF (v) of € and with every arrow ob a morphismF («) of € such that
if «:u — vthenF(a): F(u) — F(v). There is an obvious catego® of D-diagrams of
¢.

The path categoryP (D) of a quiver D has as objects the set of verticesfand as
morphisms the set of all strings,

(u,a1,...,0,,0),

whereu, v are vertices ofD and thex; aren arrows of D and eithem = 0 andu = v,
orn > 0 andu = e(a1), b(e;) = e(ajr1) forl < i < n, b(a,) = v. Composition of
composable morphisms is essentially concatenation.



Exact categories Cat2.1

2. Exact categories.

Fix a categoril.

(2.1) Definition. An object of2l is called azero objectand usually denoted O, if it is both a
final and initial object oR(. If 2 has a zero object, then for any pair B of objects, theero
morphism

0=045: A — B,

is the compositiom — 0 — B. It behaves like a zero in the sense tii@t=0and @ =0
for morphismsf: B — B’ andg: A’ — A.

(2.2) Definition. Assume tha®l has a zero object. Lef: A — B be a morphism. By
definition, akernelfor f, denoted Kerf, is an equalizer for the paif, 0: A — B,

Ker(f) := Ker(f, 0),

and aCokernelfor f, denoted Cokf, is a coequalizer for the payff, O.

In other words, a morphis/d — A is a kernel off, ifand onlyif K — A — B is
the zero morphism and, for every morphigmA’” — A such thatA’” — A — B is the
zero morphism, there exists a unigue morphismA’ — K such that: is the composition
A’ — K — A. The morphism?’ is said to beinducedby h. Clearly, there is a dual
description of the cokernel, and a similar notationrafucedmaps. The setup is indicated
in the following diagrams:

A*»B*»C

e N

K—»A—»B

Note that the kernel as a morphigtn— A is monic, unique up to canonical isomorphism;
hence, equivalently, we may think tife kernelof f/: A — B as a subobjeck of A with
the canonical injectiok <— A. Dually, we may think othe cokernehs a quotienC of B
with the canonical projectioB — C.

Note that ifK is the kernel off: A — B, andu: B — B’ is a monomorphism, theki is
alsothe kernel ofif : A — B’. Dually, if C is the cokernel off: A — B andv: A" — Ais
epic, thenC is also the cokernel of v: A’ — B.

(2.3) Definition. Assume tha®l has a zero object, and kernels and cokernels.fL.et — B
be a morphism i(. Thenthe imageof f, denoted Imf, is the kernel ofB — Cok f, and
the coimagef f, denoted Coiny, is the cokernel of Kef — A.

There is an induced morphism, called tb&nonical morphissnmaking the following

diagram commmutative:
A—— Coimf

fl lf

B<~——1Imf.

9



Cat2.2 Categories

Inded, use the definition of Coirfi as a cokernel to obtain the mapof the first of the
following diagrams; the composition Coifi— B — Cok f is the zero morphism, and the
definition of Im f as a kernel yield¥ .

Kerf — A —— Coimf Kerf —— A —— Coimf

0 aur;
RN ST

Cokf «— B <~——1mf, Cokf «— B<~——1mf.

Note. Itis easy to see that all three morphisns> B, A — Coim, andA — Im f have
Ker f as kernel. Dually, all three morphisms— B, Coimf — B, and Imf — B have
Cok f as cokernel.

(2.4) Definition. The categoryl is anexact categoryf it has a zero object and kernels and
cokernels, and if for every morphisigh: A — B the canonical morphisnf: Coim f —
Im f is an isomorphism.

(2.5) Proposition. Assume tha®l is an exact category, and Ift A — B be a morphism in
2. Then:

() f is monic, iffKer f =0, iff A — Im f is an isomorhism.

(2) f isepic, iffCok f =0, iff Im f — B is an isomorhism.

(3) f isisomorphic, ifff is monic and epic, ifKer f = Cok f = 0.
Moreover, for a given factorization df:

YN

Ay

B.

(4) If u is monic and is epic, therA —~ C is a kernel ofv, iff C —*~ B is a cokernel
ofu.
(5) If u is epic and is monic, therC = Im f = Coim f.

Proof. (1) If A — Im f is an isomorphism, then it is in particular monic; hence,ssthe
compositionA — Im f — B, that is, f is monic. Clearly, iff is monic, then Kerf = 0.
Finally, if Ker f = 0 thenA — Coim f is an isomorphism and hence, by the exactness
propertyA — Im f is an isomorphism.

The proofs of the remaining assertions are similar. a

Note. The property (4) produces a bijective correspondance fegtwee subobjecta of C
and the quotient object8 of C. The quotient object corresponding to the subohjeof C
is usually denoted’/ A.

(2.6) Definition. Assume tha®l is an exact category. A sequence of morphisnt,of
...Hxn—lﬁxnﬂxnﬁLlH...

b

10



Exact categories Cat 2.3

is a complexor a zero sequengaf f” f"~1 = 0 or, equivalently, Imf"~1 < Ker f",
for all n. For a zero sequence, thé&h cohomologyH” is the cokernel of the morphism
x"~1 — Ker £, or, equivalently, the quotient quotient object:

H" :=Ker f"/Im f"~1;

it may also be described as the kernel of the morphism €ok — X”*+1. The sequence is
called anexact sequendéit is a zero sequence arfd” = O for all n.

The word ‘complex’ is reserved for an infinite sequence agatdd in the notation, but
otherwise the definitions apply with obvious modificationginite sequences. A diagram is
called arexact diagranif every sequence formed by consequtive, composable marpbin
a stragth line in the diagram is exact.

Note the following cases:

The sequence 8 A — A’is exact, iffA” — A is monic.

The sequence 8 A’ — A > B” is exact, iffA” — A is a kernel ofu.

The sequencd’ —“~ A S B ¥ Bis exact, iff it is a zero sequence and the induced
map Coku — Kerv is an isomorphism.

(2.7) Note. Clearly, for any commutative diagram 2,

A—— A

fl Lf’

B— B/,

there is a unique (induced) morphism Ker— Ker f’ making the following diagram com-

mutative:
Ker f — Ker f’

A Al
Similarly, the given diagram induces morphims between thieemels, the images and the
coimages.

(2.8) The 3-lemma.Assume tha&l is an exact category. ConsideRiran exact, commutative
diagram,

0O—A'—A— A
f’i fl f”l ()
0 B’ B B”.
Then: (1) The induced sequence of kern@ls> Ker f' — Ker f — Ker f” is exact.
(2) If f” is monic, the induced mapok f' — Cok f is monic.

Proof. (1) It suffices to note that Kef’ — Ker f is a kernel of Kerf — Ker f”.

11



Cat2.4 Categories

(2) Assume thatf” is monic. Clearly, to prove (2), we may replace in the diagthm
objectA” withIm(A — A”). So we may assume that— A” is epic. In an obvious choice
of notation, let 0—- C’ — C — C” be the induced sequence of images of fie It fits
into a commutative diagram,

0 c’ C c”

i’i il i”l (%)

O—~B —~B—>B".

We will prove that the top row of¥) is exact. Note first that witlk’ := Ker f/, K := Ker f,
andK” := Ker f”, the sequenc€’” — C — C” — 0 is the sequence of cokernels induced
from the following commutative diagram,

K'—>K-—~K"—>0

o @

A A A" 0.

The rows of (#) are exact. Indeed, in the top row we hk¥e= 0, and so exactness follows
from (1); the bottom row is exact since we assumed that- A” is epic. So, by the dual
assertion (I, the sequenc€’ — C — C” — 0 is exact. Moreover, in the commutative
diagram §), the injectionC’ — B’ and the morphisnB’ — B are monic. Henc€’ — C

is monic. Therefore, the top row of)is exact.

Sothe commutative diagram)(s exact. The vertical morphisms &j@re monic, and their
cokernels are the same as those of the original diagear®¢ we may assume in the original
diagram &) that all the vertical morphisms are monic. Under this agstion itis easy to verify
that the morphisny’ : A’ — B’ is a kernel of the composition:= (B’ — B — D), where
D := Cok f. So Cokf’ is the coimage, and hence equal to the imagé, &s an image, it
injects intoD. So the morphism Cok’ = Imh — D = Cok f is a monomorphism. Hence
(2) has been proved. a

(2.9) The 4-Lemma. Assume thall is an exact category, and consider an exact commutative
diagram,

Ao A A A"

v

Bop——>B ——~B—~B"
If Ag — By is epic, therKer f' — Ker f — Ker f” is exact.

Proof. Split the diagram into two commutative diagrams:

Ag—>A —>A O0—~A—~A—>A"

S noa

Bp— B —~B, 0 B B B,

12



Exact categories Cat 2.5

wheref: A — B is the induced morphism of images.

The two diagrams are exact. Therefore, by Assertion (2. 8){& sequence & Ker f —
Ker f — Ker f” is exact, and by the assertion dual to (2.8)(2), the morpKienf’ — Ker f
is epic. The assertion of the Proposition is a consequence. a

(2.10) The Ker-Coker sequence of a compositionAssume tha®l is exact. Then, for two
composable morphisms. A — B andg: B — C, there is an exact sequence,

0— Kerf — Kergf — Kerg — Cok f — Cokgf — Cokg — 0.

Proof. Apply the 4-lemma (2.9) three times to parts of the followthggram:

0 »0 ~Kerf A 1+B ~ Cokf

S R

0 0 0 C=—=C 0,

to obtain the exact sequence,
0— Kerf — Kergf — Kerg — Cok f.

Conclude by duality. a
(2.11) Corollary. The second Noether Isormorphism Theorem Assume tha®l is exact.
Then for subobject6y C C C A of an objectA, there is a canonical isomorphism,

C/Co—> Ker(A/Co— A/C).

(2.12) The Snake Lemma.Assume tha?l is an exact category. Then an exact commutative
diagram irt,
0

|

Ag— A — > A—> A" —» AO

foi f’l fi f”i fOL

Bo B’ B B” BO

|

0,
induces an exact sequence,

Ker f/ —» Ker f — Ker f” —°» Cok f' —» Cok f — Cok f”.

13



Cat 2.6 Categories

More precisely, seK = Ker(A — B”) andL := Cok(A’” — B). Then the induced
morphismK — Ker 1" is epic, the induced morphis@ok f' — L is monic, and is the
uniqe morphism making the following diagram commutative:

K — Ker f”

’
’
’
’
’
’
s

A
/B
5 l
Cok f/ —— L,

Proof. Let C — B” be the kernel oB” — B°. Then the morphismt — B’ lifts uniquely
to a morphismA — C having kernelK, and fitting into a commutative, exact diagram,

Ag— > A — > A— A" —» AO

N

0— >0 C B” BO,

Apply The 4-Lemma (2.9) twice to obtain the first of the follog exact sequences:
Al—~K —~Kerf”—0 0—~Cokf —L —B" *)

The second exact sequence is obtained by the dual argumeog¢. tBe compositiond” —
K — LandK — L — B” are zero morphisms, the existence and uniquenegsaoé
obtained from the exactness in (*). By the 4-Lemma (2.9) amality, to prove that the long
sequence of kernels and cokernels is exact, we need onlg\e firat the following sequence
is exact:

Ker f —~ Ker f” %~ Cok f';

as the morhism Cok’ — L is a monomorphism, it suffices to prove that the following
sequence is exact:
Ker f — Ker f” — L (2.12.2)

is exact. Apply the 4-Lemma (2.9) to the following diagram:
A - K - Kerf” -0

s

A'—~>B ~ L ~ 0.

It follows that the morphism K&K — B) — Ker(Ker f”” — L) is an epimorphism. This
epimorphism factors through the morphism Ker> Ker(Ker f” — L). Hence the latter
morphism is an epimorphism as well. Therefore, (2.12.2x&ce a

14



Exact categories Cat 2.7

(2.13) Definition. In the setup of the Snake Lemma, the exact sequence of keanéls
cokernels will be called thenake sequencand the morphismd will be called thesnake
morphismor theconnecting morphism

(2.14) The 5-Lemma.Under the hypotheses of the Snake Len{gha3) if the morphisms
f" and " are isomorphisms, then so f& In particular, the middle morphisnfi is an
isomorphism if the othef vertical morphisms are isomorphisms.

Proof. Exactness of the snake sequence yields Ker Cok f = 0. a

(2.15) The Push-out Lemma.Assume tha®l is exact. Consider at push-out diagram,

A~ A

fl lf”

B '~ p
(1) The induced morphisit@oka — Cok g is an isomorphism.
(2) If f ora is an epimorhism, thelkera — Ker g is an epimorphism.

Proof. (1) Leta”: A — A9 be the cokernel of: A — A”. Then, by the assumed push-
out properties, applied ®@” and the zero morphistB — AY, there is a unique morphism
B’ B” — A% such that8” f” = o” andp”g = 0. Now check thap”: B” — Alis a
cokernel of8: B — B”.

(2) Assume tha is epic. We have to prove that both induced morphismsKes Ker g
and Kerf — Ker f” are epic. First, it follows from (1) that is epic. Therefore, completing
the given diagram with the kernels @fand g, we obtain an exact, commutative diagram,

0 » A A % A" 0
A I
0 B B F.p" 0.

By the Snake Lemma there is an induced exact sequence,
Ker f —~ Ker f” 2~ Cok f' — Cok f — Cok f".

If suffices to prove that is the zero morphism. Indeed, if= 0, then it follows that the
first morphism Kerf — Ker f” in the sequence is epic; moreover, as the last morphism in
the sequence is an isomorphism by (1), it follows that ok= 0, that is, the morphism
f': Kera — Ker B is epic.

Now, by the Snak Lemma, is induced by the composition,

Ker(A - B”") - A — B — Cok(A’ — B).

It follows from the assumed push-out properties haB — B” is a cokernel oA’ — B.
Soé is induced by the zero morphism, and hence equal to zero. a

15



Cat2.8 Categories

(2.16) Proposition. Let F: 2l — B be a functor between exact categories.

(1) If F is faithfull then it reflects zero object, zero morphismgj aract sequences.
(2) The functorF preserves exact sequences, if and only if for every shoct eeguence
in%A,

0—>A —»A—>A"—>0,

the following sequence is exactm,

0O—FA'—FA—FA" —0,

Proof. (1) The zero object 0 ol is the only object for which En@) consists of single
morphism. Therefore, iFA = 0, thenA = 0.

Assume fora: A — A’ that F(«) = 0. The zero morphism £y is the composition
Opar = @044. Therefore,F(044) = OpapaF(044) = 0. In particular,F(a) = F(0q4/).
Thereforep = 04 4-.

Assume for sequences

F (@)

A% A% A" and FA' L9, pa @ gy

that the last sequence is exact. First, sifitea’) = F () F(a’) = 0, itfollows thatea’ = 0;
hence the first sequence is a zero sequence. Consider thétyvards,

Kera F(Kera)
i R« L N«
/ , F) 7
A/ o 'A a'AN, FA %FAWFA,
K\ i \ l
Coka’ F(Coka').

[Why is F(0): F(Kera) — F(A”) equal to the zero morphism {B??7?]

It follows that F (Kera) — F(Coka”) is the zero morphism. Hence Ker— Coka' is
the zero morphism. Consequently, -~ A — A” is exact.

(2) The proof of the second assertion is immediate. a

(2.17) Exercises.

1. Let2A be a category with a zero object 0, and¥et= 2* be the category of al-indexed
families of objectsX = (X') from 2. For any objectA e 2 and any integen, let A(—n)
denote the family wittd (—n)"* = A andA(—n)’ = Ofori # n. Prove for any familyx < 8
that the two natural morphisms are isomorphisms:

Px —n=x=[]x"n).

nez nez

[Hint: don’t assume in advance the existence of the produdtie coproduct.]

16



Additive categories Cat3.1

3. Additive categories.

Let A be a category.

(3.1) Definition. The categorl is said tchave a semi-additive Hom-structuféhere is given,
for any pair of objectsX, Y in 2, a structure on Hom(X, Y) as a commutative (additive)
monoid such that composition of morphisms,

Homgy (Y, Z) x Homy (X, Y) — Homy (X, Z),

isbi-additive that is, a homomorphism of monoids in each variable. Theai@womposition
in Homy (X, Y), calledaddition, is denoted f, g) — f + g, and the neutral element in
Homgy (X, Y), called thezero morphismis denoted @y or simply 0. Note that it is part of
the definition of bi-additivity, and not a consequence ofdkénition, that any composition
with a zero morphisms yields a zero morphism.

(3.2) Definition. Assume that the catego®y has finite products. Then we say tligtite
products are finite sum# the following two conditions hold:

(add 1) The final object d¥l is also initial (and hence a zero object, denoted 0).
(add 2) For every pair of objects, Y of 2, the diagram,

1 0
x 9 xyy D oy

is a direct sum o andY.

More symmetrically, the two conditions hold2f has finite products, finite sums, a zero-
object, and if for all objectX, Y the morphism,

1
Xxvy © x.y (3.2.1)

from the sum to the product, is an isomorphism.
If the conditions hold, it is common to denote By® Y both the sum and the product
under the canonical isomorphim. It comes with four morplsism
X1 X1 @ X2 <2 X3 0 ifiL
such that prin; = { T l 7 J
- or 1. ifi=.
X1 < X106 X2 —> X2
We use the well known matrix-notation to describe morphigrasveen direct sums: A
morphismfrom a direct sum is given by a row, a morphinto a direct sum is given by a
column; accordingly, a morhism from a direct sum to a direchs$s given by a column of

rows (or a row of columns), that is, by a matrix.

17



Cat 3.2 Categories

(3.3) Proposition. The following two conditions on the categdliyare equivalent:

() & has finite products, and finite products are finite sums in¢hses 0f3.2).

(ii) A has finite products and a semi-additive Hom-structure.

Assume that the conditions are satisfied. Then the Homtsteis unique: The sum of
two morphismsf, g: X — Y is determined by the equations,

f+g=Vy(£)=(f,g)Ax=Vy<£ 2) Ax. (3.3.1)

Moreover, the maps of the diagram (8.2) satisfies the equatiopryiny + pryiny = 1.
Finally, a diagram,
A < p T2 A,

is a product ofA1 andAs», if and only if there is a diagram,
A1 P <2 Ay,

such that

0, ifi #j,
Tilj = { 7 andiymy + tomo = 1.

1 ifi =,

Proof. Assume first that there is given a semi-additive Hom-stmecan®(. Then the last
assertion of the Proposition holds. Indeed, it is well-knawat the assertion holds in the
category(SemiAb of commutative semigroups with zero element. By applyirgggpecial
case to the semigroups HertX, A1), Homy (X, A»), and Homy (X, P), for an arbitrary
object of%, it follows in particular that the induced map of semigroups

Homgy (X, P) — Homgy (X, A1) x Homy (X, A»),

is a bijection. Whence® is the product ofA1 andA».

Let us note in addition that the existence of a semi-addigen-structure ol implies
that a final object O is also initial. Indeed, assume that Ofiea object. There is only
one element i En@). So the identity of O is equal to the zero element of EndHence it
follows from the bi-aditivity of composition that the zertement in Hong0, Y) is the unique
elementin HondO, Y). It follows that the object O is also an initial object, and tomposition
X — 0 — Y isthe zero elementin Ho(X, Y).

Now assume Condition (i) o®(. Then, first, there is a final object 0 ?f and as we have
just noted, this object is also initial. Hence Conditior8j8add 1) holds. Consider Condition
(3.3)(add 2), by definition of the morphism jiit follows that pr in; = 1 and that prin; =0
wheni # j. Moreover, we have the equation ior, +in2 pr, = 1in End(A1 x Az). Indeed,
to verify the equation, we have to prove that the two endoimisrps are equalized by pr
and by pk, and this follows from the first equations and bi-additivity

pry(iny pry +inz pry) = pryiny pry +pryinzpry) = 1pr; +0pry, = pry,

18



Additive categories Cat 3.3

with a similar computation for gt Therefore, by the assertion dual to the last assertioreof th
proposition, the diagram is a direct sumAf andA,. Thus Condition (3.2)(add 2) holds.

In particular, we have seen that Condition (i) holds. Moerp\or two morphisms
frg: X — Y it follows with A1 = A = X that impry+inypr, = 1. Moreover
(f, g)iny = f etc, and prAx = 1. Hence,

(f, @)Ax = (f, @) (in1pry+inzpry)Ax = (f, g)in1pry Ax + (f, g)inzpro Ay = f + g.

The remaining equations of (3.3.1) are proved similarly.
Conversely, assume Condition (i). It is easy to see thatdhgposition on the Hom-sets
defined by the equation above is a semi-additive Hom-strecnX(. a

(3.4) Definition. The category! is said to besemi-additivaf the equivalent conditions of
(3.3) hold. Itis called amdditive categoryf, under the semi-additive Hom-structure, each
Hom-set is a commutative group, that is, every morphfsnX — Y has an additive inverse
— f,suchthatf + (— f) = 0. It suffices that the identityy, for any objectX, has an additive
inverse.

If 2 and®B are categories with a semi-additive Hom-structure, a famgt 2f — B is
said to be &Hom-additive functarif the maps,

Homg (X, Y) > Homg (F X, FY),

induced by the functor, are homomorphisms of monoids. ksyé¢o see that if the categories
20 and®B are semi-additive categories, then a funckar2l — 5 is Hom-additive, if and
only if it is right or left additive (Recall that the functdr is right additiveif it commutes
with finite direct sums, ankkft additiveif it commutes with finite products, aratditiveif it

is both right and left additive.)

(3.5) Proposition. A semi-additive categori is additive, if and only if for every object
of 2, the following morphism is an isomorphim:

11
XEBXM»XEBX.

In particular, an exact, semi-additive category is additiv

Proof. A left inverse is necessarily of the for é J; , wheref +1=0.
It is easy to the see that the morphism has kernel and cokeguel to zero. Hence, fl
is exact, the morphism is an isomorphism. a

(3.6) Proposition. Let F: 2L — B be a functor between semi-additive catego®lesnd®B.
Assume thaf has a left adjoint functo@ : 6 — 1. ThenF andG are additive functors,
and the adjunction bijection is an isomorphism of commugatnonoids,

u: Homy (G X, Y) —=> Homg (X, FY).

19
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Proof. The functorF is left exact, because it has a left adjoint. In particutais left additive.
Hence, as observed in (3.49,is Hom-additive and right additive. Similarly, the funciGr
is additive.

It follows from the description of addition in Propositio.8) that the bijection is a
homomorphism of monoids. a
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4. Abelian categories.

Fix a categori!.

(4.1) Definition. The categony! is said to beabelianif it is exact and has finite products
and finite coproducts.

Proposition. An abelian category is additive.

Proof. Assume tha®l is abelian. LetA, B be objects of2. Consider the commutative
diagram,

0—»A-" AvB-9Y, B .0

e

O—»ATAXBT&»B—»O.

Its rows are easily seen to be exact. Hence, by the Five-lerims semi-additive. By
Proposition (3.5)Q1 is additive. a

(4.2) Definition. Let Q be a subclass of objects in an abelian category
The clasq) is said tathick; if it contains the zero object and the following conditiaids:
Given any exact sequencedn

0> Q0 - 00— 0"-0, (4.2.1)

thenQ e Qifandonly if 9’, Q" € Q.

The classt) is said to be (rightidensein 2 if for every objectA € 2l there exists a
monomorphismA <= Q into an objectQ € Q.

The class) is called a*class, if for any exact sequence (4.2.1)0f, QO € 9, then
Q// c Q

The class® is said to be of fight) dimension< # if it is additive and the following
condition holds:

for any exact sequence 2,
Qo—> Q01— 02—> 0y-1—> 0 —0,

if 01,...,0, € Q,thenQ € Q.

The categoryll is said to be of dimensiogd 7 if the class of injective objects is right dense
and of dimensior< n.
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(4.3) Exercises.

1. LetA -2~ A" %~ A”beaa zero-sequence. It is said tosipdit if there are morphisms
si:A” - Aands’: A” — A’ such thatds + 5’9’ = 14. SetB = Imd <€ A and
B :=1Imd < A”, and denote by: A — B andd’: A’ — B’ the induced epimorphisms.
Show that if the sequence is split, then there is a naturaidsphismA — B @ B’ making
the following diagram commutative:

A ] . A 9 — AV

i |
A ~B®B —_~ B
@ %)

Conclude in particular, that the sequence is exact.
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5. Triangulated categories.

(5.1) Setup.Fix an additive categorg. When an additive automorphisit & — RKisgiven,
we will often write X (k) := =¥ X for the powers oft, and for a morphism: X — Y, we
write simplyu: X (k) — Y (k) for the morphismu(k) = £¥(u). A triangle (with respect to
the given automorphisig) is a 6-tuple(X, Y, Z; u, v, w) of three objects(, Y, Z and three
morphisms: X — Y, v:Y — Z,andw: Y — X(1). We will indicate by the notation
f: U~ Vthatfisamorphismy/: U — V(1). Inthis notation, a triangle may be pictured

by diagrams,
Y4
X 4y Y7 X, ’ﬁg \
or w v
XY —Z 5 X, X .
Note that a triangle induces an infinite sequence,

Y.

o> X)) ->Y-1) > Z(-) > X>Y > Z—->XDH->YDH) > ZA) > ---

A morphism of trianglesX, Y, Z; u, v, w) — (X', Y, Z';u', v/, w') is a triple(x, y, z) of
morphismsc: X — X/, y: Y — Y/, andz: Z — Z’ such that the obvious squares commute:

A 7 W
Y

(5.2) Definition. The additive categorg is said to betriangulatedif there is given an
additive automorphisnkt of R, called theshift functor (or the translation functoror the
suspension functdrand a class of triangles (with respecti(, called theexact trianglegor
thedistinguished trianglgs such that the following conditions hold:

(TR 1) (a) Any triangle isomorphic to an exact triangle is@xa

(b) Any morphismu: X — Y embeds in an exact triangl&, Y, Z; u, v, w).

(c) For any objeck, the triangle(X, X, 0; 1, 0, 0) is exact:

(TR 2) (Rotation Axiom A triangle(X, Y, Z; u, v, w) is exact, if and only if the triangle
Y, Z, X(1); v, w, —u) exact:

X

Z Z

YN YN

X X1

’ —u
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(TR 3) (Prism Axion). For any two triangle¢X, Y, Z; u, v, w) and(X", Y', Z; u’, v, w’)
and morphisms: X — X’ andy: Y — Y’ such thats/x = yu, there exists a morphism
z: Z — Z' suchthatx, y, z) is a morphisms of triangles:

Y Y Vs
Yo
A A W’
el

X X'.

(TR 4) (Octahedron Axiom Consider two composable morphismsX — Y and
v:Y — Z,andthe compositiom = vu: X — Z. Assume thatthe morphisms are embedded
in exact trianglesX, Y, U; u,u’,u”), (Y, Z, V; v, v, V"), and(X, Z, W; w, w’, w”). Con-
sider the composition’v”: V — Y (1) — U(1). Thenthere are two morphismsU — W
andb: W — V such that

(i) the triangle(U, W, V; a, b, u’v") is exact, and

(i) the following equalities hold:w”a = u”: V — X)), bw’' =v':Z — V,au' =
wv:V — W,anduw” =v"b: W — Y(1).

The morphisms in the axiom may be pictured as the edges iobogfng diagrams:
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Of the eight faces of the octahedron, four are exact triangled four are commutative
triangles; of the three diagonal squares, two are commatatnd in the third squaté X ZVv
the composition of any two consecutive morphisms is equaéto.

A functor T: 8 — R between triangulated categories is said tdrigular or exact
if it commutes with the shifts and transforms exact triasgle exact triangles. A functor
H: 8 — 2 from a triangulated category to an ablian category is salsktcohomological
or exact if it transforms exact triangles to exact sequences, that for any exact triangle
(X,Y,Z;u,v,w)in Kthe sequencé (X) - H(Y) — H(Z) is exact in2.

(5.3). In the rest of this section we assume that a triangulatiohismgiven. Letu: X — Y
be a morphism. By Axiom (5.2)(1)(b), the morphisnembeds into an exact triangle,

Z
;vﬁ \ (5.3.1)

X Y.

In analogy with the case of complexes we will often say thatttiangle (5.3.1) is @one
for the morphismu, or sometimes even that the top vertéxs aconefor u. If a second
cone foru is given, then by the Prism Axiom, applied with= X’ (x = 1x) andY =Y’

(y = 1y), there exists a morphism: Z — Z’ such that(1y, 1y, z) is a morphism of
triangles(X, Y, Z) — (X, Y, Z’). It follows from Corollary (5.7) below that: Z — Z' is
necessarily an isomorphism. So, a cona ¢&f determined up to isomorphism. But it should
be emphasized that the isomorphism is not unique, andilgspeaking, no triangle should
be callecthecone ofu.

If two of the three morphism in a triangle are multiplied-by, then the resulting triangle
is isomorphic to the original triangle. Indeed, an isomasphis determined by multipliction
by —1 in one of the three vertices. In particular, if the origitredngle is exact, then so is the
resulting triangle. If the exact triangle (5.3.1) is rothtaree times as described in Axiom
(TR 2), then the result is the exact triangle with the thredices shifted 1, and the three
morphisms multiplied by-1. The resulting triangle is also exact if two of its morphssane
again multiplied by-1, leaving a sign change on only one of the original morphisgwsthe
following triangle is a cone for the shifted morphismX (1) — Y (1):

Z()
—fwﬁ \ (5.3.2)
XDy ().

(5.4) Lemma. Let (X, Y, Z; u, v, w) be an exact triangle. Then a morphigmY — A
extends to a morphisth: Z — A, ifand only if fu = 0. Similarly, at morphisng: B — X
lifts to a morphisng: B — Z(—1), ifand only ifug = 0O:

4 Z(-1

NS 2o

25
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Proof. To prove the only if part it suffices to prove tha# = 0. The vanishing follows
by applying the prism axiom to the trianglé€X, X, 0; 1,0,0) and(X, Y, Z; u, v, w), with
x:=1:X—> Xandy :=u: X > Y.

Conversely, assume thg@: = 0. The extensiory is obtained by applying The Prism
Axiom to the trianglegX, Y, Z; u, v, w) and(0, A, A; 0, 1, O0) (the latter is exact by axioms
1(b) and 2), withx :=0: X — Oandy := f:Y — A. a

(5.5) Comment. The coneZ = Con f of a morphismf: X — Y in a triangulated category
may in many ways be seen as a (poor) substitute for the keakelnel pair of a morphism
in an abelian category. For instance, (5.4) shows that the Zdas the “versal” property of
a cokernel ol and thatZ(—1) has the versal property of a kernel. For a composigign
part of the octahedron axiom asserts the exactnes of algiang

Cong

N

Conf Congf.

It should be seen as the analogue of the exact kernel-cdlssmpeence of a compaosition in
an abelian category.

(5.6) Proposition. For any exact triangléX, Y, Z; u, v, w) and any objecA, the following
two long sequences are exact:

-+ — Hom(X (1), A) > Hom(Z, A) - Hom(Y, A) - Hom(X, A) — - --
--.—> Hom(A, X) - Hom(A, Y) - Hom(A4, Z) - Hom(A, X (1)) — ---

Proof. That the first sequence is exact at HdfmA) is the contents of the Lemma. It follows,
by repeated application of the Rotation Axiom, that the Besjuence is exact everywhere.
By duality, or by an analogous proof, the second sequenceaid.e a

(5.7) Corollary. If, in a morphism(x, y, z) of exact triangles, two of the morphisms are
isomorphisms, then so is the third.
A morphismu: X — Y is an isomorphism if and only if its cone is zero.

Proof. The first assertion follows from exactness of (say) the sgdong exact sequence.
Indeed, assume that, y, z) is amorphism fromX, Y, Z; u, v, w)to (X", Y, Z'; u’, v/, w’)
and thatx andy are isomorphisms. The long exact sequences for the firstrendetcond
triangle are the rows in two-row diagram whose vertical mepiaduced byx, y andz.
Considerinthe diagramthe map: Hom(A, Z) — Hom(A, Z’) induced by. Its neighbors
in the diagram, two to the left and two to the right, are isopmigms, being induced hyor
v. Therefore, by the Five-lemma, is a bijection. Sinced was an arbitrary object o, it
follows thatz is an isomorphism.

Let Z be a cone ofi: X — Y and letZ’' be a cone of/': X’ — Y’. Assume there is
given an isomorphism, y fromu: X — Y tou’: X’ — Y’. By the prism axiomy, y
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extend to a morphism of triangl€s, y, z), and by the first part of the proaf; Z — Z’ is
an isomorphism.

If u is an isomorphism, we may také = 1y andx = u, y = 1y. By Axiom (1)(c), we
may takeZ’ = 0. Asz is an isomorphism it follows thaZ = 0. Conversely, iZ = 0, then,
in the exact sequence, every third group is zero. Hence tpeHoa A, X) — Hom(A, Y)
Is zero. Sinced was arbitrary, it follows thai: X — Y is an isomorphism. a

(5.8) Example. The cone of the zero morphishh& YisequaltoX(1) @Y.

The precise version is the following statement: The triani, Y, Z; 0, i, p), where
Z=X1e@dYandi:Y - Zandj: Z — X (1) are the natural morphisms, is exact.

To prove the statement, consider a coie Y, Z; 0, v, w) for the zero morphism. Then,
in the second long exact sequence of (5.6), every third mtpeigero map. Consequently,
the following sequence is exact for every objdct

0 — Hom(A,Y) - Hom(A, Z) — Hom(A, X (1)) — 0. *)

By the surjectivity in (*), forA := X (1), there is a morphism: X (1) — Z with wt = 1.
Then the following diagram is commutative:

0O—>Y ‘> XDoYy-2~X1—0

) |

Y : Z = X(1).

Apply the functor HomiA, —) to the diagram. In the result, the top row split exact, and the
bottom row is the short exact sequence (*). So, by the 5-lettmaniddle vertical map
Hom(A, X (1) & Y) — Hom(A, Z) is bijective. Therefore the morphism(1) @Y — Zis

an isomorphism.

(5.9) Lemma. Any pair of morphisms : X — X' andu: X — Y with the same source can
be completed with a pair: Y — Y' andu’: X' — Y’ to a commutative squafeu = u'x)
such that the morphismisandu’ have the same cone and the morphisnasdy have the
same cone. The dual conclusion holds in the dual setup sthahen the paity, u’) is given.

X‘x*X/ X——)—C+X/

ui u/iv ui u’i
\

y Y-y, v Y.y

Proof. Here are two constructions: To prove the first assertionndéfi as the cone of
ux)': X — Y @ X', with the two morphismg @ X’ — Y’ andY @ X’ -~~~ X. Let
(v, —u’) denote the two coordinates of the morphign®d X’ — Y’. The the first square is
commutative, since the composition—u’)(u x) is the zero morphism. The composition
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(01 (u x)¥ is equal toX. Let X” be the cone of, and apply the octahedron axiom to obtain
the following octahedral diagram:

So X" is the common cone of andy.
The second assertion holds by duality arguments.

Here’s a second construction: form a cone:ofX — Y, and rotate it to obtain an exact
triangle(Z, X, Y; w, u, v). Consider the compositiotw: Z — X — X’, and form a cone
(Z,X',Y"; xw,u’,v'). Finally, letV be a cone ok. Then there are morphis;t Y — Y’
andb: Y’ — V with the octahedral properties:

;X/

X

In particular,yu = u’x, the morphisms andu’ haveZ(1) as their common cone, and the
morphismsc andy haveV as their common cone. a

(5.10) Definition. A class9t C R of objects is called &iangular subclassf it is nonempty
and if, for any exact triangle iR, if two of the vertices belong t#1, then so does the third. It
is an implicit part of the condition that any object®fisomorphic to an object @bt is itself
in 9.

The cone of 1X — X is the zero object. Hence, sin@® is nonempty it follows that
the zero object is iMt. Moreover, ifX € 9 it follows from the Rotation Axiom (TR 2)
that X (1) and X (—1) are in9t. It follows form Example (5.8) that the class is additive,
that is, closed under finite direct sums. So, clearly, thieclatlegory determined bt is a
triangulated: the exact triangles are the exact triangleswith all three vertices if.

If 9t is a triangular subclass &, a morphismu: X — Y is called ardJt-morphismif its
cone belongs tan.
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(5.11) Proposition. If 91 C R is a triangular subclass, then the systgs of all -
morphisms is a multiplicative denominator systen®in

The assertion corresponds to the following statementstabewsystentyy:

(LOC 0) The system is multiplicative: every identity Iis an 9t-morphism and the
compositionu’u of two 9t-morphisms:: X — X’ andu’: X' — X" is an9)t-morphism.

The systentyy, has in fact an additonal property::ifu is an9t-morphism, then is an
M-morphism if and only ifu’ is.

(LOC 1) The system has the followihgft denominator propertyAny pair of morphisms
s: X — X'andf: X — Y wheres is an9t-morphism may be completed to a commutative
diagram,

x .y

|
Si S/:
, Y

x -Ley,
wheres’ is an Mt-morphism. And it has the correspondinght denominator property
conversely, iff’ ands” are given with’ € Soy, then they may be completed to the commutative
diagram withs € Soy.
(LOC 2) The system has tHeft equalizer propertylf two morphismsf, ¢g: X — Y are
equalized by aft-morphisms, says: X’ — X with fs = gs, then they are coequalized by
an?Mt-morphisms’:

X’$X:§:Y~S1» Y.

And it has the correspondingght equalizer propertyconversely, if two morphismsg, g are
coequalised by ami-morphism, then they are equalised by?&morphism.

The following two conditions are natural for denominatosteyn S in a triangulated
category:

(LOC 3) (1) A morphisms: X — X' belongs tas, if and only if its shifts(1): X (1) —
X’(1) belongs taS.

(2) If, in a morphism(x, y, z) of exact triangles, two of the morphisms belongstahen
so does the third.

Clearly, the systen$yy; has the property (LOC3)(1). The property (2) is much more
delicate, and it does not hold for a general ckigs

Proof of the denominator propertied.OC 0): The cone of the identityxlis, by Axiom
(2)(c), the zero object, and it belong28. Hence k € Son.

The cones of the three morphisms:’, andu” := u’u fit, by the octahedron axiom, into
an exact triangle. Hence, if two of the three morphsims a%yinthen so is the third.

(LOC 1): Consider the cone of: X — X’ and rotate it to obtain an exact triangle
(U, X, X';u,s,w). Letv be the composition = fu: U — Y, and letY’ be its cone. Then
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we have the following diagram with two exact triangles:

x 1 .y
s
U——=U s/

PN

X ~Y

Use the prism axiom to completg Bnd f u with a morphismy’ to a morpyhism of triangles.
Then, in particular, the square with the morphismg, s’, f’ is commutative. Morever, the
cone ofs” is U (1) which is in9t. Hences’ € Soy. So the required square has been obtained.
The right denominator property is proved similarly. Or ityrize noticed that it follows
by duality.
(LOC 2): To coequalizef andg it suffices to coequaliz¢g — g and 0; hence we may
assume thag = 0. Assume thak’ —*» X I, yisthe zero morphism. Le¥ be the cone
of 5. It follows from Lemma (5.4) thay factors overM as a producl: X —4~ M b, y.
Embeddb into an exact triangléM, Y, Y”; b, s/, ¢):

Y/
SN
X4 pm—2 Y.
Thens’ € Son, becausé! € 9t and ass’b = 0, it follows thats’ f = s'ba = 0.
(LOC 3): If X" is the cone of: X — X' thenX” (1) is the cone(1). Hences € Soy if
and only ifs(1) € Sox.

The last assertion ought to be a consequence of octahedmn.awhenz is of the form
discussed in (5.15) below, the proof is easy. a

(5.12) Note. The definition of the systerfyy; of 9i-morphisms makes sense for an arbitrary
subclas8)t of & Amorphisms: X — X’belongstdyy, ifits cone belongs tit. Conversely,

to any systens of morphisms off there is associated cla3sS) of S-acyclic objects An
objectZ belongs ta3(S) if the zero morphism G- Z belongs taS.

Obviously, if 9t is given, then for any objed¥ of & we have that € 9t if and only if
the zero-morphism 6> M is an9)t-morphism.

If S contains all identities and satisfies (LOC 3), then for anyphsms: X — X’ we
have that € S if and only if the cone of is S-acyclic. Indeed, there is a morphism of exact
triangles,

X 5 X’

X// s

N

X:X,

0
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and the lower horizontal identity morphisng 1s in S. Hence the zero-morphism-6 X"
belongs tas if and only if s belongs tas.

It is easy to see under this correspondence that systemsrphisms off satisfying the
four conditions (LOC 0)—(LOC 3) correspond to triangulabslasses of objects of.

(5.13) Note. The Octahedron Axiom implies the Prism Axipassuming the axioms (TR 1)
and (TR 2). Indeed, consider as in (TR 2) a commutative sgeaygwo morphismg: X —

Y andu’: X’ — Y’ and a morphisnix, y) from « to u’. Embed the morphisms at each of
the four sides in an exact triangle. In addition, embed themsitionp := u’x = yu in an
exact trianglg X, Y', W; p,q, r):

Z
N
X u Y
o [N
Y
X' Wby (5.13.1)

Apply the octahedron axiom to the compositipn= yu to obtain the morphismg andb.
In particular, by the commutativity asserted in the axiem= w, bg = y’, av = qy, and
ur = y”b. Similarly, apply the axiom tp = u'x to obtain the morphisms andd with
rc=x",dg =V, xr =w'd, andcx’ = qu’.
Consider the compositions,
z=da'Z— 7.

It follows in particular that
w'z =w'da = xra = xw, andzv = dav =dqgy ='y.

Thus(x, y, z) is a morphism of triangles, and the Prism Axiom has been phove

(5.14) The cone of the conesContinue with the setup of Section (5.13%: and Z’ are
the cones of the horizontal morphisms in the square, and tphismz = da: Z — Z’
completes(x, y) to a morphism of triangles. Similarlyx” andY” are the cones of the
vertical morphisms, and the morphisii:= bc: X” — Y” completesu, u’) to a morphism
of triangles. In addition, form theone of the horizontal congthat is, embedd: Z — Z’
into an exact triangléZ, Z’, Z”; z, 7/, 7”/). The morphisms appear in the following diagram
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of exact triangles and commutative squares,

o

u//

X—"*“ ,y v ,7 v, X(1)
yf;:! Z;“g —);”Is‘(
Y// Z// X//(l)

NIENEENERN,

X’ - Y’ -7 - X'(1).

/ / /
w

We claim that there are two morphisi: Y — Z” andw”: Z” -~~~ X" such that, in the
following diagram, (1) the horizontal tripplgs, v’, v") and(w, w’, w”) are morphisms of
triangles, and (2) the triangleX”, Y”, Z”; u”, v”, 7”) is exact:

X—"“ sy v .7 % ,x®1

ol S B s

4 "

X7 . y/ Y o 7 o Berrrom X”(l)
N N N N
X —— ¥ —— 7 ——— X'(1).

Indeed, consider the composition= da. The cone ot/ is determined by rotation from the
exact triangle X”, W, Z’; ¢, d, x’w’). Application of the octahedron axiom yields the two
morphisms” andw” as in the following diagram,

with the commutation equations,

7V =y, W' =xw, Vb=7d, -—cw’ =a’, (5.14.2)
and such the the triangl@”, Z”, X" (1); v”, w”, —u") is exact. From the exactness we
deduce by rotation that the triangl&”, Y”, Z”; u”, v”, w”) is exact. The two first commu-
tation equations state that two is the asserted square®amawatative. Commutativity of
the remaining two squares follows from the last two equation(5.14.2) and commutation
properties of the diagram (5.13.1).

32



Triangulated categories Cat5.11

(5.15) Note. TheEnriched Octahedron Axiois the following: In the Octahedron setup the
morphisms:: U — W andb: W — V can be chosen so that in addition the following two
triangles are exact:

XDHeVv ZoU

u M @) —y (")
Y

(w’
- W, W uw”=v"b

Y.

anw'=w'v

(5.16) Exercises.
1. Dou: X — Y and—u: X — Y have the same cone? [Hint: In what sense is the answer

yes and in what sense is it no?]
2. Is the shift functor in a triangulated category a triangfgactor?
3. Prove that first property i (LOC 3), the shift invariance, iscmsequence of the second.

4. Prove that an exact funct@r: & — R’ between triangulated categories is additive. Prove
that an exact functoH: 8 — 2 from a triangulated category to an abelian category is
additive.
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6. Spectral sequences.

(6.1) Setup. Fix an abelian categof}. At several places we will meet a diagrantlrof the
form,

G
A F’ F A
G/

where the row is exact. The diagram induces a morphism,
Ker(G—A) >~ Cok(A'—G),
defined as the composition,
Ker(G—A) - Im(F' — F) = Coim(F'— F) — Cok(A'—G).

(6.2) The Spectral Lemma.An exact commutative diagram,

induces an exact sequence,

0 — Ker(G—Ag) — Ker(G—A) —°~ Cok(A'—G’) — Cok(Ay—G’) — 0.

Proof. Clearly, the kernel K&iG— Ag) is unchanged ifAg is replaced by the image ¢ —
Ap. SO we may assume th&hy — Ag is epic. Similarly, we may assume that— A is
epic, and tha#iy; — F’'andA’” — F’ are monic. Then, in particular, the diagram induces an
epicA — Ag and a monicA” — Aj. The morphisnG — A factors througmo — A, and
A" — G' factors througg — A’

Clearly, the first part of the sequence, the inclusion of temkls,

0 — Ker(G— Ag) —» Ker(G— A),
is exact. Moreover, the two kernels contain the kerneGof> F. So, the cokernel of

is unchanged, i is replaced by its image iR. Hence we may assume that— F is a
monomorphism. Similarly, we may assume tiat—> G’ is an epimorphism.
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Consider the following diagram,

0— Ker(G—>Ap) — Ker(G—A) — Ker(Ap—A)

H |

Cok(A'— Aj) — Cok(A'—G') — Cok(Ay—>G') — 0.

The top row in the diagram is the first part of the exact keouiernel sequence of the
compositionG — F — A. Hence the top row is exact. Similarly, the bottom row is
exact. The first vertical isomorphism is induced from thenkéicokernel sequence of the
compositionF’ — F — Fy. The second vertical isomorphism is induced similarly. The
diagram is commutative. In fact, both compositions in thegdam, from Ke¢(G— A) to
Cok(A’—G"), are equal to the morphism of (6.1).

As a consequence, the asserted sequence is exact. a

(6.3) Remark. Note that any exact diagram,

F(/) G
1}” I, }V
G’ Fo,

may be completed to a diagram as in the Spectral Lemma by gidsh the compositions
Fy — F' - FandF' — F — Fp, and next the kernels and cokernels of the appropriate
morphisms.

(6.20) Triangular filtrations. Consider in a triangular categosy an objectX with an
increasing filtration By definition, the filtration ofX consists of a sequence of exact triangles,

\ﬁ\ﬁ\ﬁ

Fgo— F41

and a sequence of morphisfig — X compatible with the morphismg,_; — F,.
The filtration may more precisely be called a filtrationX . It determines a filtratiofrom
X as follows: Complete the morphisfy — X to an exact triangle, the first of the following

two: _
Fq+l

A

Fq+1.
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The second triangle, also exact, is obtained by applying¢kehedral axiom to the composi-
tion F,_1 — F, — X. In addition to the exact triangle, a number of commutatiagchms
result. In particular, the sequence of morphistns> F, is compatible with the morphisms
F, — F,41. Note that the triangles are only unigue up to a noncanoisoatorphism.

(6.21) The spectral sequence of an increasing triangular fiation. In the setup o(6.20)
for any exact functofl : & — 2, from | to an abelian categor¥, there is an induced
2-spectral sequence,

EYI=T1PYG, = T"X, with F,T7"X :=Im(T"F,—T"X). (6.21.1)

The spectral sequence is defined as follows: For convenisetfe ., := 0andF, ;= X.
Complete, for every, t with —oo < s < ¢ < oo, the compositionFy, — F, to an exact

triangle,
Gs,q
F, F,.

The triangles fors = ¢ and fors = —oo are trivial: G, , = 0 andG_, = F,. For
s = g — 1 they are taken to be the triangles of the given filtratioly_, , = G,. Finally,
for ¢ = oo, the triangles are those considered in (6.28);00 = F ;1.

Some ofthe morphismsinthe triangles appear in the follglwasiccommutative diagram,

fors+1<qg—1:

Gs—}—l,q F Gq

N NG

Gs41,9-1 > Fsp1— Fym1— Goy149-1
q q q

PN N

Gs+1 Fq Gs,q—l-

Note that each of the sequences in the diagram, one horizompavertical and two diagonal
sequences, is formed by consecutive morphisms of an exauagle.

Fix a pairp, g of integers, lek := p + ¢, and define
EPY = EPY = T"(Gy). (6.21.2)
Consider for 2< r < oo the two compositions, witls, as source and target respectively,
Gy Fy_1—Gyry14-1 and Gy gqr—2 > Fy —> Gy.

The first appears in the basic diagramd{oe= g — r, the second appears in the basic diagram
fors :=q —1andg := g + r — 1. Define, for 2< r < oo,

ZP9 = KenT"G,—T""Gy_ry14-1) and Z07 .= Cok(T"1Gy y4r—2—T"G,).
(6.21.3)
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The definitions, for = oo, yield the following equations:
z51 = Ken(T"G,—T"tF,) and Z27 := Cok(T"'F,11—T"G,).

Consider the basic diagram, with= g — r, and applyT'”, that is, applyT"” to the sources
of the twisted morphisms and appBf'*? to the remaining vertices. The result is an exact
commutative diagram iRl. By the Spectral Lemma (6.2), we obtain the exact sequeace, f

2<r < o0,

£7+r,q—r+1 N ij__fq_r—{_l — 0. (6.21.4)

So the spectral shooting is defined. To define the “bridgethmphisms, consider the fol-
lowing commutative diagram if:

0— fol — Z,p’q 7

Fy Fy

BN

Fgi1 - Fy <:X4\:fq+l
G, 0 F,.

Its sequences are consecutive morphisms of exact trianBleshe Spectral Lemma (6.2),
the following sequence is exact:

0— Kern(T"X—>T"F,) — Ker(T"X—T"F441) -

L»Cok(T"—lfq+l — T"Gy) — Cok(T"F,—~T"G,) — 0.

As T is exact, the two kernels in the sequence are, respectieglyal to the images
Im(T" F,_1—T"X) and Im(T"F,—T"X). The first cokernel in sequence B’ =
EP4/BR?. Again, sinceT is exact, the last cokernel is the quotient®fG, modulo
Ker(T"G,—T"T1F,_1), and hence equal t87-9/Z%. So the exact sequence is the fol-
lowing:

0— F,_1T"X — F,T" — EP1/BL? — EP1/Z57 — 0.

In particular, we obtain the “bridge” isomorphism asseitethe Spectral sequence (6.21.1):
F,T"X/Fy1T"X = Z%7/B&1. (6.21.5)

Note. The 3-term of the spectral sequence is the cohomology ofdimplexes, for allp,
formed by the 2-terms:

. E5—2,—P+1 Eé’y—P Ep+2,—p—l R

Clearly, for the spectral sequence (6.21.1), these coraplase obtained by applying shifts
of T to the zero-sequence &,
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(6.22) Proposition. The spectral sequenéé.21.1)is finitely convergent if, for alh andg,
the morphismd8" Fy — T"F, fors <« O andT"fq — T"F, fors > 0 are equal to zero.

The sequence If finite, if and only if, for all, the morphismd"F,_1 — T"F, are
iIsomorphisms folg < 0 and forq > 0. In particular, ifT"F, = 0 forg < 0 and
T"F, — T"X is an isomorphism fog > 0O, then the sequence is finite and convergent.

Proof. The morphismr Fy, — T"F,_; (for s < g) is equal to zero if and only if the
morphisml™ F,_1 — T" Gy ,—1isamonomorphism. Ifthe latter morphism, with= n+1,
is @ monomorphism, then the morphiséG, — T"*1F,_ 1 and7"G, — T""1G, 1,
have the same kernel. In other words, with= ¢ — s + 1 we have the equality,

zPht = 7519, (6.22.1)

Clearly, if T" F; — T"F, is the zero morphism, then the imagelofF; — T"X is equal to
zero. In particular,
F,T"X =0 fors <« O. (6.22.2)

Apply the octahedral axiom to the decompositign— Fy; — X, forqg < s. Inparticular,
we obtain a diagram,

q+1

N

Fy <o Gy g < Fyyg «—— X,

with an exact triangle in the middle, and two extreme comtiedriangles. Apply7”—1
to the left commutative triangle. Consider the two morpha'srﬁ—le,S — T"F, and
7"-YF,.1 — T"F,. When composed with" F, — T"G,, theirimages ar&?*? andBL;"
(wWheres = g + r — 1). Therefore, the equality,

Bl'" = BLY, (6.22.3)

holds if 7"~1F 41 — T"F, andT"~1G,, — T"F, have the same image. In particular,
the equality (6.22.3) holds if the morphiSﬁ’i’—le,s — T”‘lfqﬂ is epic. As the middle
triangle is exact, the latter morphism is epic, if and onlyhié morphismT”—lqu —
T"~1F,,1is zero. So, if we assume that—1F, .1 — T""1F,1 is zero, then (6.22.3)
holds. Moreover, thed”1X — T7~1F; is zero and, from the exact triangle connecting
Fy, X, Fy41, it follows that theT”~1F, — T"~1X is an epimorphism. In particular,

F,T" X =7""1X fors> 0. (6.22.4)
Hence, by (6.22.1) and (6.22.3) the shooting is finitely @vgent, and by (6.22.2) and (6.22.4)
the filtration on the abutment is finitely convergent.

The last assertion of the Proposition is easily verified. a
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(6.23) Decreasing triangular filtrations. Consider, in the triangulated categagy a de-
creasindfiltration from X:

GP
X—...—FP >l . .0
For any exact functdr : 8 — 2 there is an inducetl-spectral sequence,

EY = T7PT(GP) = T"X, with FPT"X := Ker(T"X — T"FP™1),
p

The assertion follows from (6.21), or directly by a similegament. The decreasing filtration
on the abutment corresponds to the increasing filtratioarghwy F, 7" X = F" 9T"X.

(6.24) Examples. (1) Consider a compleX in 2. For an integep, define thepth right
truncationof X as the complex,

X e XP 2 xP Tl L XP 50500 -

The left truncation X? is defined similarly. Note thak”! is the quotient complex ok
corresponding to the subcompl&%*+1. So, in the derived category there is an exact triangle,

Fﬁ \ (6.24.1)

X[p+l

In fact, the morphisnx?! -«» X[*1is given by a morphism of complexes: it is equal to
—9: XP — XP*1lin degreep and (necessarily) equal to zero in all other degrees. Issig ea
to seethat the triangle is exact in the homotopy categdhat is, the triangle is homotopy
equivalent to the cone of the inclusiaf*! — X.

The right truncation ”! form adecreasindiltration from X in the homotopy category:

XP(=p)

/

X X7 ), Q) I |

and the left truncations form a decreasing filtratiork :

XP(=p)

2N\

p+l

00— ... —» s Xxr_—, ... _, X.

Note that the exact triangles in the two filtrations are spi@zise of the exact triangle (6.24.1):
the definitions of the truncations yiekil”! = X?(—p), and the triangle in, for instance, the
last filtration is obtained from (6.24.1) witki := X[?
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(2) For an integey, define theyth right cycle truncatioras the complex,

FyX . e X125 x5 79 5050 -

’

whereZ4 is the kernel of¥? — X9+1, Note thatF, X is a subcomplex ok corresponding
to the quotient complex,

o> 0> 0— BItt 5 xatl 5 xatl .

’

whereB?t! = X9/74 is the image ofX? — X?*+1. There is a natural quasi-isomorphism
from this quotient complex to following quotient complex:

Fgin: i 5> 0> 0 Z9t 5 x9t2  xat3 L.

b

whereZ9+1 (in degreeg + 1) is the cokernelx?+1/B4t1 of X7 — X9+l The latter
complex is theg + 1)thleft cocycle truncatiomf X. So, in the derived category of, there
Is an exact triangle,

Fq+l
;5 \ (6.24.2)
F X X.
The F, X form anincreasindfiltration to X,
H1(X)(—q)

N

04»...4» q_]_X*»FqXH"HX,

and thequ form the corresponding increasing filtratibom X:
H1(X)(—q)

VA

X > >F X »Fyq >0

(6.25) The spectral sequences of hyper conomologdyet 7 : 2l — B be a derivable functor.
Consider a right compleX e 2, and the two filtrations of (6.23). The (hyper) derived
RT(X) is an object inD™(B), and itsnth cohomology is theithe derivedR" T (X). In
particular, evaluated on objects ®if(as complexes concentrated in degree 0), it defines an
additive functorR"T: 21 — 9B. As usual, denote byR"T)* its extension to a functor of
complexegl* — B,

From the spectral sequences in (6.21) and (6.23) we obtain:

(1) an induced-spectral sequence,

E}?" = RIT(X?) = R'TX, with FPR"TX := KerR"T (X — XP7Y);
p

its 2-term iSEY? = HP ((RIT)*(X)),
(2) and an induced@-spectral sequence,

EY' = RPT(HYX) = R"T(X), with F,R"T(X) := Im R"T(F,X — X).
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(6.26) The Spectral sequence of a composite functdZonsider derivable functors of abelian
categories7: 2l — B andS: B — ¢. Assume that there is a classof objectsQ € 2
with the following properties:

(1) For every objectt € 2 there is a monomorphisth — Q into an objectQ € Q.
(2) For everyQ € £, Q is T-acyclic andr Q is S-acyclic.
Then, as is well-known, the compositiéif : 2l — ¢ is derivable, and

R(ST) = (RS)(RT). (6.26.1)
As a consequence, for every compléxe 2T, there is a 2-spectral sequence,
RPS(RITX) = R"(ST)(X). (6.26.2)

Indeed, by (6.26.1), the abutmentrR8S (T X), and the spectral sequence is that of (6.24)(1),
with 7 := SandX :=TX.

Note. The spectral sequence for hyper Ext is obtained as follovezaRthat for arbitrary
objectsX, Y in a triangular categors, there are Ext-groups defined by

Ext" (Y, X) := Homg (Y, X (n)).

The functorT X = Homg (Y, X), for a fixed object’ of £, is an exact functof : 8 — (Ab).
Hence, when a filtration ok is given, (6.21.1) yields a spectral sequence with abutment
Ext" (Y, X).

The Ext-groups of an abelian categ@fyare obtained by taking := D(%l). In particular:
Let T: 2 — ‘B be a derivable functor. Then, for complexes comptex 2™ andY e B°,
there is an induced 2-spectral sequence,

EJ? = Exth (Y, RITX) = Extg (Y, RTX).

(6.27) Double complexesConsider the categor§*)* of complexes of complexes. Anobject
X in (2*)* is complex such that each componéfit is a complex (whosgth component is
denotedx ??); the differential inX is denoted’: X? — X7+ and the differential in the
componeniX? is denoted”: X?4 — X7-4t1 Note that we have two shift operators: The
shift X — X (n, 0) is the shift of thecomplexX; it shifts the position of the componemnt?
and multiplies?” by (—1)". The shiftX — X (0, n) shifts the position of the compentents of
eachX? and multipliesbothtypes of differentials by—1)".

Recall that there is an identification @H*)* with the category(** of bicomplexes. It
identifiesX with the bicomplex obtained by multiplying the differentia X? by (—1)”. We
will write (A3 for the subcategory af2*)* consisting of complexes of complex&swith
only finitely many nonzerd?? on each diagongh + ¢ = n. So, under the identification,
(Ql');1 = 915‘. Note that(Ql');1 contains the subcategories

(%o)bnd’ (an])'i‘, (Ql[m,n])o
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The subcategory(‘,Z[');1 gives rise to a triangulated homotopy category Jt) and a

derived category; (*). The natural functor Tot of3*, may be viewed as a funtor,
Tot: (A); — A
It respects the two shifts:
Tot(X (n,0)) = (TotX)(n),  Tot(X(0,n)) = (TotX)(n),
and it preserves homotopy and cones. As a consequence,neslefn exact functor of
triangulated categories,
Tot: Hot;(A*) — Hot(2).
Let X be a complex ir(ill‘)ﬁ, and consider the decreasing filtration of Example (6.24)(1

It induces the 1-spectral sequence of (6.23)fo= H® Tot. As TotX!?! = XP(—p), the
result isa naturall-spectral sequence,

E}? = H1(X?) = H" TotX, with FP H" TotX = Ker H" Tot(X — X?~"). (6.27.1)
p
The2-term is given by
EY = HP(H!X), (6.27.2)
where the notation for the inngth cohomology indicates the complex witth component
equal toH?(XP). Itis easy to see that the spectral sequence is finitely cgeme In
particular:
If a complexX in (91')1‘1 has all components? acyclic, theriTot X is acyclic.
From this result, it follows in particular that the functatTakes quasi-isomorphisms into
quasi-isomorphisms. Hence it extends to a functor,

Tot: D, (A*) — D(X).

This functor may be applied to the filtration in Example (§(2% (note thatH? X, thegth
cohomology of the compleX e (°)*, is an object irRl*; it may also be denotefl,’ X).
The result is a 2-spectral sequence,

EY" = HP(H?X) = H" TotX with F,H" TotX :=Im H" Tot(F,X — X). (6.27.3)

This spectral sequence is different from the spectral 2tsplesequence givenin (6.27.2), and
the two filtrations on their common abutmeit Tot(X) are different. However, (6.27.2) is
obtained by applying (6.27.3) to the transposed complegdofplexesX". Indeed, the two
spectral sequences have the same 2-term. Moreover, uadspasition, the cycle truncation
F,(X") of X" corresponds to the subcompléy' X of X obtained by applying the cycle
truncationfFy, to all componentx” of X. Note that

F/X e @?)°, X e@)r.
These two families of subcomplexesXfdefine the same filtration on the target, that is, for
all p,qg andn = p + ¢,
Im H" Tot(X'”” — X) = Im H" Tot(F,/X — X).
In fact, it is easy to see that the two complexes X8t and TotF,'X, for p + ¢ = n, have

the same degree-cohomomology. The general assertion, that the two seqaendth the
same 2-term, are identical, at least up to automorphism,bagroved similarly.
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7. Adjoint functors.

Fix a categoril.
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8. Relative abelian categories.

(8.1) Definition. Let 2 be a (right)relative abelian categoryor (right) relativized abelian
category), thatis, an abelian categ®fywith a given a (rightallowableclassS of morphisms

of . A (right) allowable classS of morphisms is assumed at a minimum to satisfy the
following two conditions:

(allowl) The classs is multiplicative, and closed under isomorphisms and @jnilirect
sums.
(allow2) For any object of 2, the morphism O0— A belongs tasS.

The morphisms in the given classare also called theslative monomorphismaf 2 (or
said to be relatively monic). It follows from the conditiotiiat every split monomorphism is
relatively monic. It is not assumed that the relative mongrh@sms are monic.

Several notions related to monomorphisms and exactnessrbtativized versions: A
sequence iR,

A YA A (8.1.1)

is calledrelatively exacif it is a zero sequence and the induced morphism £ok A" is
relatively monic. Arelatively short exact sequeniga sequence,

0> A “s A “ A 0, (8.1.2)

such thats’: A’ — A is relatively monic and: is the cokernel of’ (that is, the sequence
A —- A’ — A” — QOis exact). Note that if the sequence (8.1.2) is relativieyrsexact, then
it is relatively exact; the converse holds if the relativenomorphisms are monic.

Clearly, a complex

e xnL AT e d et (8.1.3)

is relatively exact(or relatively acyclig if and only if, for all n, the right exact sequence,
0— X"/B" — x"t1  xn+1/pn+l _, 0, (8.1.4)

(where B" := Imd"1) is relatively short exact. A morphism of complexes isetative
quasi-isomorphisnf its mapping cone is relatively exact.

AfunctorT: 2 — B, where als@3 is a relative abelian categoryredatively exactif it is
additive and takes relatively short exact sequencésiafo relatively short exact sequences
of %B. The condition implies thal' takes a relatively exact complex @finto a relatively
exact complex ofB, but it does not imply in general that a relative exact seqe€8.1.1) is
taken into a relative exact sequencerf

An object Q of 2 is calledrelatively injectiveif any pair of morphismg: A — Q and
s: A — A’, wheres is relatively monic, embed into a commutative diagram,

A~ B

fl
»

0.
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Finally, a morphisnt: A — Q in 2l is said to baelatively injectivef it is relatively monic
and if any pair of morphismg: B — A ands: B — B’ with a relative monic embed into
a commutative diagram,

B~ B

il
A—> 0.
According to the last definition, an obje@t is relatively injective if and only if the identity

of Q is relatively injective. A relative monomorphist— Q into a relative injective object
is relatively injective.

(8.2) Examples. A given abelian categoyl may be relativized by taking as allowable class
the classS of all monics, or the class$; of all split monics, or the class of all morphisms.

Clearly, with respect to the classg, the relativized concepts are the usual concepts.

With respect to the clas®, the sequence (8.1.1) is relatively exact if and only if ¢hisr
aslittingA = B @ C, whereB = Imu’ = Keru. The sequence (8.1.2) is relatively short
exact if it is short exact and split, and the complex (8.1s3glatively exact if and only if it is
contractible. In particular, a morphism of complexes islatiee quasi-isomorphism if and
only if it is a homotopy equivalence. Finally, any objectdfs a relatively injective object,
and the relative injective morphisms are the split monics.

With respect to the class, any zero sequence (8.1.1) is relatively exact, and thessegu
(8.1.2) is relatively short exact if and only if it is right @st. The only relatively injective
object is the zero object, and the relative injective maspts are the zero morphisms.

(8.3) Homotopy Lemma. Let X be a relatively exact complex and I@tbe a right complex
consisting of relatively injective objects. Then any masoh of complexesX — Q is
homotopic to zero.

Proof. Insert ‘relative’ at appropriate places in the correspogdgiroof of the nonrelativized
statement. i

(8.4) Corollary. Lets: X — Y be arelative quasi-isomorphism of complexes and.l&t —

Q be a morphism into a right compl&x consisting of relative injective objects. Then, in the
homotopy category, there is a unique morphism¥ — Q such thav = ws. In particular,
any relative quasi-isomorphism Q — Q' between right complexes of relative injective
objects is a homotopy equivalence.

Proof. Let Z be the mapping cone of the morphismX — Y. Then there is an exact triangle
(of complexes of abelian groups),

Hom*(Z, Q)
Hom* (X, Q) Hom*(Y, 0),
and part of its cohomology sequence is the exact sequence,

Hompot(Z, Q) — Homuet(Y, Q) — Hompor(X, Q) — HomMper(Z(—1), 0).
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The two extreme groups are zero by the Lemma. Hence, the enfdmthomorphism is
bijective. Thus the first assertion holds. The second is aneddiate consequence. a

(8.5) Definition. For any right exact functor: 2 — 2lg there is arinduced relativizatiorof
2A: a morphisnu: A — A’ is a relative monomorphism if(u): LA — 1A’ is a monomor-
phism in%p. Alternatively,2( may be relativized via a left exact contravariant functor.
Clearly, if 2 is relativized viai, then the zero sequence (8.1.1) is relatively exact if and
only if it becomes exact undey, the sequence (8.1.2) is relatively short exact if and dnly i
it is right exact and becomes short exact undeand the complex (8.1.3) is relatively exact
if and only if it becomes exact undér In particular, a morphism of complexes is a relative
quasi-isomorphism if and only if it becomes a quasi-isorhmm underi.
Note that the three relativizations in Example (8.2) arehad form: The class; with A
equal to the identity, the clasy with A equal to the zero functor. Finally, the claSsis
obtained with the contravariant functor,

2 — Funct®, (Ab)),

given by A — Hom(A, —). Indeed,A — A’ is a split monomorphism if and only if
Hom(A’, X) — Hom(A, X) is surjective for allX in 2.

It follows from this last observation that tiselit relativization induced by (for which the
relative monomorphisms are the morphismst — A’ such that.(s) is a split monomor-
phism) may be induced by a right exact functor.

(8.6) Remark. In order to work properly with the homotopy categories of pdemnes overl,
more properties of the class of relative monomorphisms eeeled. Clearly, for complexes
we need the following two properties:

(D) If f: X — Y isahomotopy equivalence axds relatively acyclic, thery is relatively
acyclic.

(2) If, in an exact triangle,

Xﬁz\yl

two of the complexes are relative acyclic, then so is thelthir
In turn, the two properties are consequences of the follgwin

(allow3) If Z is the mapping cone of a morphiskh— Y of complexes, and andZ are
relatively acyclic, then so i¥.

Obviously, the properties hold if the relativization if iced by a right exact functor
from 2, and (hence) also for the split relativization inducedby

(8.7) Remark. The properties in (8.6) may be shown to hold fgoraper relative abelian
category, that is, an abelian category relativized by ascfasf morphisms satisfying the
following conditions:

(propl) The class is multiplicative, and 0— A belongs taS for every objectA of L.
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(prop2) The class is stable under pushout.
(prop3) For any composition = vt of morphismsf: A — A’ andv: A’ — A”,ifs € §
andv is a monomorphism, thene S.

(8.8) Proposition. Assume the properties (8.6). Then the following assertions hold:

(1) If, for a compositionn = uv of morphisms of complexes, two of the morphisms,
andw, are relative quasi-isomorphisms, then so is the third.

(2) The class of relative quasi-isomorphisms is a denominatstes in the homotopy
categoryHot(21().

(3) If a bicomplexX in 2A* (that is, a bicomplex with only finitely many nonzeX@4 on
each diagongb + q = n) has relatively acyclic columns, th@ot X is relatively acyclic.

(4) Let

O—-X—->Y—>U-—DQ0, (8.8.1)

be a sequence of complexes which is relatively exact in eagheé. LetZ be the mapping
cone ofX — Y. Then the induced morphiséh— U is a relative quasi-isomorphism.

(5) Let Q be an additive class of objects ¥fsuch that for any object of 2 there is a
relative monomorphismd — Q into an objectQ of Q. Then, for any right compleX in
AT, there is a relative quasi-isomorphisin— Q into a right complexQ in Q.

Proof. Clearly, (1) and (2) follow from the properties of (8.6). Asson (3) follows from
the standard construction of the total complex of a bicomjpe([?-"]-* as an iterated cone.
Assertion (4) follows from Assertion (3), since the conetd morphisnZ — U is the total
complex of the bicomplex associated to (8.8.1) (wWitlas a column in degree 0).

Consider finally (5). Assume that € 2=°. Chose for each a relative monomorphism
§7: X" — Q" with Q" in Q. View the 0" as a complex with zero differentials, and [@?
be the truncated mapping cone of the identity of this complex

0 505 ed > 0te 02
Thens = (3, §d) is a morphism of complexas X — 0, and itis a relative monomorphism

in each degree. Repeat the construction with= Coks to obtain a complexQ?!, and
continue. The result is a complex of complexeS(i#P,

>0 X - QO—> Q1—> Q2—>---,

which is relatively acyclic in each degree, and with in 9>0. Apply (3) to obtain a relative
quasi-isomorphisnX — Tot Q. a

(8.9) Derived functors. Assume the conditions of (8.6) f@rand for a second relative abelian
categoryB. Let D*(2l) be the triangulated category obtained by localizing H@t) at the
relative quasi-isomorphisms. It follows, for an additive&tor7 : 2 — 93, that the functor

T: Hot™ () — Hot"(B) — DT (B) is derivable with respect to the class of relative quasi-
isomorphisms if there are sufficiently many relativéhacyclic objects of!, that is, if there
exists an additive clas3 of objects in2l such that,

(i) For any objectA € 2 there is a relative monomorphism — Q into an object
0 eN.
(i) If Qisarelatively acyclic complexi@™, thenthe complef Q is relatively acyclic.
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If 20 has sufficiently many relatively injective objects (that isr any objectA there
is a relative monomorphism into a relatively injective aftje then in fact any functor
T: Hot™ () — ¢ has a derived functaR7: DT () — ¢. The valueRT (X) at a complex
X is equal toT Q, for any relative quasi-isomorphisi — Q into a right complexQ of
relatively injective objects.

The theory resolvent complexes is relativized similarlpnSider a'-coaugmented com-
plex of additive functors:

C: - .50>T—->C0'>clt>c?2- ...

The nonaugmented complex of functa@fsmay be viewed as a functar: 2 — B9, and
it extends to a functor on rigth complexes: the value on a dex in 2™ is the complex
TotC(X) in BT. As aresult we obtain a functor T6t: Hot™ () — Hot™(B) — DT (B),
and a transformatiod: T — Tot C, induced by the co-augmentatiGh— C©.

Consider the following two conditions on the complgx

(i) For every object of 2 there exists a relative monomorphisin— Q into an object
Q such that the compleX (Q) is relatively acyclic inf3.
(i) Each functorC”: 24 — B is relatively exact.

Lemma on resolvent complexesLet T — C’ be a second -coaugmented complex of
additive functor®l — B. Assume that the conditiofi) holds forC and thaft(ii) holds for
C’. Then, in the category of functokdot™ () — DT (8), there is a unique transformation
TotC — TotC’ extending the identity transformation Bf

Proof. The (sketch of) proof uses two standard observations{le¢ the class of object3
of 2 such thaC (Q) is relatively acyclic. LetX be a complex i *. It follows from (8.8)(5)
that there is a relative quasi-isomorphismX — Q into a complexQ in Q*. Moreover,
it follows from condition (i) for C that the natural morphis@: 7(Q) — TotC(Q) is a
relative quasi-isomorphism iB*. It follows from condition (ii) for C’ that any relative
quasi-isomorphisnX — Y induces a relative quasi-isomorphigfhX — C’Y.

Consider the following ‘prism’ diagram:

TotCX —— TotCQ

\TX i\
YRR rd

TotC’'X —*» TotC’'Q

The horizontal morphisms are induced Ky— Q. The skew morphisms are induced by
the transformations of functof8 — TotC andT — TotC’. As observed above, the two
morphisms ands in the diagram are relative quasi-isomorphisms, and heswrearphisms
in DT(B). So the required morphis@X — C’X is equal to the clock wise composition
(in DT (%B8)) of the four outer morphisms in the diagram. a
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A T-coaugmented complex of functo€s with both properties (i) and (ii) is called a
relatively exact resolvent compléor 7. It follows from the Lemma that resolvent complexes
are unique, up to a unique isomorphismirt (8). Moreover, ifT — C andT — C’ are
resolvent complexes, then any morphi6€m- C’ extending the identity of’, is the unique
isomorphismC — C’. If T has a relatively exact resolvent complEx— C, thenT is
relatively derivable, and there is a natural isomorphigfX — TotC X in DT (8).

Note the special case whé® is relativized with the split monomorphisms as relative
monomorphisms. TheP™ (B) is simply Hot" (8), and relatively exact resolvent complexes
are unigue up to homotopy equivalence.

Consider in particular the case where the identit(p&s a functor,

1: — lepﬁt,

from 2 with a given to relativization t@l with the split relativization, has a relatively exact
resolvent complex 1> C. Thus it is required for the objeci in (ii) that C(Q) is con-
tractible, and it is required that each functot turns relatively short exact sequences into
split exact sequences (and hence relatively acyclic coreplato contractible complexes).
Clearly, in this case, any additive functbr 2l — 9B, viewed as a functor of relative abelian
categoried : A — Bgpjit has a relatively resolvent complex, namély— 7°C.

(8.10) Remark. The Lemma in (8.9) has a flavor similar to the Theorem of Acy®lpdels:
Let R be an arbitrary category, and Bt be a class of objects (tlmeodel$ of K. Consider the
category of functor® — B from £ to a given abelian catego®. Relativize the category
of functors: A transformatiof — & is relatively monic(or 9t-moniq, if M — &M

is monic in®B for every modelM. (This the relativization induced by the exact funtor that
restricts a functoff: 8 — B to the clas971.) Acordingly there is a notion oft-acyclic
complexes of functors ardi-injective functors. IfQ is an injective object of3 and M is
any model, then the functor,

puQ = QIO

is M-injective. Indeed, the assertion follows from the funi@bisomorphism, for arbitrary
objectsM, Q in %B:
Homeyuncd S, om Q) = Homy (M, Q).

The theorem of acyclic models.LetT: & — B a functor and let — C andT — C’ be
two T -coaugmented complexes of functors. AssumeThdt— C M is an exact resolution
for every modeM and that each functa@r” isM-injective. Then, in the homotopy category
of complexes of functors, there is a unique morphésm> C’ extending the identity df .

Proof. This is a special case of Corollary (8.4), with:=T,Y := C andQ := C’. a

(8.11) Example.Takef = Top and as models the topological simplieeéfor p =0, 1, .. ..
Apply the dual concepts witls := Ab. LetC,°: Top — Ab be the functor,

CSNy — 7@Homrop (A", X)
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ThenC;"is relatively projective, sincg is projective inAb. The functorsCy "%fit onto the
singular chain complex>"9, naturally augmented by the constant funcorts homology
defines thesingular homology

HIY(X) = H,(CSN9X).

The reduced singular homologig the homology of the augmented compl€X"9, 1t is
well known, and easy to see, that the reduced singular haalg (Z) vanishes wher is
contractible. In particular, witd = A?, it follows that theZ-augmented complexs"9 — 7,
satisfies both assumptions in (the dual version of) the Témaf Acyclic models.

A classical application is the following:

Homotopy property of singular homology. Homotopic mapsf, fi: X — Y induce ho-
motopic morphisms of chain complex€8"9x — CS"9y,

Proof. Let I be the unitinterval. It suffices to prove that the two inatunsiip, i1: X — X x 1
induce homotopic morphisms of chain complexes,

CS"Y(X) — CSNY(X x I).

View the two sides a&-augmented complexes of functors dop. The left side consists
of relatively projective functors, and the right side isatelely acyclic, sinceA? x I is
contractible. So, by the Theorem, there is, up to homotaply, @ne morphism from the left
side to the right side. a
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Limits
1. Direct systems; limits, colimits.

Fix a categories and®, and index categoriek J. (An index categorys a category so
small that some of the constructions below make sense; ticplar, an index category may
be asmall categorythat is, a category whose class of morphisms is a set.)

(1.1) Setup. A functor X': I — € is also called adirect) systemn ¢ indexedby 7, or an
[-systenin &, or aco-/-objectin €. There is category df-systems ir€, with transformations
of functors as morphisms; it is denoted.

An [-systemX': I — € associates in a functorial way to evenglexi (that is, an object
i of I) an objectX; in € and to every morphism: i — j of indices atransition morphism
X; — &;, denotedY (¢), or g, Or @4, Or simplyp. A morphismof /-systemsi: X — Y
is a transformation of functors; in other words, it is a famof morphismsy; : X; — ),
indexed by the objectisof 7, andcompatiblewith the transition morphisms, that is, for any
morphismg: i — j in I the following diagram is commutative:

X )

o o

X

An object A of ¢ defines aconstant/-system, withx; = A for all i and all transition
morphisms equal to the identitys1it is denoted congtA) (or simply A). A morphism
a: X — A, from the I-systemX’ to the constanf-systemaA, is a familya = (a;) of
morphismsi; : A — X; which is acompatible familyn the sense that the following diagrams,
for all morphismsp: i — j in I, commute:

XY A

A

;.

We will say that the objecA with the compatible family:;: X; — A is acommon target
for the system’. If A is a common target fok’ with the compatible family:: X — A and
f: A — B is a morphism inZ, then B with the compositionfa: X — B as compatible
family is a common target fok’; it is said to benduced fronu via the morphisny: A — B.
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(1.2) Definition. A colimitofan/-systemX: I — €isacommontarget: X — Q withthe
following universal property: any common targetX — B is induced fronmy via a unique
morphismf: Q — B. It follows from the universal property that a colimit, iféxists, is
unique: IfG: X — Q is a second colimit of, then the unique morphismm O — Q such
thatg = sq is a canonical isomorphisg@ —> Q.

We will use the notatiorQ = lim &', or Q = lim, _, A;, or similar, to indicate thap is
the colimit of the systent’: I — €. The colimit is a common target fo¥', and hence it
is more than on object &f: it comes with a compatible family of morphisms — Q; the
i'th member of the family is thé'th canonical injection usually denoted ii: X; — Q.
The normal use of the symbols is an abuse of notation: We ws#;lto denote at the same
time the object with the compatible family of of injections and the object of® which is
the common target of the injections. So we view the injecias a compatible family of
morphisms, _

;e lim X
“’"l " (1.2.1)
X;.

The universal property may be rephrased as follows: For gtbB of ¢ and a compatible
family b; : X; — B of morphisms there is a unique morphism

firlim&X — B suchthatfin; =b;: X; — Bforalli € I;

it is said to be defined by the equatiofitn; = b;.

(1.3) Definition. The dual concepts lead to a dual type of limit: L8t I — ¢ be an/-
system. IfB is an object o, then a morphism»: B — X', from the constani-systemB
to thel-systemX is given by acompatible familyof morphisms;: B — X;. We will say
that B with the compatible family is aommon sourcéor the system’. A limit (sometimes
called aninverse limi) of the (direct)/-systemX': I — ¢ is a common sourcg: P — X
from with the following universal property: any common soeu: A — X is induced from
P via a unique morphisrg: A — P. We use the notatio® = Ijm X or P = |jm, _, &;
to indicate thatP is the limit of the systemt': I — <. It is an abuse of notation;_litf
denotes at the same time a common sourcexfevith a compatible family of morphisms
pr:*: lim X — X;, called the canonic@lrojections andthe object off which is the common
source of the canonical projections. The projections fooorapatible family of morphisms,

lim x Py
pr; l‘/’X (1.3.1)
X;.

The universal property may be rephrased as follows: For ggcbl of € and compatible
family a;: A — A} of morphisms there is a unique morphism

g:A—limXx suchthat prg =a;: A — A foralli € I;
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it is said to be defined by the equations gk a;.

Clearly, the limit and the colimit are functorial in tHesystemX'. The categorg is said
to havelim,’s, resp.to havelim,’s if every /-systemX: I — € has a limit, resp. a colimit;
if this is the case, there is a well-defined functor,

lim, : ¢/ —> ¢, resp. lim ¢ — €.

(1.4) Terminology. A contravariant functo: I — ¢ is also called amversel-systenin

¢ or an/-objectin €. In questions related to limits and colimits an inverseayst: [ — ¢

is always replaced by the (direct) systé€fg: /°P — Z, indexed by the opposite category
I°P,

There is atendency that limits often occur in connectiomwverse systems and colimits
occur in connection with (direct) systems. Itis an old (andejconfusing) tradition that the
limit of an inverse system is called averse limif and the colimit of a direct system is called
adirect limit.

(1.5) Product and coproduct. Assume that the categoryis discrete(no morphisms except
the identities). Then ah-systemX is just a familyx; indexed by the objects df Acommon
target forX is a family of morphisms;; : X; — A. A colimit of the systemX is called a
coproduct(or adirect sum of the A;, and denoted

[[x. o JJa. o JJa. o \/x o Px:
iel

the last symbol is mainly used in additive categories. Thgaduct comes with injections
in;: X; — || &, and the equationsin; = a; define a morphisng: [[ X — A. In the finite
casel = {1, ..., n} we may use notations like the following for the coproduct:

Xll_[---]_[)(n or Xj1jv---vix, o X1 ---®4,.

Dually, a common source fot' is a family of morphisms;: A — A;. A limit of the
systemX is called aproductof the X;, and it may be denoted

[[x. o J]x. or J[a. or XX,-.
iel

The product comes with projections;pif [ X — A}, and the equations pg = a; define
amorphismg: A — [[ X. In the finite casd = {1, ..., n} we may use notations like the
following for the product:

Xln---an or X1 x---xX,.

The coproduct of the empty family (= @) is thecofinalor initial object of¢ and the product
of the empty family is the final object.
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When the family is constang; = X for all i, we use the notatioX’ for the product and
X®! for the coproduct. In the finite case= {1, ..., n}, we write X" andX®". Note that
the productX’ is a contravariant functor with respect to the getnd the coproducx ®’ is
a covariant in/.

For an arbitrary index categorywe say that” has[ [ ;’s, resphas] [ ;’s, if for any family
in ¢ indexed by a set of cardinality at most equal to the cardinefithe class of morphisms
in J, the product, resp. the coproduct, exists.

(1.6) Example. Assume that has a final objeciy. Then, for any/-systemX': I — € the
object &}, is the colimit of the system, it — X;,. More precisely, ifX; — &}, is the
transition morphism corresponding to the unique morptiism ig, then the objeck’;, with
the morphismst; — X" as injections is the direct limit.

Dually, if 7 has an initial objecfo, then for any/-systemt’, we haveX, = lim X'

Clearly, assuming the existence, the colimit of the idgritihctor is a final object o€
and a limit is an initial object o€.

(1.7) Fibered product and amalgamated coproduct.For the category ;= 1' — 0 « 1
(three objects and two morphisms in addition to the idegg)tian/-systemX’ is a diagram
X{ — Xp < X1. Acommon sourcei for X' is a commutative diagram,

A4 x,

W e

X?I. 7 X(),

with ap = a1 = ¢’a}. The limit, if it exists, is called thé&bered producbr thepull-backof
the given diagram; it is denotet; ]_[X0 X1 or X] X xy X1.

Dually, for the category := 1" <— 0 — 1 aJ-system) is a diagramy; < Yo — )1,
and a common targét — B is a pair of morphisma; : V; — B andb;: Y1 — B such that
the composition8’s — ); — B and)o — Y1 — B are equal. The colimit, if it exists, is
called theamalgamated coprodudir the push-forwardof the given diagram; it is denoted
Vi Ly, Yror Yy vy, V1.

in’ b
A Vi Y1 Voo Y1\
L N
Xo

(1.8) Equalizer and coequalizer. Assume that is the category 0= 1, with two objects
0, 1 and two morphismg, ¥ : 0 — 1 in addition to the two identities. Then drsystemX

in ¢ is a diagram of two morphism&’o::;: X1.
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The limit of the system is thequalizerof the morphismsp, v/, denoted E¢p, y) or
Ker(p, ¥). The canonical projection gr Ker(p, ) — Xp is, in fact, a monomorphism
(and pg, = ¢ pry = ¥ pro).

The colimit of the system is theoequalizerf the morphism®, v, denoted Coe@, )
or Cok(g, ¥). The canonical injection in X1 — Cok(g, ¥) is, in fact, an epimorphism
(and i =iny ¢ = inp ¥).

Ker(p, ) 27 XO:f;t X1 ™. Cok(g, ¥).

(1.9) Limits in the category of sets.If I is a small category, then aiiysystentX of sets has
alimit. Infact, let[ [;.; X; be the product set, consisting of all element familig3;; with
x; € X;, and letP be the subset of all compatible families, that is, elememilfas

(x;)ier such thatp,(x;) = x; for any morphisny:i — jinl.

Then the seP with thei'th coordinate projectiofix;);c; + x; as the canonical projection
P — X is the limitljm, _, &;.

Proof. This is just an observation: Le® < []A; be the subset of compatible element
families. Clearly, a family of maps;: A — X&; definesamap: A — [] A&; from A to the
product set, and maps into the subsédt if and only ifa; : A — AX; is a compatible family
of maps. a

(1.10) Main existence lemma(1l) Assume that the categogy has equalizers anfl[,’s.
Then< haslim,’s. In fact, for anyl -systemX': I — €&, the limitlim,_, &; is the equalizer
of the following pair of morphisms,

N
[T = [ %
iel @ i—>]
In the product on the right side, the index set is the classl oharphismsy:i — j in I,
and the object corresponding to the ingex — j is the objectt; given by the target af.
The two morphisms, t into this product are given by their projections correspogdo an
indexy:i — j; they are given by the equations of morphignst — X;:

pr, s = @. pr;, andpr,t =pr; .

(2) Assume that there is a clagsC 1 of objects such that for every object I there
exists an objecj € J and a morphisnj — i. Assume that the catego@yhas arbitrary
intersections of subobjects, and equalizers, Jdids. Thend haslim ,’s.

Proof. Part (a) is just a game where you play with the universal ptagseof the product and
the equalizer. You have to play it!

Part (b) is similar, knowing the rules: Consider the prodBct= ]_[jej X;. For any
morphisme: j — iin I, with j € J, let p,: P — &; be the morphisnp, pr;. For any
pair of morphismsp: j — i and¢’: j/ — i with j, j* € J, the equalizer Kep,, p,)
is a subobject of". Now check that the intersection of all these equalizert) wbvious
projections, is the limit lim_, A;. a
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(1.11) Limits and colimits of sets. Let I be a small category and léf: I — Setsbe an
I-system of sets. Clearly, the general description in (Udd)s to the description of the limit
lim, ; in (1.9).

The category of sets has coproducts, given by the disjointr{, X', and it has coequal-
izers: If Z:‘Zt X is a pair of maps, then the coequalizer Cqk) is the quotientX/ ~ of
X modulo the equivalence relation generated by the relationsz) ~ t(z) forz € Z. In
even more detail, for elementsx’ write x <> x’ if eitherx’ = x, or there exists an element
z € Z such thai(x, x") = (s, t)(z) or (x, x") = (¢, s)(z). Then,

x ~x' <= there exists a finite string = xg < x1 < -+ < x, = x'.

So the dual version of Lemma (1.10) applies. It follows tinet tategonSetshas lim,’s,

and that the colimit lim & may be described as the quotientof.= [ [;.; A; modulo the
equivalence relation generated by the following relatibmo elements, x’in X, sayx € A;

andx’ € &; are related if there is a morphispn i — j such thep,.(x) = x’.

(1.12) Examples. The construction in (1.10)(1) applies to many classicagaties of sets
with an extra structure. Of special interest is the follogwasult:

Observation. The categonAb of abelian groups has arbitrary small limits. Moreover, if
X: 1 — Ab is a system of abelian groups, then the set underlying thepdim . X; is the
limit of the underlying sets.

Proof. Clearly, if &; is a family of abelian groups indexed by a detthen the product
group is the product sdt];_, &; with coordinate-wise composition; if, g: X — Y are
homomorphisms of abelian groups, then the set equalizesubgroup ofX and hence, with
its subgroup structure, equal to the equalizer in the cayegp.

So, by (1.11), for any syster; of abelian groups indexed by a small categdrthe
limit lim; _, &; exists and it may be obtained by giving the limit of underysets a natural
induced structure as an abelian group. a

Almost identical observations may be made for most othexgmates of sets with extra
structure, for instance for the following categories:

¢ = Gr is the category of groups,

¢ = k-Alg is the category of commutative algebras over a commutangeskt

¢ = k-Mod is the category ot-modules,

¢ = Top is the category of topological spaces,

¢ = POSis the category of partially ordered sets.

(1.13) Note. It follows from Lemma (1.10) tha€ has arbitrary finite limits, resp. finite
colimits, if and only if € has finite products and equalizers, resp. finite coproduais a
coequalizers. In particular, an abelian category hasrarfifinite limits and finite colimits.

Again, by the same Lemmd, has arbitrary small limits (i.e., limits of systems indexed
by small categories), resp. small colimits, if and onlg¢ ifias small products and equalizers,
resp. small coproducts and coequalizers.
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Note also that the categogunct(J, €) of all functorsF: J — € has the same limits and
colimits as the category. The limit of a systemi — F; of functorsF;: J — €is determined
“argument by argument’lim, F;)(Z) = lim,(F; Z) for Z € 3.

(1.14) Definition. Let F: ¢ — © be a functor. IfX: 1 — € is anl-system in¢, then
the compositionF X: I — ® is an/-system in®. So F induces a functoe! — ©'. In
particular, ifa;: A — A} is a compatible family ir€, corresponding to a morphism from the
constant/-systemA to X, thenFa;: FA — FAXj is a compatible family irP.

Assume that the limits exist. The projectiongprljm X — AX; form a compatible family
in €. So the images undét form a compatible famil;F(prj“): F(m&X) — F&;in®. So
there is an induced morphism,

F(lim X) —*~Iim FX, defined by the equations ,’fﬁ‘ u= F(prff). (1.14.1)
I I

The functor is said tecommute withim ’s if, whenever the limit lim & of an /-systemt’
exists, the compatible family(pr;): F(ljm X) — FA&; is the limit of the /-systemF X'
Assuming the existence of both limits in (1.14.1), the fongt commutes with lim'’s if the
morphismu in (1.14.1) is an isomorphism for adysystemX'.

The functorF: € — 9 is said to bdeft exact resp.right exact if it commutes with all
finite limits, resp. colimits.

It follows from Lemma (1.10) that a functar is left exact if and only if it commutes
with equalizers and with finite products; it commutes withsahall limits if and only if it
commutes with equalizers and arbitrary products indexeskly.

(1.15) Proposition. The functotHome (—, —) from €°P x € to Setscommutes withjm in
the second variable and, when viewed as a covariant fuéifor> Setsin the first variable,
also in the first variable. More precisely, for a given syst&ml — &, the following
assertions hold: Lep;: P — X; be a common source and gt X; — Q be a common
target for the syste®'. Consider, for objecta, B € ¢ the maps of sets induced pyandy :

(1) Home(A, P) "~ limHome (A, X)),  (2) Home(Q, B) "~ lim Home (X;, B).

iel iel

ThenP = |im; &; if and only if (1) is bijective for allA, andliny; X; = Q if and only if (2)
is bijective for allB.

Proof. Indeed, the precise result is a reformulation of the unalgsoperties of limits and
colimits. i

(1.16) Definition. Consider a functod: J — I. Then for any/-systemX in ¢ the
compositionX'® is a J-system in¢; it is said to be obtained frorX’ by restriction to

J (via @), and may be denoted| or X'|J. Restriction defines a functat! — ¢7.
Assume that the colimit lim , &; exists. Then the canonical injections define a compatible
family of morphisms in: X; — lim, X', and it restricts to a compatible family of morphisms
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Xoj — (lim, X) from the J-systemX' @ to the constanf -system lim &'. So, if the colimit
lim , X® = Iij;jej Xg; exists, the first of the following morphisms is a canonicatpiism
in ¢,

jeJ iel iel jeJ
the second morphism is obtained similarly, assuming thealithits exist.

Recall that theight fiber of the functor®: J — [ at an objeci of the target category,
denotedi/® (or i/J), is the following category: The objects of® are the pairg;, ¢)
consisting of an object € J and a morphisnp:i — ®; in I. The morphisms in/® from
(j, @) to (j', ¢') are the the morphismg: j — j’ in J for which the following diagram is

commutative:
0

@) Q) ®j’.

The functor®: J — [ is called afinal or terminal functorif its right fibers are non-empty
and connected.

Example. The category is said to bdiltering, if the following two conditions are satisfied:
(FILT 1) For any pair of objectg, j* € I there exists an obje& € I and morphisms
j— k< j.
(FILT 2) Any pair of morphismsg = j can be coequalized by a morphigm- k.
It is said to begpseudo-filteringf (FILT 2) holds and (FILT 1) holds in the week form:
(PS-FILT 1) For any pair of morphisms < i — j’ there exists an objedt € I and
morphisms; — k < j’, and
Y P
i — k,
Of course, assuming (FILT 2), the square in (PS-COFILT 1) beagssumed commutative.
Itis easy to see thdtis pseudo-filtering if and only if the connected componehts are
filtering.

i—xj--k

If I is pseudo-filtering, then the inclusion of a subcategbrg I is final, if and only if
for every objeci € I there is an object € J and a morphism — ;.

(1.17) Proposition. Assume that the functob: J — 1 is final. Then, if one of the two
colimitslig icr X and Iig iel Xg; exists, then so does the other, and the canonical morphism
of (1.16.1)is an isomorphism,

lim Xo; —~ lim A;. (1.17.1)
jeJ iel

Hint. To define an inverse af, consider the family of morphisms: &; — lim , X' ® defined
fori € I as follows: Chose an objegte J and a morphisni — &;j in I. Letv; be the

composition,
mXCD

X~ Xoj '~ lim X O.
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Now check that the; are well-defined, that they form a compatible famityt’ — lim , X' ®
from the I-systemA’ to the constant-system_lim, X'®, and that the induced morphism
lim, & — lim , X® is the inverse of (1.17.1). a

(1.18) Proposition. If a functorF : € — © has a left adjoint then it commutes with all limits.
In particular, therF is left exact.

Proof. By assumption there is a functar ©® — ¢ and a functorial adjunction bijection, for
objectsD € © andC € ¢,

Home(AD, C) = Homgy (D, FC). (2.18.1)

Consequently, for any-systemX’ such that the limit lim X" exists, there is a commutative
diagram of sets,

Homg (D, F(lim, _, &;)) == Homg(AD, lim, _, X})
lz
lim,_, Homg (D, F(&;)) == |im, _, Home (A D, X}).

The horizontal bijections are induced by the adjunctioediipns. The right vertical map
is a bijection, reflecting the universal property of Jinef. (1.15). The left vertical map is
induced by the compatible family of morphisrﬁ$prf‘): F(lim, X) — F(X;). Asthe map
is bijective, it follows that the compatible family has theversal property. Hencg(ljm, X)

is the limit of the systen¥ X'. a

(1.19) Examples.As noted in (1.12) several classical categogidsave as objects sets with
an extra structure, and the forgetful fundtor€ — Setscommutes with lir's. In fact, if € is
such a category, there if a functéf: Sets— € which is left adjoint tdl. It associates with
a setT an objectW (T') which you may think of as the free objectdngenerated by’; it is
defined by the equation HopaW (T'), A) = Homsei( T, 0A).

Here are the examples corresponding to the categorieslif)(1.

¢ = Ab, W(T) := Z®7 is the free abelian group generatedmy

¢ :1Gr, W(T) is the free group of words in letters corresponding to thenelats of
TUT -,

¢ = k-Alg, W(T) := k[T] is the polynomial algebra in variables corresponding ® th
elements off".

¢ = k-Mod, W(T) := k®7T is the freek-module on generators corresponding to the
elements off".

¢ = Top, W(T) = T9% is the discrete topological spate

¢ = POS W(T) := T9s% s the discrete partially ordered skt

(1.20). Assuming the existence of the limits and the colimits we Hawetors Jim, : ¢l ¢
and ligy, : ¢! — ¢. By the universal property of limits, we have the bijectitor,any object
A € € and anyl-systemX: I — C:

Homg: (const A, X)) = Home (A, [jm &).
i
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In other words, the limit functor limis right adjoint toA — consy A is left adjoint to Jim,.
Similarly, the colimit is left adjoint toA +— consf A:

Homg, (X, consf A) = Homg (lim X, A).
I

Therefore, the following result is an immediate consegaearidroposition (1.18).

Proposition. If the category& haslim,’s then the limit functofjm, : ¢! — ¢ commutes
with arbitrary limits; in particular, the limit functor ieft exact. If the categorg haslim ;s
then the colimit functolim , : ¢! — ¢ commutes with all colimits; in particular, the colimit
functor is right exact.

(1.21) Remark. Proposition (1.18) is morally an “if and only if” statemefithe more precise
result is the following:

Theorem. A functor F: &€ — © has a left adjoint if and only if every systemdnindexed
by a right fiber ofF has a limit andi’ commutes with these limits.

Proof. Fix D in ©. Recall that the right fiber of* at D, denotedD/¢, is the following
category: Its objects are pai(X, f), with an objectX € ¢ and morphismy/: D — FX in
©. A morphism inD/¢, say from(X’, /) to (X, f), is a morphisnk: X’ — X in € such
that f = F(h) [

D
f’i \ (1.19.1)
Fx ", Fpx.
Assume thak: ® — ¢ is a left adjoint ofFF. Then the adjunction bijection, say
p: Homg (D, FX) - Homg(AD, X), (2.19.2)

functorial inD € ©® and inX e ¢, associates with each objgct, /) € D/¢ a morphism
p(g): AD — X which is an object in the categoiyD /€ of all morphisms with sourcgD.
It is obviously an isomorphism of categories framy¢ to A D /€. The latter category has an
initial object, which is the identity 11D — AD. Hence the right fibeD /¢ has an initial
object (which is the morphism: D — FXD corresponding to the identity afD under the
bijection p). Therefore, any system indexed By ¢ has a limit.

Conversely, assume the conditions for the ‘if’ part. TheckonD /& — € determined by
(X, f) = X isaD/€-systemine. DefinerD as its limit:

AD = Im X.
(X,feb/e

The limit comes with a compatible family of canonical prdjens: For any indexX, f) in
D/ there is a morphism gr-: AD — X, and this family is compatible, that is, for any
commutative diagram (1.19. 1) the following diagram is comative:

AD

pry’ f/l Qixﬁf (1.19.3)

X I x.
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Now, for fixed X € &, define the map as in (1.19.2) byp(f) := pry ;. It follows from the
compatibility of the family of projections that the maypis functorial with respect t&.

If g: D’ — Disamorphismim®, there is an obvious functor of the fibaebg &€ — D'/€,
determined by X, f) — (X, fg). So there is a natural morphisad’ — A D of limits, see
(1.16), commuting with the projections. It follows that— A D is functor and that the map
p in (1.19.2) is functorial inD.

It remains to prove thap is bijective. By assumption, the functét commutes with
limits. So, sincerD is the limit of the systeniX, f) — X, it follows that FAD, with the
compatible family of morphismg(pry ,): FAD — F(X), is the limit of the image system
(X, f) — FX. By definition of the right fibeD /&, there is an obvious compatible family of
morphisms from the objedD to the image systerX, ) — FX. Hence, by the existence
part of the universal property of limits, this compatibletdy is induced by a morphism from
D to the limit FAD. So there is a morphisat D — FAD such that, for allX, f) € D/¢,
the first of the following diagrams is commutative:

D D
gi \ gl Wﬂ (1.19.4)
F(pry -
Fap P gy FaDp 19, px.

In the second diagram, f: AD — X is a morphism, we let(g) := F(g)e. Then, by
definition of ¢, the second diagram is commutative. The ngap> ¢(g) is a map of the
Hom-sets in (1.19.2), from the right to the left. We claimtttiee mapy is the inverse op.

First, by the commutativity of the first diagram in (1.19.4)ollows for any morphism
f: D — FXthatgp(f) = f.

So it remains to prove, for a given morphigmiD — X that pg(g) = g. Now, the
morphisme: D — FAD defines an objegi. D, ¢) in D/¢. Let(X, f) be an arbitrary object
in D/C. It follows from the commutative diagrams in (1.19.4) tha p is a morphism
(AD,e) — (X, f) andg is a morphism(AD,e) — (X, ¢q(g)). So the following two
diagrams, corresponding to (1.19.3), are commutative:

AD rD
prw,gl \f prw,gi wfj»q@ (1.19.5)
wD DXL x AD S X,

In the second diagranpg (g) = Pry 4. SO, by the commutativity of the second diagram,
to prove the equatiopg (g) = g it it suffices to prove that g, . = Lip.

To prove that latter equation note that the first diagram ih9®5) is commutative for all
(X, f) € D/€. Hence, since.D is the limit of the systeniX, f) — X, it follows from the
uniqueness part of the universal property for limits thgtyor is the identity morphism of
AD. I

(1.20) Exercises.
1. LetT: 24 — B be a functor between abelian categories. AssumeTthatright exact.
Prove thatT is left exact if and only ifl’ preserves monomorphisms.
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2. The category of direct systems.

(2.1) Setup. Fix the category. Let): J — ¢ be aJ-system in¢. Consider, for an object
A € ¢, the colimit,
lim Home (A, V;). (2.1.1)
jeJ
Recall, cf. (1.11), that the colimit of sets is a quotienttad disjoint union] [ Home (A, V)
modulo an equivalence determined from the transition merps. Writey: j1 <— jo
to indicate thaty is either a morphismy: j1 — j2 or a morphismy: j» — j;. Then,
more explictly, an element of the colimit (2.1.1) is given &yepresentativef: A — Y,
for some; € J, and two representatives: A — ); and f': A — ) are equivalent if

there is a path of morphisms ift j = jo < j1 <% j, &% ... &% j — /anda

sequence of morphism&: A — Y, forv =1,...,n — 1 such that the following diagram
is commutative:

A

g

Yi Y1 Vi /7] Vie v Yn V-

(2.2) Definition. Thecategory of all(direct)systemsn ¢, denoted dir&, has as objects the
systems in¢ for all possible index categories. X: I — € and):J — € are objects of
dir- &, then the set of morphisms in d&; from X’ to ), is the following set:

Homgir. ¢ (X.)) = lim lim Home (&}, V)); (2.1.1)
iel jeJ
the limit and colimit on the right are in the category of s&s, according to the description
above, a morphisny: X — ) is a compatible element family = (f;) of elements
fi € Iigjej Home (X, V;). Such a family is determined by selecting for each intdex/
anindexj = j (i) € J and a morphismepresentingy;:

fiji & = Vs

to such morphismg;; : X; — ), andf;; . &; — ) determine the samg if they are equi-
valent. Compatibility of thef; means that for any morphisgt i — i’ in I, the morphisms
firjes: X = Yprand fij: Xi — Y; (wherej = j(i) andj’ = j(i’)) are equivalent:

Xiﬁj

(P*i \
fi/ -/
X‘i/ 4]> yj/‘

Vi

Composition of morphisms in di¢ is defined on the representatives: LfetX — ) and
g: Y — Zbemorphismsindig, sayf isrepresented by morphismis): X; — Y;) with
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a selectionj = j (i) andg is represented by morphisngs.(;): V; — Zi(j) With a selection
k = k(j), then the compositiogf is represented by the morphisgys fi;: X; — V; — 2k
wherej = j(i) andk = k(j (i)).

It is easy to see that composition is associative. Obvigdsiyany systemt: I — J,
the family 1:X; — AX; represents a morphisdi — X which is a unit for the composition.
Hence dir< is a category.

Clearly, afunctor : € — © extends in a natural way to a functor dir— dir- ® between
the categories of systems.

(2.3). Associated with every object of ¢ there is a system i6i:
X1:1— ¢,

indexed by the one point categdryand with the (constant) valug. Clearly, the association
defines an embedding,

(O)1: € C dir-¢, (2.3.1)

of ¢ as a full subcategory of the category of system&.iMore generally, ify: J — ¢ and
Z. K — ¢ are objects of dir€, then

HoMgir- ¢ (2, X1) = lim Home (Z, X), HoMgir- ¢ (X1, V) = lim Home (X, V). (2.3.2)
keK jeJ

It follows from the first equation that it is equivalent to gig morphisny: Z — X1 and to
give a common targex for the systeng2: K — €.

Via the inclusion (2.3.1) ad-systemX’: I — ¢ in ¢ may be viewed as ah-system
X111+ (X;)1indir- €. Forthel-systemX7: I — dir- &, the objectt’ € dir- €isacommon
target: For every € I, the identity of X; represents an element in Hgimg (X;, X) =
”ﬂja Home (&;, &}). From the compatible familyt;); — X of morphisms in dirg, we
obtain a natural map of sets, forin dir- €,

Horndll’-Q:(Xv y) - lm Horndll’-Q:((‘X.l)lv y)v (233)

iel

and it follows from (2.3.2) that the map (2.3.3) is bijectigeall ). Therefore, by Proposition
(1.15), the syster®’, as an object in dii€, is the colimit of the systemY)q,

X = lim (X;)1.

iel

Warning. The embedding);: € — dir-& does not commute with colimits. So, even if
the colimitX := lim A&; exists in¢, it does not follow thatX; is the colimit of the system
(X)1: I — dir-¢.
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(2.4). Let X: I — ¢ and®):J — € be objects of dir¢€. Assume that the colimit :=
Iigj Y; exists. Then, for every objeét € ¢, there is a canonical map of sets

lim Home(Z, ;) — Home(Z, Y). (2.4.1)
J

Assume that the colimiX := lim, &; exists. SetZ = A; in (2.4.1) and pass to the limit
overi. On the left you get Homj- ¢ (X, )) and on the right you get HogtX, Y) since
Homg( —, Y) commutes with limits in the first variable. So the result isaanical map,

Homyir- ¢ (X, Y) — Home (X, Y). (2.4.2)
It associates with a morphisgfi: X — ) of systems a morphism lipt’ — lim , V; it is
natural to denote it limf. Itis functorial inX” and) when the colimits are defined.

Lemma. Consider a morphism of systenfs X — ). Then, if the colimits exist, the
induced morphisriimg X — lim ) is an isomorphism if and only if the following maps, for
all objectsz if &, are bijective,

HoMir- ¢ (Y, Z1) — HOMgir- ¢ (X, Z1). (2.4.3)

Proof. Indeed, by definition of the morphisms in dir-and by the universal property of
colimit, the map (2.4.2) identifies with the map induced _toy fi,

Home (lim ), Z) — Homg (lim X, Z),

and the latter map is bijective for &l if and only if lim f is an isomorphism. a

(2.5) Note. For a small category, the identity functor }: / — J is a system in/ and
hence an object in ditF.

Observation 1. The systeni;: J — J, given by the identity, is the final object dir- J .

Proof. Denote by{x} the one-point-set. We have to prove, for any systeni — J that
Homgir- s (P, 1) = {x}.

By (2.2.1), the Hom-set is a limit (overe I), and the limit of one-point-sets is a one-point-
set. Hence we may assume ttiat 1 and that® has the fornmks, for some element of J.
So we have to establish the equation,

lim Homy (k, j) = {*}.
jeJ

This equation follows from the description in (2.1): A repeatative for an element in the
colimitis amorphisny: k — j forsomej, and clearlyy: k — j is equivalentto the identity
1:k — k. I
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Observation 2. More generally, a functob: I — J is a final object in the categodn- J if
an only if the right fibers oo are non-empty and connected, that is, if and onfy i final
as defined ir{1.16)

Proof. As in the previous proofp is a final object in dir< if and only if for everyk € J we
have the equation,

lim Homy (k, ®i) = {x}.

iel

So the assertion follows from the description in (1.11). a

Now, letd: I — J be any functor. Then, since 1s the final object of dirJ, there is a
canonical morphisn® — 1; in dir- J. So, applying the functoy): J — ¢, the resultis a
morphism in dir<:

Vo — ). (2.5.1)

It is the morphism obtained by selecting@i) := ®i and with the identitie®s; — Yoi
as representatives. Since the colimit is functorial on®ithe morphism (2.5.1) in di&
induces a morphism ig,
lim Vo; — lim J;. (2.5.2)
iel jeJ
We recover the result of Proposition (1.17)dif 7 — J is afinal functor, then (2.5.1) is an
isomorphism; hence, so is (2.5.2).

(2.6) Dir-representable functors. Consider the categojunct = Funct(€°P, Setg of con-
travariant set-valued functors @ For a fixed object’ € ¢, the Hom-functor in the first
variable, Homx ( ,Y) belongs tofunct(€°P, Sety. We writeY (Z) for its value atZ € ¢:

Y(Z) . =Homg(Z,7Y);
clearlyY — Y ()isacovariant functof — Funct(¢°P, Sets. Itis afullembedding. Infact,
by the Yoneda representation theorem, for any contravafiactor 7 € Funct(¢°P, Sety
there is a natural bijection of sets, functorialine €,
Homﬁunct(X( )7 T) = T(X)

It is determined bW — Wy (1ly) for transformationsl: X () — T; the transformation
® (&) corresponding to an elemente T(X) isgivenbyf — T(f)(&) for f: Z — X.

In particular, forT := Y (), we obtain the bijection HORn«(X (), Y ()) = Home (X, Y),
and hence&X — X () is an embedding,

¢ C Funct(¢P, Sety,

of ¢ as a full subcategory of the functor category. A contravaranctor of the formX ()
with X € ¢ is said to beepresentable
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LetY: J — € be aJ-system in¢. The functor categorfunct(€°P, Setg has the same
colimits as the category of sets. So, inthe functor categyergnay form the colimigrym Y;0).
It is denoted)( ), and its value at the obje@t € € is the colimit of sets,

Y(2) = lim Home (Z, V).
J

A contravariant functor of the forny’( ) with a systemY:J — ¢ is said to bedir-
representable If X: I — ¢ is a second system i@, then we have the following four
equalities:

Homgunct(X( )7 y( )) = um Hom&unct(‘){i, y( )) == Qm y(-)(z) - um Ilﬂj HomG(-X‘i, yj))

1 1

= HoMyir- ¢ (X, V).

Indeed, the first holds sinc¥( ) is the colimit of theX () in the functor category, the second
holds by Yoneda, the third by definition of the func¢ ), and the last by (2.2.1). It follows
thatX — X'() is an equivalence from the category diref direct systems i€ to the full
subcategory ofunct(€°P, Set9 consisting of dir-representable functors.

(2.7) Definition. A systemX’: I — ¢ is said to beessentially constant the following two
(equivalent) conditions hold:

(i) There is an objecK e ¢ and an isomorphism in di€,
X = X;. (2.7.1)

(ii) The colimitlim, _, &; = X exists, and any functaF: € — © commutes with this
limit: lim,_, FX; = FX.

The equivalence is almost obvious: A common targeft’ — X corresponds to the
morphism (2.7.1) in dirg. If (2.7.1) is an isomorphism, then so is the morphiBi’ —
(FX)1indir-©; apply the functor linto obtain the isomorphism|ifiX’ = FX. Conversely,
if (ii) holds, then the isomorphismin (2.7.1) is obtainedéking asF the inclusion )1: € —
dir- €.

Clearly, under the correspondence between systems amdpdésentable functors, the
systemX is essentially constant if and only if the contravariantdian X' ( ) is representable.

(2.8). Consider a system in di¢: indexed by an index categoty sayi > X fori € I.
Then eacht®) is a systemt’): J; — ¢ with an index category;.
If the colimit, '
Y, = lig &\,
JEJi
exists for each index € I, then by the functorial properties of lim (2.4) theQ); form
an I-system) in €, and hence an object §i € dir- €. Moreover, for each € I there is
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a morphismk; : X — ) represented by the morphismy in’(j(i) — )i, and thex; is a
compatible family of morphisms in di€,
kit XD =y,
making)’ a common target of the systetﬁ")._ This commontargetis in general notuniversal,
that is, ) is not the colimit of the syster’; if the colimit X := lig X @ exists in dir-¢,
then thec; determine a canonical morphiskth— ).
Proposition. Consider ar -system — X© in dir- ¢ such that
(i) The colimitx := ling,_, X© exists indir- €, and
(ii) the colimit)); = lim el Xﬁ.’) exists in€ for everyi € 1.
Then the canonical morphisA — Y induces, for every object of &, a bijection,
Homgir- ¢« (Y, Z1) — HoMyir- ¢ (X, Z1). (2.8.1)
Proof. The system in dir- € is the colimit of the systemgY;)1 and the systent’ is the

colimit of the systemst' ). Therefore, since Hom commutes with limits in the first vialéa
it suffices to prove that the following map is bijective foryan

Homir. ¢ (Vi)1, Z1) — Homgir- (X", Z1).X, Z1). (2.8.2)
Identify the map (2.8.2) with the following map:
Home (Vi, Z) — lim Home (X?, 2).X, Zy). (2.8.3)
The map (2.8.3) is bijective becauye = lim X. 0
(2.9) Corollary. Under the conditions (i) angi) of (2.8), we have an isomorphism &}
liy X —> lirg .,

provided that one of the two colimits exists.
Proof. The assertion follows from Lemma (2.4). a

Remark. If every systemt'® is essentially constant, i.eX,) = ()1 in dir- ¢, then we
have the equations,

X =limx© = limQn1 =Y.
In particular, in this cas&’ is essentially constant if and onlyJf is essentially constant.
(2.10). Consider a direct systeri: I x J — € defined on a product category.

(2.11). An abelian categorgl has equalizers and coequalizers. Hence it hagdimhand
only ifit has]],’s, and it has lim if and only if it has] [, s.

Proposition. Let®( be an abelian category with exddt;. Then the functolim, : A — A
is right exact.

Proof. ... 0
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3. Inductive and projective limits.

(3.1) Definition. A systemX': I — € is called arinductive systerif the index category is
filtering. Aninverse systery: I — €, that is, a contravariant functdi: I — ¢, is called a
projective systent the index category is filtering.

A colimitof an inductive system is often called emauctive limit and a limit of a projective
system is often called jprojective limit

(3.2) Observation. Leti — X; be an inductive system of sets. Consider the inductive limit

lim X = \/ %/ ~,

iel iel

as the quotient of the disjoint unidp X; modulo the equivalence relatien cf. (1.11) Then:

(1) Two elements € X; andx’ € X are equivalent if and only if there are morphisms
@i — jandy':i’ — j suchthabp,(x) = ¢.(x) in X;.

(2) For any two elements in the inductive limit there is an indexch that the elements
have representatives i} .

(3) Two elements, x' € X; are equivalent if and only if there is a morphigmi — j
such thatp, (x) = @ (x').

The assertions are easy consequences of the filtering morgddn the index set.

Proposition. Let I be a filtering category. Then the inductive lintit) , : Setd — Sets
commutes with finite limits and arbitrary colimits.

Proof. The second assertion is obvious since a colimit commutdsawititrary colimits. To
prove the first assertion is suffices to prove that lisommutes with equalizers and final
element and with the produdt x ) of two /-systems.

I

(3.3) Construction. Leti — A} be an inductive system of abelian groups. Consider the
inductive limit of the underlying sets,

E:=\/X,~/~.

Leta, b € E be elements of the quotient, and chose an indexd representatives y € X;
fora andb. Leta + b be the element in the quotieAtrepresented by the supt-y € A;. It

is easy to see, using the descriptionin (3.2) that the elemeih is independent of the choice
of i and of the representativesy. So we have obtained a compositi@n ) — a + b in

the setE. Furthermore, it is easy to see thatwith this composition is an abelian group,
that the canonical injections of sets — E are homomorphisms of groups (and heices

a common target of the given systemAb), and thatk is, in fact, the colimit inAb of X'.
HencekE is the inductive limit of theX;. The construction may be stated as the following
result:
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Corollary. The forgetful functon: Ab — Setscommutes with inductive limits.

(3.4) Corollary. LetI be a filtering category. Then the inductive lii) , : Ab! — Ab
commutes with finite limits and arbitrary colimits.

Proof. We know that the inductive limit, as a colimit, commutes watibitrary colimits. To
prove the first assertion consider a finite categbsnd aJ-system; — X' of /-systems

[ — Xl.(j) in Ab. We have to prove that the canonical homomorphism,

lim lim X, — lim lim &, (3.4.1)
jedJ iel iel jelJ
is an isomorphism of abelian groups. It suffices to proveithata bijective map of the un-
derlying sets. So apply the forgetful functbrAb — Setsto (3.4.1). The functor commutes
with arbitrary limits by the results in Section 1, and it conmas liny by the corollary in
(3.3). Therefore, the bijectivity of (3.4.1) follows frorhe Proposition in (3.2). a
Similar considerations apply to categories of sets with lgekaaic structure, lik&r,
tMod, Rings, etc.

(3.5) Note.ltis easy to see that the assertions (3.2) (i) and (iii) aeattnclusionin Corollary
(3.4) hold if I is only assumed to be pseudo-filtering. ???7?

(3.6) Definition. The category ind€ of ind-objectsof ¢ is the full subcategory of dic
determined by the inductive system#inSo for inductive system¥: I — ¢and): J — C,
the set of morphisms frox’ to ) is the following set,

HOMjng-¢ (X)) = Iim lim Home (&}, V). (3.6.1)
iel jeJ

As J isfiltering, the colimit on the right hand side is an induetivmit, and so the observations
in (3.2) apply.
The one-point-category s filtering and so the constant systéfm defined by an object

X € ¢is an inductive system. In other words, the the funcfor~ X; of (2.3) is a full
embedding of into the ind-category,

¢ Cind-¢.

If X: I — ¢isaninductive system, ahis a final subcategory df, thenJ filtering and
the restrictionY’|J: J — € is an inductive system. Moreover, since the inclusiog I is
final, it follow that the natural morphism is an isomorphism,

X|J— X.
(3.7) Note.Under duality, direct systems and inductive systems cpoed to inverse systems

and projective systems. An inverse systendiis a contravariant functot’: 7 — ¢, and it
corresponds to a covariant funct&PP: I — ¢°P, and hence to a direct systemdfP. The
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category of inverse systemsdndenoted inve, has as objects the inverse system&.iThe
set of morphisms in the inv-category from the invefsgystemX’ to the inverse/-systemy
IS the set,
Homjpy- ¢ (X.Y) == lim lim Home (X7, V;);
jelJ iel
The category prot is the full subcategory of in& determined by the projective systems.
Clearly, the functort — X°P determines isomorphisms of categories,

(inv-¢)® = dir-¢°?,  (pro-¢)°" = ind-¢°P.

(3.8) Lemma. Leti — A} be aninductivé-system which is local, that is, for every morphism
@:i — jin I the transition morphisnp: X; — X; is an isomorphism ir€. Then the
inductive limitlim , X" exists and, for every index € I, theio 'th injection is an isomorphism,

iniy: Xijg — lim X'

iel

Proof. It follows from (FILT 2) that the transition morphism: X; — A, corresponding
to a morphismp:i — j, is independent op; call it ¢; ;. So, if there exists a morphism
¢:i — j, there is a well-defined isomorphisgy;: &; — X;. Now, if i is an arbitrary
index there is an inde} and morphismg — j andip — j. So there is a well-defined
isomorphismy; := (pi;j-(pij: A; — &j,. Now check thatt;, is a common target ot’ with
they; as compatible family and that this mak&g the colimit of theX;. a

(3.9) Lemma. Let X': I — €& be an ind-object. Assume that there exists a final subcagtegor
J C I such that for any morphism — ;' in J, the corresponding transition morphism
X; — X is an isomorphism. Thek' is essentially constant.

Proof. The morphismX¥|J — X is an isomorphism in indt. Hence the assertion of the
Lemma follows from Lemma (3.8). a

(3.10) Observation. Assume that the categogy has an additive hom-structure. Then, in
equation (3.6.1), the se_t>lijnh-lom¢()(,-, A;) is aninductive limit of abelian groups, and hence
an abelian group, see (3.3). Moreover, the transition menph in the (inverse) system
[ — Iigj Home (X, V;) are homomorphisms of abelian groups; so the limit on the sgie
of (3.6.1) is an abelian group, see the Observation in (1.12)

So the equality (3.6.1) gives the set Hgie (X.)) the structure of an abelian group; it
defines an additive Hom-structuredn

75



Lim 4.0 Limits

DRAFT

76



Localization Lim 4.1

4. Localization.

Fix categorie® and®, and a class§ of morphisms of. From Section (4.3} is assumed
to be a left denominator system.

(4.1) Definition. The classS of morphisms in¢ is called aleft denominator systemhthe
following conditions are satisfied:

(LOCO) S is closed under composition and contains all identities.

(LOC1) Every pair of morphisms. X — X’andf: X — Y withs € S canbe embedded
into a commutative diagram withe S:

f

X—Y
sl '

, \
x -Lay

(LOC 2) Every pair of morphism& = Y which is equalized by a morphism X’ — X
in S can be coequalized by a morphismy — Y’ in S.

The condition (LOCO0) is thenultiplicative condition Conditions (LOC 1) and (LOC?2)
are theleft Ore conditions If S satisfies, in addition, the (dual) right Ore conditionsnti§e
is called adenominator systein €.

A left denominator system is calleturatedif the following condition holds:

(SAT) Let f: X — Y be a morphism. Assume that there are morphigmg — Z and
h:Z — W suchthatgf € Sandhg € S. Thenf € S.

(4.2) Definition. Let F: € — ® be a functor. IfS is any class of morphisms i, we will
say thatF is S-local or S-localizingif it transforms morphisms if§ into isomorphisms irD.

Clearly, for a given functofF : ¢ — 9, the classI” of morphismg in € such theF (¢) is
an isomorphism irD satisfies the multiplicative condition and the saturationdition (but
not nessecarily the denominator conditions); moreakas, T-localizing.

(4.3) Definition. Fix a left denominator systein €. Let X be an object of and denote by
X /S the following category: The objects &f/S are the morphisms: X — U withs € S
(sourceX and arbitrary target/); if s: X — U andz: X — V are objects ofX/S, then
the set of morphisms — 1 is the set of morphismg: U — V in € making the following

diagram commutative:

v-tevy

X.
There is an obvious “target” functes : X — X’) — X’ from X /S to ¢; it is denoted

Xs: X/S — €.

The target of an object € X/S will be denotedX; so an objeck € X/S is a morphism
s: X — X, in S, and the target functoX g associates with: X — X the targetX;.
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Observation. The categonX /S is filtering. As a consequence, the syst&gr X/S — €
is an inductive system and it may be viewed as an object imitheategory:

Xs € ind-¢.

The assertion is an immediate consequence of the left dexaboniconditions.

Definition. Thelocalizationof € with respect taS, also called the category t#ft fractions
of € with denominators ir§ is the full subcategory of indt determined by the inductive
systems of the fornX s for X € ¢. The category of left fractions is denot§d'¢ or ¢, and
it is also said to by obtained frod by inverting the morphisms .

For every morphisnf: X — Y in €there is a natural induced morphigfa: Xg — Ygin
S—1¢ described as follows: For each index X/S use (LOC 1) to obtain an indexe Y/S
and a commutative diagram,

X,y
T A
s t

x .y

the morphismy’ represents an elemeyit € ling, .y, s HOMe (X5, ¥7), and thefs, for objects
s € X/S§, define the induced morphisify: Xs — Yg inind-¢. It is easy to see with this
definition thatX — Xy is a functor,

O)s: ¢ — S te.
The rules for manipulations with left fractions and otheopmrties of the category of left
fractions and the functar)s will be developed in the following.

(4.4) The rules.In the sequel we will repeatedly meet inductive limits oksgtthe following
form, for objectsX, Y € ¢:
lim Home (X, ¥y). (4.4.1)
seY/S

Recall that an element in the inductive limit is given by aresentative:: X — Y, for some
indexs: Y — Y, in Y/S; the pair(s, @) may be visualized as a diagram,

Ys
y’ N (4.4.2)
X Y

Two pairs(s, a) and(z, b) define the same element in the inductive limit if there is atein
u:Y — Y,inY/S and morphisms':s — u andg:r — u (that is, f, g are morphisms
f:Ys — Y,andg:Y; — Y, such thatfs = u = gt) suchfa = gb =: c:

Yy

T

ST
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Again, by the filtering properties of the index category, &g elements of the inductive
limit have representatives of the for(, a) and (s, b) (with the same index € Y/S), and
two pairs of this form represent the same element in the lifftere is anindex € Y/S and
a morphismf: + — s such thatu, b: X — Y, are equalized by the morphisyit Y; — ¥;.

Avery good question: The index categor¥ /S in (4.4.1)is, in general, not a small category;
so, does the inductive lim#.4.1)exist in the category of sets?

The answer is simple: No, why should it! —in general. The tigganswer represents a
problem, with several solutions: (1) Enlarge the conceptadtegory; (2) Add conditions on
the setup ensuring the existence of the inductive limit2rignore the problem and pretend
that the limit exists. Our choice is the path described in (3)

(4.5) Observation. Lets: X — X’ be a morphism ir§, andY an object in¢. Then the
canonical map induced Byis a bijection:

lim Home (X', Y;) = lim Home(X, Yy).
tey/S teY/S

Proof. Use the denominator conditions. I

(4.6). For every objeck e ¢, the identityX —2» X is the initial object inX/S. In particular,
if F: & — ® is any functor such the the inductive Iimi)limXS = ”ﬂse)(/s F X, exists,
there is a canonical injection morphisfiX = FX; — lim F Xj.

Lemma. Let F: € — © be anS-localizing functor. Then, for any objedt € €, the com-
positionFXs: X/S — © is a local system, and the canonical morphism is an isomsmghi

FX = lig FX,. (4.6.1)
seX/S

Proof. Consider inX/S objectss: X — X, andr: X — X, and a morphisny:s — t.
Then f is a morphismf: X; — X, and fs = t. Hence the following diagram i® is

commutative:

Fx, 9 pyx,

F(S)T %

X.

As the morphism#'(s) and F(r) are isomorphisms aD, then so isF(f). Consequently,
the functorF Xs: X/S — ® transforms any morphism ik /S into an isomorphism; hence
itis a local system.

It follows from Lemma (3.8) that the inductive limit existadthat any of the canonical
injections is an isomorphism. a
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(4.7) Observation. For everyX, Y in € the natural map induced B§n — X is a bijection,

Homing-¢ (X5, Ys) —> HOMing-¢ (X1, Y5) = lim Home (X, Y7). (4.7.1)
teY/S

Proof. Fix Y and consider the functaf = IimteY/S Homg( , Y;). By definition of the
ind-category, the left side of (4.7.1) is the projectiveitiof the systemF X g, and the map in
(4.7.1) is the projection corresponding to the index X/ S:

lim F(X,) - F(Xy). (4.7.2)
seX/S

The functorF is a contravariant functor frord to Sets and may be viewed as a covariant
functor F: ¢ — Set$P. Itis S-local by Observation (4.5). So the lemma in (4.6) applies,
and it yields an isomorphism in the dual categ8et$P. In the categonBets it is the map
(4.7.2). Hence (4.7.2) is bijective. a

(4.8). The result in (4.7) is fundamental for manipulations in theegoryS—1¢. The set of
morphisms fromX s to Ys in S~1¢ will allways be described via the bijection (4.7.1):

Homg-1,(Xs, Ys) = lim Home (X, Y7). (4.8.1)
teY/S

The inductive limitontherightside is determined in (4 Ax.cordingly, amorphism: X5 —
Ys in S~1¢ is represented by pait, f) consting of an index € Y/S and a morphism
f: X — Y;; itmay visualized by the diagram (4.4.2). Compositiodirt¢ is determined as
follows: Consider inS~1¢ morphismsp: Xg — Yg andy : Y — Zg, represented by pairs
(¢, f)and(u, g), witht,u € S,

Y’ VA
27N and 2T N
X Y Y z.

To represent the compositigny, embedd to two morphismsg with sourceY in a commu-
tative square where the eddepposite of belongs tasS:
Z//

/
g o AN t

f/(Y/\ g/(Z/y
X Y Z.

Then the compositiolr ¢ is represented by the pa'u, g’ f).
Clearly, for a morphismf: X — Y, the morphismfs: Xg — Ys defined in (4.3) is

represented by the pait, f):
Y

27N

X Y
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The morphismfs: X5 — Yg is the unique morphism such that the following diagram in
ind-¢ is commutative:

(4.9) Observation. Forany morphism: X — U in S, the morphisms: Xs — Usin S~1¢
is invertible. lIts inverse is the morphistiy — Xg represented byu, 1). In general, the
morphismXs — Ys in S~1¢ represented by the pdir, f) wherer € Y/S andf:Y — Y,
is equal ta(ts) ! fs.

Proof. Leto : Us — X be the morphism is—1¢ represented by the paix, 1). The pairs
(u, 1), (1, u) and(u, 1) are the three pairs at the base of the following diagram:

N
BN N

The pair in the middle represents. The diagram is obiously commutative. By the rule of
composition, it follows from the left part of the diagram thgo is represented by the pair
(1y, 1y): henceugo is the identity ofUs in S~1¢. Again, by the rule of composition, it
follows from the left part of the diagram that: g is represented by the pdit, «). Clearly,
(u, u) is equivalent tqly, 1x). Henceoug is the identity ofXs.

Let ¢ be the morphisnks — Y represented by, f). It follows easily from the rule of
computation thatse is represented by the pdit, f); hencetrsg = fs. Astg is invertible,
it follows thaty = (t5) ™1 fs. 0

(4.10) The universal property of localization. LetS be a left denominator systemdn Then
everyS-localizing functorF: ¢ — © has a unique extension to a functor S~1¢ — .
In other words, there is a unique functor S~1¢ — ® such thatF( )s = F:

(A y

//
()SL //15

s1g.

Proof. Uniquenes is obvious: The morphisms: ¢ — S~1¢ is bijective on objects, and
so the equationF(Xs) = F(X) determinesF on objects. By the observation in (4.8)
any morphismyp: Xg — Ys is of the formg = (t5)"1fs, and so the equatiof (¢) =
F(s)"1F(f) determines” on morphisms.
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To prove existence consider this diagram:

Hom—1,(Xs, Ys) - Fo s Homg (F(X), F(Y))

] |

lim, /s Home (X, Y1) — lim, ., s HOms (F(X), F(Y7)).

The left vertical map is the bijection (4.8.1). The bottonrihontal map is the natural
morhisms of inductive limits induced hly. The right vertical map is the canonical injection
into the inductive limit determined by the indexelY/S. The map is the bijection (4.6.1)
applied with the functo¥ — Homg (F(X), F(Y)). So, commutativity of the diagram
defines the top horizontal map

ltis easy to see that there is a funcfodefined by the top horizontal map of the diagram,
and that this functor has the required properties. a

(4.11) Note.If S is aright denominator system, then a dual constructiorsleathe category
¢5—1 = ;¢ of right fractionsand a functog( ): ¢ — €S~ where

Homgg-1(s X, s¥) = lim Home(s X, Y);
seS/X

it satisfies the universal property (4.10).

It follows in particular that if a systen§ is a denominator system (left and right), then
there is a unique isomorphism, from the category of lefttfoas to the category of right
fractions making the following diagram commutative:

¢
( V \\”
§7l¢g ——¢s 1,

(4.12) Definition. Let S be a left denominator system @& Let X, Y be objects of. The
set of morphism in the categosy 1¢ from X to Y is often denoted Ex{(X, Y):

Exts(X, Y) := Homg-1, (X5, Ys) = lim Home (X, Y7).
teY/S

The elements of Ex{( X, Y) may be called-extensionsf X by Y. Note that Ex§ is functor
in two variables,
Exts: ¢°P x ¢ — Sets

andS-localizing in each variable. By the universal propertySalocalizing functorF': ¢ —
® induces a transformation of functors,

Exts(X, Y) — Homg (FX, FY),
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called theYoneda transformationIf ® is the category of sets, the transformation may be
viewed as a pairing,
Exts(X,Y) x FX — FY.

(4.13) Note.Let S be a left denominator system@ Let f: X — Y be amorphism irt. It
is easyto see thgl: Xg — Ysisanisomorphismis—1¢ if and only if there are morphisms
g:Y —> X' 'andf’: X’ — Y’ in € such thatgf and f’g belong toS. In particular, ifS is
saturated, therfs is invertible inS~1¢ if and only if f € .

(4.14). For an arbitrary clas® of morphisms ing, an objectQ € ¢ is calledT-injectiveif
every morphisnX — X’ in T induces a surjective map,

Home (X', Q) — Home (X, Q). (4.14.1)

Consider a left denominator systesin €.

Observation 1. If Q is anS-injective object, then every morphissn X — X' induces a
bijection,
Home (X', 0) => Home(X, Q). (4.14.2)

Proof. The map (4.14.2) is surjective since the objécis S-injective. To prove that the
map is injective, consider two morphisnisg: X’ — Q having the same image under the
map (4.14.2). Then they are equalizedsbhyHence, by (LOC 2), they are coequalized by
a morphisny: Q — Q' withr € S, thatis,tf = rg. Since the map Hog(Q’, Q) —
Home(Q, Q) is surjective, there is a morphispt Q" — Q such thatpr = 1p. Then,
clearly, the equationf = tg implies thatf = g. So the map (4.14.2) a
The observation may be rephrased as follows: An oljeet € is S-injective if and only
if the functor Homy( , Q) is S-localizing.
Note that it follows from the result that if a morphisfn Q0 — Q' betweenS-injective
objects belong t@, then it is an isomorphism.

Observation 2. If Q is S-injective, then the following map is a bijection, for anyjett
Xec:
Home (X, Q) — Homg-1,(Xs, Qs) = Exts(X, Q).

Proof. If t: Q — Z is a morphism inS, by Observation 1, there is a unique morphism
f:Z — Q such thatfr = 1p. In other words, the morphismpl O — Q as an object
in Q/S is the final object inQ/S. Consequently, for any systesmn— Z; indexed by the
categoryQ/ S, the canonical morphisi; — lim Z; is an isomorphism. So the bijection is
a consequence of the definition of ExX, Q) as an inductive limit. a

(4.15) Remark. If an S-localizing functorF : € — © has a right adjoint functgr: © — ¢,
thenp (D) is S-injective for any objecD € 2.
Indeed, the adjunction equation,

Home (X, pD) = Homg (F X, D),

shows that the functor Hogt , p D) is S-localizing.
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Proposition. Let S be a left denominator system @ Then the following three conditions
are equivalent:
() The functor()s: € — S~1¢ has a right adjoint functgs.
(i) Forevery objeck of € there is ars-injective objectQ and a morphisnf: X — Q
such thatfs: Xs — Qs is an isomorphism is~1¢.

(iif) The ind-objec g is essentially constant for every objectof €.
Moreover, if the conditions hold then the funcior S—1¢ — ¢ of (i) is fully faithful and
()sp— 1.

Proof. (i) = (ii): Assume thafp: S~1¢ — ¢ is left adjoint to( )s. Take objects¥, Z of €.
The adjunction bijection appears as the middle vertical malpe following diagram:

Home (X, pZ)
Os \
Homg-1,(Xs, (0Z)s) Home (p(Xs), pZ)
n P

Homsfle‘(XS, Ys).

The maps labeledandp are induced by the unit: X — p(Xg) and the couniy: (pZ)s —
Z. It follows from the functoriality of the adjunction map thhe diagram is commutative.

By the remark,pZ is S-injective. Hence the map )s in the diagram is bijective by
Observation 2. It follows that the map labeleds bijective. Since any object &1¢ has
the form X, it follows that

nz:(pZ)s —> Z

is an isomorphism. As we have noticed, the obj@ct= p(Xy) is S-injective. Hence, to
finish the proof of (ii) it suffices to show for the morphism

ex: X — p(Xs)
that fs is invertible. Now, by general properties of adjoint funstonve have the equality:
SXS(Gx)S =1:Xg— (,O(Xs))s — Xg.

Sinceny, isinvertible, itfollows thate x) s is invertible. Hence (ii) has been proved. Morover,
it follows that the map labeled in the diagram is bijective. Hence so is the mam the
diagram. Whence is fully faithful.
(i) = (i): Choose for each objedf of ¢ an S-injective objecto(X) and a morphism in
<,
e: X = p(X),
such that fx)s is an isomorphism. For each objétte &, there are bijections,
Homg-1(Ys, X5) —> HOomMg-1,(Ys, (0X)s) == Home (Y, pX),

the first induced by the isomorphisifiy ) s, the second by the (???), functorialin Use the
bijection to defningo is a functorp: S~1¢ — ¢, right adjoint to( ). a
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(4.16) Proposition. Let S be a left denominator system & Then the functof )s: € —
S~1¢ is right exact.

Proof. Let X': I — ¢ be system with a finite index categofyand assume that the colimit
X = lim, &; exists in<. Every object ofs~1¢ is of the formYg with an objectr € ¢ so we
have to prove, for any objeét € € that the map induced by the system is a bijecition:

Homg-1,(Xs, Ys) — lim Homg-1,((X;)s, Ys).

iel

The bijectivity follows from the fundamental descriptich§.1) of morphisms is—1¢, as
the inductive limit lim _,, ¢, in the category of sets, commutes with the finite lipit irsee
(3.2). i

Corollary. If ¢ has finite coproducts, or coequalizers, or finite colimhgntso has—1¢.

Proof. We use repeatedly that every objectSof*¢ is of the formX s with X € ¢,

First, it follows immediately from the proposition thatdfhas finite coproducts, then so
hass—1¢.

Next, assume that has coequalizers. ConsiderSn'¢ a pair of morphismg, v : Xg —
Ys. Then, by the rulesin (4.4) there is a morphisn¥ — Y’ in S and morphismg, g: X —
Y’ suchfs = tsp andgs = tsy. Leth: Y’ — Z be a coequalizer fof, g. Then, by the
propositionjis is a coequalizer fors, gs. Astg is an isomorphism, it follows thdiszg is a
coequalizer forp, y. Therefore S~1¢ has coequalizers.

Clearly, the third assertion is a consequence of the firsesgertions. a

(4.17) Proposition. Assume thas is a left denominator system é Then:

() If € has an additive Hom-structure, then there is unique a@dHiom-structure on
S—1¢ such that the functar)s: ¢ — S~1¢ is additive.

(2) If ¢ is an additive or semi-additive category, then s©i&¢, and the functof)s: ¢ —
S—1¢ is additive.

(3) Assume thatX is a denominator system. ¢ is an exact category or an abelian
category, then so i$~1¢, and the functof )s: ¢ — S~1¢ is exact.

Proof. Assume the conditions in (1). An additive Hom-structure $n¢ such that the
functor ()g is additive, is necessarily unique: Indeed, two morphiging: Xs — Ys have
representativesr, ) and (¢, g) with the same index € Y/S. Theng = (t5)"1fs and
¥ = (15)"'gs, and hencey + o = (1) "(fs + gs) = (1) 1(f + g)s. Conversely, it is
obvious that the additive Hom-structure on the categorydnds defined in (3.?7?), determines
an additive Hom-structure on the subcateg8ry¢ satifying the requirement.

Assume the conditions in (2). By (4.16), the functors: ¢ — S~1¢ commutes with
finite coproducts. Therefore, since the functor is sunjeactin objects, it follows thas—1¢
has finite coproduct. The remaining assertions follow fram (

Assume the conditionsin (3). Consideramorphisnk s — Ysin S~1¢, say represented
by the pair(z, f) wherer € Y/S andf: X — Y;. Theng = (t5)~ 1 fs. The isomorphism
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(ts)~ 1 induces an isomorphism from the cokernelfgfto the cokernel ofp. As fs has a
cokernel by (4.16), so has The existence of kernels holds by duality, sisas also a right
denonminator system. The rest of the assertions are lekessiges. a

(4.18) Definition. A full subcategory®y of € is calledlocalizing (with respect to the given
left denominator systems) if the following condition holds: For any obje@ € ¢, and
any morphisms: Q — X in S there exists a morphisrfi: X — Q' with Q" € € such
that fs € S. Equivalently, if So := S N &p, then the conditions means for every object
Q € ¢ that the natural inclusio®/So € Q/S is final. It is easy to see for a localizing
subcategoryy that the systensg is a left denominator system iy and that the natural
functor ind-¢€p — ind-¢ induces a fully faithful embedding,

(So) " teg C s71e.

(4.19) Exercises.

1. Let f: X — Y be a morphism ir§. Prove that composition witlf is a natural functor
o, Y/S — X/S, and prove that the restricted systefgd is equal toYs. Prove that
the functor®; is final, and conclude that the restriction morphiggn— X in ind-< is an

isomorphism. Prove that this isomorphism is the inversgsof

2. Let S be a left denominator system @ Let f be a morphism ir€ such thatfs € S for
some morphism € S. Prove that there is morphisgnand a morphism € S such that ¢ f
andgr are defined anddf € S andgr € S.

Assume that the left denominator systehis saturated. Repeat the argument wijth
replaced byg, and conclude that € S. Assume for three composable morphisfng, &
thathg € S andgf € S. Prove thatf € S, g € S, andh € S.
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DRAFT
5. Localization in triangulated categories.

Fix a triangulated categor and inK a systemS of morphisms. From section 5.4,is
assumed to be a triangular system and, in particular, anéftight denominator system.

(5.1) Setup. Let R be a triangulated category, afd class of morphisms i®. It is natural
to require conditions o making it compatible with the triangular operations:
(LOC3) The class is stable under shifts, thatis,€ S if and only if s(1) € S.

Consider the following commutative diagram with two exaiarigles:

zZ-—7 (5.1.1)

By the prism axiom, the pais, r may be extended with a a morphiamZ — Z’ to a
morphism(s, ¢, u) of triangles. We consider the following condition 8n

(LOC4) In the setup of the commutative diagram (5.1.1y, ife S, then the pais, r may
be extended with a € S to a morphisnts, ¢, u) of triangles.

The system of morphism$ € £ will be called atriangular system of morphismsit
contains all identities and satisfies conditions (LOC3) drdC4). As we shall see, the
conditions imply the multiplicativity condition (LOC 0).na the left and the right Ore condi-
tions (LOC1) and (LOC2); in particular, a triangular systehmorphisms is a denominator
system.

We will prove later that if a triangular system is saturatégn the following condition
holds:

(LOC4%*) In the setup of the commutative diagram (5.1.1)sifz, u) is a morphism of
triangles, and, t € S, thenu € S.

(5.2) Definition. If S is a system of morphisms &fthen an objecZ of g is calledS-acyclic
if the zero morphisn¥ — 0 belongs taS. If 9t is a class of objects at, then a morphism
s: X — Y is called ami-isomorphismf the cone ofs is isomorphic to an object &ft.

(5.3) Proposition. Let S be a triangular system of morphisms&fThens is a multiplicative
denominator system. and all isomorphisms arg.iMoreover, the clas®t := 9(S) of all
S-acyclic objects is a triangular subclassfyfands is the class of)t-isomorphisms.

Conversely, i)t C R is a triangular subclass, then the system= S(9N) is a triangular
system of morphisms iR, and is the class of-acyclic objects.
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Proof. We will first prove the asserted bijective correspondendeden triangular systems
S of morphisms and triangular subclas§sC K. Consider for a morphism: x — Y the
following diagram:

Z;!X ;E(Y (5.2.1)
S

The left triangle is the cone 6f So the two triangles are exact.

Assume first thafS is a given triangular system of morphisms, anddet:= 21(S) be
the class ofS-acyclic objects. Consider an exact triangle> Z' — Z” — Z(1) and the
unique morphism from it into the zero triangle. Then, chgaitlfollows from (LOC 4) that
if Z,Z' € 9, thenZ” € <M. Moreover, it follows from (LOC 3) that the clas® is stable
under shifts, and it contains the zero object, because #rdiiy of the zero object is if.
ThereforeDt is a triangular subclass &f. Moreover, in the diagram (5.2.1) the identitylof
isin S. Therefore, by (LOC4)s isin Sifandonlyif Z € Oisin S, that s, if and only ifs is
anfi-isomorphism.

Conversely, assume that is a given triangular class of objects, andet= S(9) be the
system ofNt-isomorphisms. The zero object isflit, andt is stable under shifts; it follows
immediately that every isomorphism is ) and that (LOC 3) holds. Moreover, # is any
object of &, thenZ (1) is the cone of the zero morphisth— 0; henceZ is in Mt if and only
if Z is<M-acyclic.

To finish the proof of the bijectivity of the correspondense,have to show that the system
S(M) satisfies (LOC4). In fact, to finish the proof of the propasitie have to show that the
systemS satisfies the multiplicativity condition (LOC 0) and thetlahd right Ore conditions
(LOC1) and (LOC2) as well.

First, the multiplicativity condition follows from the Oa&hedral Axiom. In fact, ik = st
is a composition, then there is an exact triangle connettiagones of, ¢, andst. Hence,
if two of the cones belong 1, then so does the third. Hence, if two of the morphisis
andst belong toS, then so does the third. In particular, (LOCO0) holds.

The condition (LOC4) follows from the cone of the cones camdton. Indeed, in the
setup of (5.1.1), assume that aredi-isomorphisms. Then their cones; andY” belong
to M. There are morphisms: , — Z” andX” — Y” having the same cong”. This
common cone belongs ®t, becauseZ’ and Z” belong to9t. Therefore, the cone of
belongs tdN, that is,u is anMi-isomorphism.

For the Ore conditions, it suffices to verify the right comats (LOC1) and (LOC2),
because the assumptions are self dual. In the proof, we @aythat))t is stable under
shifts. Let there be given two morphisnis X — Y ands: Y'toY with s € S. Consider the
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following diagram:

X/,,,,,g,,,> Y/
Y/ " s (5.2.1)
N
X ~Y

The right triangle is obtained by embeddingnto an exact triangle where: Y — Y” is
the morphism into the cone. The left triangle is obtained tmpeddinghf: X — Y into
an exact triangle which is then rotated. The pair of morpkidny is then completed with
a morphismg: X’ — Y’ to a morphism of triangles. In particular, tlge f completes the
given morphisms to a commutative square, arglin S(9Jt) because the cone ois Y, and
hence equal to the cone ofvhich is int.

To verify (LOC 2) consider morphismg: X — Y ands: Y — Y’ with s € S such that
sf = 0. Consider the following diagram:

X/ A Y//

«
|,
N /
X 5 Yy —Y.
It obtained as follows. First, the triangle to the right isaet it is obtained by rotating the
cone ofs. Sinces is in S, the vertext” is in 9. Next, the morphisng is a lift of f; such
a lift exists, sincesf = 0 and the right triangle is exact. Finally, the triangle te thft is
a rotation of the cone of. So the triangle is exact, and the cone @ the vertexy”. As
Y” e M itfollows thatr € S. Moreover, since andg are consecutive morphisms in an exact
triangle, it follows thatgr = 0. Hencefr = hgt = 0.
Hence all the properties of the systehof 9Ji-isomorphisms have been justified. [

(5.4). Inthe rest of Section 5 we consider a fixed triangular syst@mi. By the Proposition,
it is a denominator system, and it is characterized by thesdlacyclic objects.

Corollary 1. A triangular functorF : & — &' from 8 to a triangulated catego#y (or to an
abelian categori) is S-local if an only if F(Z) = O for everyS-acyclic objectZ.

Proof. 0

Corollary 2. An objectQ of R is S-injective if and only ifHomg(Z, Q) = O for every
S-acyclic objectQ.

Proof. 0

(5.5) Lemma. Let F: R — R’ be a triangular functor from to a triangulated categouy .
Then the systerfi of morphisms in & such that (s) is an isomorphism ist’ is a triangular
saturated system.
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Similarly, if F: 8 — 20 is a triangular functor fron® to an abelian categofy, then the
systeml’ of morphisms in 8 such that F (s (n))) is an isomorphism ifll for alln € 7 is a
triangular saturated systems

Proof. I

(5.6) Proposition. The localizationS~18& has a unique structure as a triangulated category
such that the the functens: 8 — S~18 is triangular.

Proof. The shifts inS—181 are clearly determined b§X s)(n) := (X (n))s, and the class of
exact triangles is necessarily the the triangleS £ isomorphic to the image of an exact
triangle of R.

It is easy to verify the axioms of a triangulated category. a

(5.7) Note. It is immediate from the definition that the functops: & — S~18 has the
following universal property:

Any triangular functor defined ofi (with target a triangular category or an abelian cate-
gony) has a unique extension to a triangular functor define§oR

(5.8). The localized category is in particular an additive catggblence, for any two objects
X andY of K. the Hom-set is an abelian group, #ad-group(with respect tas)

Exts(X,Y) ;= Homg-14(X5s, Ys).
Forn € Z we define the:'th ext-group,
Exts(X,Y) := Exts(X, Y(n)) = Exts(X(—n), Y);

The second equality indicates the isomorphism obtainegbplyang the shift automorphism
X — X(—n)in S~1A. The same automorphism induces an isomorphism,

Exty 7(X,Y) = EXt}(X (—n).Y).

Clearly, if F: 8 — & is a triangulaiS-local functor fromgR to a triangulated categosy/,
then the Yoneda transformation is a homomorphism of abglianps,

Exts(X,Y) — Homg (F(X, F(Y)(n)).

Similarly, if H: 8 — 2l is a triangularS-local functor fromg to an abelian categor,
andH"(X) .= H(X (n)), there is an induced transformation of abelian groups,

Exti(X,Y) — Homy (H”(X), HPT"(Y)). (5.8.1)
If 24 = Ab the transformation may be viewed as a pairing,
H" @ Ext{(X, Y)H"(X) - H"*P(Y). (5.8.2)
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In fact, in any abelian catego®y with coproducts there is definition of the tensor above such
that the Yoneda transformation (5.8.1) corresponds to tmedfa pairing (5.8.2).
In the special case of the functéf(X) = Exts(Z, X) with a fixed objectZ, the Yoneda
pairing,
Exti(Z, X) @ Exty (X, Y) — Exts 7(Z,Y)

is given by composition i ~18:

PRV = Y(n)g.
DRAFT

6. Derivable functors.

Fix categorie® and®, and in¢ a left denominator syste$iof morphisms.

(6.1) Definition. Let F: € — © be a functor. For an objec¢f € ¢ we write RgF(X) or
R F(X) for the inductive limit,

RF(X):= lim F(Xy),
seX/S

provided that the inductive limit exists . If RF (X) exists for everyX € €, we say that
the (ight) derived functorR F exists(with respect taS); clearly, R F is a functor,

RF. ¢ — 9.

Moreover, since amorphisim X — Y in Sinduces anisomorphism of ind-objedfs — Y,
and hence an isomorphism

RF(X) =lim F(Xg) — lim F(Ys) = RF(Y),

it follows that the functorR F is S-local. ConsequentlyR F has a unique extension to a
functor (also denoted} F from the localized category,

¢ _RF, 5
//
()Sl _'RF
s—1e.
(6.2). The transformatiorX; — Xy induced a transformatiof(X); = F(X1) —> F(Xs)

inind-®. Consequently, iR F exists, there is a natural transformatin— R F of functors
- 9.
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Proposition. Let F: € — % be a functor such that the derived funckoF with respect t&s
exists. Then for every transformati@h— G from F to anS-local functorG: &€ — 9 there
is a unique transformation of functaR¥" — G making the following diagram commutative:

F—RF
|
G.

Proof. In the ind-category ind® there is a commutative diagram

F(X1) —— F(Xy)

: |

G(X1) —> G(Xs),

whereG(X1) — G(Xs) is an isomorphism by Remark (5.?). Apply the colimit fundtay
to get the required morphis®F (X) — G(X). ltis easily seen to be unique. a

(6.3) Definition. Let F: € — © be a functor andX an object of&. Then F is called
(right) derivable atX (with respect toS if the ind-objectF(Xs) in ind-® is essentially
constant, that is, if the colimi® /' (X) = lim F(X) exists in®® and the induced morphism
F(Xs) —> RF(X)1is anisomorphism in ind®. If the functorF is derivable everywhere
the functor

RF.¢— 9,
is called theight derivedfunctor of F.

(6.4) Proposition. The following three conditions on the left denominator eyss C ¢ are
equivalent:

() The functon()s: ¢ — S~1¢ has a right adjoint.
(i) Forevery objeck in ¢ there exists afi-injective object) and a morphisnf: X —
O such that the induced morphisfy: X5 — Qs is an isomorphism i —1¢.
(iii) The identity functok — ¢ is right derivable everywhere with respectsto

The three conditions are implied by any of the following two:

(iv) The class obf-injective objects isS-dense.
(v) There exists ars-dense clasf) of objects in¢€ such that, for any commutative
diagram,

X S/ Q/

Y 7

Q»
if 0,0 € Qands,s’ € S,thenf € S.
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If S is saturated then all five conditions are equivalent.

Proof. The equivalence of (i), (ii), and (iii) is the the result indposition (5.?). IfS is
saturated, (iv) is just a restatement of (ii). To prove @¥)(v), simply observe the the class
of S-injective objects has the property in (v).

Finally, we prove the implication (v} (iii). Let X be an object inZ, and denote by
X/S/2 the full subcategory ok /S consisting of morphisms: X — Q with targetQ € 9.
Sinceq) is S-dense, the subcategoky/S/2Q is final in X/S, and the condition (v) means
that the inductive systerkig: X/S — € restricts to a constant inductive systemXnsS/Q;
thereforeXg is essentially constant. i

(6.5) Definition. Let F: € — © be afunctor. An objec in € is said to beright) unfolded
for F or F-acyclic(with respect ta®) if the following canonical morphism is an isomorphism
in ind-9:

(FQ)1=F(Q1) — F(Qs).

Note that an objea is F-unfolded if and only ifF' is derivable ap andF Q — RF(Q).
Note further that aii’-unfolded objectis unfolded for any compositiGt# of F with afunctor
G:® — €. Inparticular, an object unfolded for the identity®fs unfolded for any functor
F.¢—-> 2.

Observation. With respect to the given denominator system an olfpeot € is unfolded for
the identity functor o€ if and only if Q is S-injective.

Proof. If Q is S-injective, then the morphism 12 — Q is the final object inQ/S; hence
Q01 — Qgisanisomorphisminindt. Conversely, assumeth@t — Qg isanisomorphism
in ind- €. Then, for any objeck of €, we have isomorphisms,

Homg (X, Q) = HOMing-¢ (X1, Q1) = HOMing-¢ (X1, Os) = HOMg-14,(Xs, Q).

It follows that the functor Hora( , Q) is S-local. HenceQ is S-injective. 0

(6.6) Definition. A functor F: € — 9 is calleduniformly(right) derivable(with respect to
S) is there exists afs-dense class) of objects of¢ with the following property for every
objectX:

(xx): For any commutative diagram )

X S/ Q/

Y T

0,

if 0,0 e Qands,s’ € S,thenFf: FQ — FQ’is anisomorphism im.
An S-dense class with the property is said to bght) F-unfolding(with respect tcs.
Note that a uniformly derivable functor is derivable evehgre as it follows from (a
generalization) the proof of (& (iii) in (6.4) above.
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(6.7) Unfolding Theorem. Let F: € — % be a functor and lef) be anS-dense class of
objects of¢. Then the following three conditions are equivalent:

(i) The class) is F-unfolding.
(i) Every objectQ € 9 is F-unfolding.
(iii) For every morphism: Q — Q' in S, with O, Q' € Q, the morphisn¥s: FQ —
F Q' is an isomorphism if.

If the three conditions are satisfied, thEnis uniformly derivable, and the class of diF
unfolded objects is afi-unfolding class; moreover, for every objéck ¢ and any morphism
s: X — QinS from X to anF -unfolded objecD there is a commutative diagranminwith
isomorphisms as indicated:

FX FO

i ;

RF(X) "~ RF(Q).

Proof. Sinces) is S-dense, the condition (i) is that the property | of (6.6) holds for every
objectX of €. It follows that (i) = (iii), and further, that (iii)= (xo) for every objectQ in
1Q; hence (iii))= (ii). Finally, to prove that (ii)= (xx) for every objectX in &, consider a
commutative diagram,

X -0
\ if with 0, Q' e Q ands, s’ € S.
Q/
The diagram induces a commutative diagram in ifxd-
Xs > Qs~— 01
I
Qg‘ -~ Qé]_v
and it follows thatfs is an isomorphism. Apply to obtain a commutative diagram in in@-
F(Qs) ~—— FQ1
ZLF(fS) F(f)ll
F(Q5) <~ FQ).
It follows that F(f): FQ — FQ’is anisomorphism ifD.
The remaining assertions of the Theorem are easily proved. a

(6.8). Consider composable functos; ¢ — © andG: ® — €&. Clearly, if F is derivable
at X, thensoisGF andR(GF)(X) = G(RF(X)). Similarly, it F is uniformly derivable,
thenG F is uniformly derivable, and an¥-unfolded object is unfolded fa F.

Note that by Proposition (6.5), the identity functor®is uniformly derivable if and only
if the class ofS-injective objects isS-dense. In particular, if the class 8finjective objects
is S-dense, then every functét: € — © is uniformly derivable.
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(6.9) Example. Consider for a fixed object € € the functor,
Hy =Homg(A, ) : € — Sets
ThenHy, is derivable everywhere with respectfpand

RH4(X) = lim Ha(Xy) = lim Home(A, X,) = Exts(A, X).
seX/S seX/S

So Extg(A, ) is the right derived of Hora(A, ):
RHomg (A, ) = Extg(A, ).

Similarly, with respect to a given right denominator systenthe right derived of the functor
Home(, B), as a functog®P — Setsis equal to Ext (A, B).

By the Unfolding Theorem (6.7)(iii), a clasq in € is unfolding for all the functors
Home(A, ) for A € €, if and only if it is unfolding for the identity. In turn, theondition
holds if and only ifQ is S-dense and consists of (up to isomorphism &lihjective objects.

(6.10). In the applications we will often consider the case whengl®given a functor,
F:¢ -9,

and, in addition to the given left left denominator syst&ne ¢, a given left denominator
system? in ©. In this situation the preceding definitions will be appltedthe composite
functor,

OrF:¢€ > T71D. (6.10.1)

The functorF is called local with respect t8 andT if the functor( )7 F is S-local. If T is
saturated, their is local, if
seS = F(s)eT.

We say thatR F existsif R(( )7 F) exists with respect t6, and we use
RF:57l¢e - 17719

to denote the extension &r1¢ of the S-local functorR(( )7 F): € — T~1®. The transfor-
mation( )7 F — R(()rF) induces a transformation of functots— 7 ~1®:

OrF — RF()s.

We say thatF is derivable atX, resp.uniformly derivableif ( )7 F is derivable atX,
resp.( )7 F is uniformly derivable, with respect t& Similarly, the notions of aii'-unfolded
objectQ and anF'-unfolding clasKQ refer to the corresponding notions for the funatpr F.
The functorRF: S~1¢ — 71 is thederived functorof F.

Note that the considerations of (6.8) yield limited infotioa on a compositiorG F in
this generalized setup; they apply only to a functor withreed —1®.
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(6.11) The Chain Rule. Consider categorie® and® with left denominator systents and
T and functorsF : € — ® andG:® — &. Assume thaF is derivable everywhere and that
RG exists. In addition, assume that there is a cfassf objects in€ having the following
two properties;

(1) The clasK] is S-dense irt.

(2) For every objecD < £, the morphisnG(F Q) — RG(F Q) is an isomorphism in

¢.
Then the compositiot F is derivable everywhere and the canonical transformasami
isomorphism,
R(GF)—=> RG RF. (6.11.1)

Moreover, ifthe clasf) consists ot -unfolded objects, then it 3 F -unfolding; in particular,
thenG F is uniformly derivable.

Proof. Note that the functoRG: T-1® — ¢ appearing in (6.11.1) is the extension to
T~1® of the T-local functorRG. To be precise in the proof, we will useG to denote the
extension. So the restriction 0 is the functorRG ( )7, and the natural transformation is
the transformatioy — RG ()7 of functors® — €.

Let X be an object of. By (1), the inclusion of categories,

®: X/5/Q < X/S,

is final. Hence we have in ind-an isomorphisnX ¢® — Xy, and it induces in ind® the
isomorphismF (X 5)® — F(Xs). Apply the functorsG andR G ()7 and the transformation
G — RG ()7 to obtain a commutative diagram in ing-

GF(Xs)® = GF(Xs)

| |

RG OrF(Xs) ® > RG OrF(Xs).

By (2), the left vertical morphism is an isomorphism. Hersmeis the right vertical morphism.
SinceF is derivable atX, we have in ind-7 19 the isomorphisnt )7 F (X s) —> RF(X).
So the induced morphisms are isomorphisms in &d-

GF(Xs)— RG ()7 F(Xs) — RG(RF(X))1.

Thus the first part of the Theorem has been proved.
To prove the last part, consider the following commutatiagcam in ind-€, for X € Q:

GF(Xs) GF(X)1

| |

RG ()1 F(Xs) =— RG ()1 F(X)1.

It follows that X is G F-unfolded(??). a
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(6.12). The preceding definitions generalize in an obvious way totfons of several variables.
For simplicity, consider the case of two variables, thaai&jnctor,

F:€1xC—> 2

from the product = ¢; x €, of two categorie€’; and€, with left denominator systems
andS,. ThenS := §1 x S is a left denominator system &) and there is an isomorphism,

s7le = 571 x Sy 1.

We will say thatR, F exists it R(F(Al, )) exists with respect t§> for every objectds in
¢1. Assuming the existence, we may consie¥ as a functor,

RoF: €1 x S;1¢ — D.

Similarly, we say that is derivable everywhere with respect to the second vari&bler
every objectd; € €1, theF (A1, ): € — D is derivable everywhere with respectig.

Proposition. If RoF exists with respect t81, thenR F exists with respect t§ = S1 x S2
if and only R1R>F exists with respect t61. Assuming the existence, there is a canonical
isomorphism of functors,

RF — R1R>F.

Similarly, with respect to the appropriate denominatotays, ifF is derivable in the second
variable, ther¥ is derivable if and only iRy F is derivable in the first variable.

Proof. The assertions follow from general results about colimiesr@ product category.d

Remark. Ifthere are subclasse€¥; C ¢1 andQ, C &5 such that)s is unfolding for all the
functorsF(, Ap) for A2 € &€ and$» is unfolding for all the functorg' (A1, ) for A1 € ¢

then the product clasQ := Q1 x Qo is unfolding for F. Moreover, thenF' is uniformly
derivable, and we have canonical isomorphisms of functors,

R1RoF —> RF <— RyR1F.

(6.13) Remark. Assume that and® are additive categories and thét € — ® is an
additive functor. Assume tha F exists with respect to the left denominator syst&mit
follows easily thaiR F is an additive functor. I& and® have shiftautomorphisnis — U (1)
and F commutes with the shifts, it follows easily thR# commutes with the shifts.

(6.14). Consider the case of a triangulated categd®yith a left denominator systesand
a triangular functor,
F:R— &,

from R to a triangulated categony .
The following easily proved proposition is a complementi® tynfolding Theorem (6.7).
The conditions are with respect to the syst&m
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Proposition. Let Q be a triangulaiS-dense class i®. Then, with respect to the given
denominator syster$), the following conditions os) are equivalent:
(i) The class) is F-unfolding.
(i) Every object inQ is F-unfolded.
(iii) If Q inQ is acyclic, thenF(Q) =0in K.

Often the conditions are applied when the target categarftiee form(S’) ~18’, obtained
by localizing & with respect to a triangular denominator syst&hfand the functor is the
functor ( )¢ F). In this case that last condition (iii) takes the followifagm: If Q in Q is
acyclic, then( )¢ F(Q) = 0. If the systems’ is saturated, the condition is equivalent to the
following:

(i) If Qin Qis acyclic, thenF(Q) is acyclic.

(6.15) Theorem. In the setup o(6.14), consider an exact triangle &
V4

Assume that’ is derivable atX and atY. ThenF is derivable atZ and atX (1), and the
following triangle inf' is exact:

X Y.

RFZ

AN

RFX RFY.

It follows from the Theorem that iF' is derivable everywhere theRF is a triangular
functor. In addition, if F is uniformly derivable, then the class &Funfolded objects is a
triangular subclass of.

We are not going to make any use of the result in the stated@égebut only the special
case considered in the following corollary. Therefore witgiwe a direct proof of the special
case, and postpone the proof of the general case.

Corollary. Assume in the setup of the Theorem that there is a triandtdanfolding class
. Then the functoR F is a triangular functor.

Direct proof of the CorollarylLet X — X’ — X" — X (1) be an exact triangle iR. Since
1 is S-dense, it follows from the denominator conditions thatéhis a commutative diagram,
X/ S/ Q/
T T with 0, 0’ € Q ands, s’ € S.
X > Q.
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EmbedQ — Q' into an exact triangle with verte®” in £, By (LOC 4), the pails, s') may
be extended to a morphisg, s’, s”) of triangles, withs” € S,

X/ s 0’
S
X" S 0
N AN
X 5 0.

Apply F andRF and the transformatioR — RF. The result is a commutative diagram of
triangles inf’:
RFX —~» RFQ <~ FQ'

S S

RFX// ~ RFQ//*TFQ//

N Y N

RFX —~ RFQ ~—— FOQ.

The horizontal morphisms are isomorphisms, and the rigdmgte is exact. Hence the left
triangle is exact. Consequent®F is a triangular functor. a

(6.16) Remark. There is a result similar to Corollary (6.15) for the casetiangular functor
F: 8 — 2 from the triangulated categomyto an abelian categofd. For the cas@l = Ab
the following result is more precise.

Proposition. Let 8 be a triangulated category with a triangular denominatetesysS. Let
G: R — Ab be a triangular functor. TheRG exists andRG is a triangular functor.

Proof. For every objecX of & we have by definition

RG(X) = lim G(Xj).
seX/S

So we have to prove for any exact triangledn
Z
SN
o

that the induced sequence of abelian groups is exact:

X Y,

iy G(X;) -“ lim G(¥Y,) %~ lim G(Zy).
seX/S teY/S ueZ/S
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Let » be an element in Kes,, and represent by an elemeny € G(Y;) for some index
t € Y/S. Then there is a commutative diagram,

Z-"> 7,

ﬂT :Aﬂ’ withu € Z/S,

Y 41" Yt
and thenG(B8')(y) € G(Z,) represent®,(n). Sincep,(y) = 0, we may modifyu in the
diagram and assume that(8’)(y) = 0. Now embeds’: Y; — Z, in an exact triangle

X' —- Y - Z, - X'(1). By (LOCA4), the paint, u) may be extended to a morphism of
triangles(s, , u) with s € §,

LT
NN

Thens: X — X’ is an index inX/S with X; = X’. SincegG is triangular, the following
sequence i\b is exact:
G(X5) > G(Yr) = G(Zy).

Moreover,G(B')(y) = 0. Hence there is an elemente G(X;) such thatG(a’)(x) = y.
Clearly, thenx represents an elemehte Ii@sex/s G (Xy) such that,(§) = 1. a

(6.17). Proof of Theorem 6.18o0nsider an exact triangl&, Y, Z, o, 8, ) in R. SetU =
RF(X)andV = RF(Y) and leta = RF(x): U — V. Embeda: U — V in an exact
triangle (U, V, W, a, b, ¢) of &. The inductive system§'(Xs) and F(Ys) are essentially
constant. Hence, in the ind-category isRithere is a commutative diagram with horizontal
isomorphisms:

Ur L~ F(Xg)
ali i (6.17.1)
Vi~ F(Ys).

The shifts inR’ define natural shifts in the ind-category irl: Let us first show (with respect
to these shifts) that the paji g extends to a morphism of triangles in ingl:

U —L—~ F(Xy)
AN

Wq---=-- - F(Zg) (6.17.2)




Derivable functors Lim 6.11

The morphismfy: U1 — F(Xy) in the ind-category is represented by a morphisnt/ —
F(X;) for somes € X/S. Similarly, g is represented by a morphisin: V. — F(Y;)
fort € Y/S. The square (6.17.1) is commutative. Hence, repla¢ing) by an other
representative if necessary, we may assume that there mmawative squares, iR and in

RA: commutative.
X X, U-% FXy

4 o

Y‘t*Yt, VTF(Yt)

Now, let Z, be the cone o&’: X; — Y;, and consider the morphismst in S. By (LOC4),
the pair(s, t) may be extended to a morphism of triangless, u) with u € S:

Z ﬁx> Zsu fﬁxs
N

Sincer is triangular, we may extend the pairys of morphisms ink’ to a morphisme, ¥, x)
of exact triangles iR’
U—2% + F(X,)

w---% F(Z,) (6.17.3)

Theny represents a morphisiiiy, — F(Zy) in ind-& which is the morphism required in
(6.17.2).

To finish the proof we show thatis an isomorphism in indR’: It is enough to show for
any objectA of K that the morphism induced lyis an isomorphism of abelian groups:

Hom&'(A, W) —> lim Homg (A, F(Z,)). (6.17.4)
ueZzZ/S

Consider the triangular functag: & — Ab defined byG(X) = Homg (A, F(X)). By
the previous resultRG is a triangular functor. Now, the inductive limit on the riggide of
(6.17.4)isthevalu&(Z). LetHy: & — Ab denote the functal 4 () = Homg (A, ). Then
G = H, F, andthe commutative diagram (6.17.3) with exact trianigiésces a commutative
diagram inAb with exact rows,

Hy(U) —— Hp(V) —— Ho(W) —— Ha(U(D) —— Ha(V (D))

Y

RGWU) — RG(V) —= RG(W) —= RG(U (1)) — RG(V(1)).
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The four maps induced by andg are isomorphisms. So, by the 5-Lemma, the map induced
by 4 is bijective. Therefore/ is an isomorphism, and the proof is complete. a
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Complexes Hot 1.1

The homotopy categories

Througout this chaptell denotes a fixed abelian category.
1. Complexes.

(1.1) Definition. A complexX in 2l is an infinite sequence of objects and morphismd of

n—1 n
X e x0T e W il (1.1.1)

such thap”"~1 = 0 for all integers:.

The objectX” is thedegreen objector degreen componenbf X, the morphisnd” = 9%
is the degreer differential or boundary operatoof X. In addition we define:

B"(X) :=1m 3"~1, the degreer boundary objecof X;

B"(X) := Coimd", the degreer coboundary objecdf X;

Z"(X) := Kerd", the degreer cycle objecbf X;

Z"(X) := Cokd" 1, the degreer cocycle objecof X.
As 9"9"~1 = 0, we haveB™ C Z", and we may form the quotient,

H"(X) := Z"/B", the degreer cohomology objeadf X.
Note thatH"” is the cokernel of the inclusioB” — Z" and, symmetrically, the kernel of the
projectionZ” — B": We have an exact commutative diagram,

0 0

L

O—B"—272"— H"—0

[

0O—B"—>X"—>27"—>0 (1.1.2)
|
B" —— B"
Lo
0 0

SoH" is the image (or the coimage) of the compositih— X" — Z”. In addition, since
3"9"~1 = 0, there is an induced morphisin Z* — z"*+1, and an exact sequence,

0—>H'—»7" %ozl . grtl 0 (1.1.3)
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Hot 1.2 The homotopy categories

An exact complex is often said to beyclic. A complex ideft boundegdor aright complex
if X" = 0whem « 0, and itisright boundedor aleft complexif X = 0when: > 0. Left
and right bounded complexes are simphyunded A complex ispositiveif X" = 0 when
n < 0, andnegativeif X" = 0 whenn > 0. (Some mathematicians doing mostly homology
will not agree to the last definitions; maybe the proper pghgashould be co-positive and
co-negative.)

(1.2) Note. The components of a complex may be indexed in two natural \s&asing
from the 0'th component. The complex in (1.1.1)nsreasing the index of the target of a
differential is 1 bigger than the index of its source. Alt@iaely, a complex may come with
adecreasingndexation,

O Om
Y_ e — m+14+1»Ym4>Ym_14>'. (1.2.2)

A complex of the form (1.2.2) may be calledchain complexin contrast to theochain
complexof (1.1.1). Them’'th homologyof the complex (1.2.2), denoteH,,(Y), is the
quotient Kerd,, / Im 0,,,11.

A complex with increasing indexation as in (1.1.1) is turmet a decreasing complex
with the definitionsX,, ;= X~ andd,, := 0~". In this notation, then’th homomology of
X is the(—m)’th cohomology,H,,(X) = H " (X).

Let us emphasize the common convention that the diffedsrafea complex are indexed
using the index of theisource

(1.3) Definition. A diagramX of the type (1.1.1) withX” € 2 corresponds formally to a
functor from the graph (quiver) with the integers as vesjce

Zz0= +i— 2— 10— 41— 42— .-, (1.3.1)
to the categon®(. As such it is an object in the abelian categ@t§~ of all such dia-
grams. Recall that a morphism of diagrafisX — Y is aZ-indexed family of morphisms
" X" — Y" commuting with the differentials. Kernels and cokernebs @tained “com-
ponent for component” (e.glKer )" := Ker "), with induced differentials.

The category of complexeslenoted?*(2) or simply2(*, is the full subcategory o#i% "~
consisting of complexes. Clearly, ff: X — Y is a morphism of complexes, then Kérand
Cok f are complexes. Hené¥® is an abelian category.

From a slightly different point of view, a complex isZaindexed familyX = (X") of
objects with a family of morphism8 = dx: X — X(1) such thatd3? = 0 is the zero
morphismX — X (2); we useX (p) to denote they-shifted family

X(p)" = xrtn,
A morphism of familiesf : X — Y is a morphism of complexes if and onlyffox = dy f.
Clearly, there is a full abelian subcategoryight complexesdetermined by the condition

X" = 0forn « 0, denoted™ = C*(2). With a similar notation, there are subcategories

104



Complexes Hot 1.3

of left complexes2A~ = C~ (), of positiveand ofnegative complexeg(>° = c=%(2) and
A<0 = ¢<0(9l), and ofbounded complexg8l® = CP(2A). Using the reindexation in (1.2),
we may identify:

@A) = (AP, QAP)F = (AP, (A%P)Z0 = (ASO)OP,  (OP)P — (9(P)°P,

(1.4) The connecting morhpism. The objectsB”, Z", ..., H" associated with a complex
X of 20 may obviously be considered as additive funcifts— 2. Clearly,Z" is left exact
andZ" is right exact. The morphis@: Z"(X) — Z"(X) of (1.1.3) is a transformation of
functors. Hence, for a short exact sequence of complexes,

0—- X - X—->X"-0, (1.4.1)
there is associated, for evetyan exact commutative diagram,

ZM(X") 7Z"(X) Z"X")——0

L

00—z (X') — Z2"H(X) — Z"TH(X").

By the exact sequence (1.1.3), the snake morpmsnKers” — Coké’ induced by this
diagram is a morphism,
A" H'(X") - H" (X));

it is called theconnecting morphisrfor the given short exact sequence of complexes. It is
easy to see that the connecting morphism is functorial vatipect to morphisms of short
exact sequences.

(1.5) The long exact conomology sequencéor a given short exact sequence of complexes
(1.4.1) the connecting morphisms® fit into a long exact sequence of cohomology objects:

L o
H"(X)) — H"(X) — H"(X") .

I_’_ Hn+l<x/) _ Hn-‘rl(X) ., Hn—‘,—l(X//)
L

Proof. The assertion is an immediate consequence of The Snake Lemma a

(1.6) The shifts. If X is a complex i we define for eaclp € Z a complexX (p), the
p-shift, or the p’th suspensioyof X, as follows:

X(p)' = X" 9 = (=DPay P X x L

The p-shift is a functor: For a morphisnfi: X — Y of complexes, theshiftedmorphism
f(p): X(p) — Y(p)isindegree: equal tof"+7: X"+tP — y"+P Often we write simply
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f: X(p) — Y(p) for the p-shift of the morphismy. Note that if the differential is viewed
as a family of morphismgy: X — X (1), then

Ix(1) = —0x1): X(1) — X(2).

The sign imposed on the differential does not change thernolagy objects. So there is an
identificationH™ (X (p)) = H"P(X).

Note that for the “picture” of complexes, say on paper (oroarymind) with the degree-0
object centered, the shii (1) is a left shifted version ok all objects ofX are translated
one step to the left.

Clearly X — X (1) is an “autofunctor” of(*, sometimes denoted, andX (p) = XX
is its p'th power.

If Aisan objectofl, we writeA(0) (or sometimes simply) for the complex havingt as
the degree-0 object and the zero object in all other degidesfunctorA — A(0) identifies
2 with the full subcategory of complexesdncentrated in degre@’. We write A (n) for the
n-shift of A(0); it has the objecti in degree—n. Note that morphisms of complexes from
A(0) to a complexX correspond to morphisms — Z%(X). In particular, ifX is a positive
complex, then morphisms A — X correspond to complexes

e 0 A X0 xY L x2 L

b

the complexX is said to be @o-augmented complex ovar, with co-augmentation.
For complexes(, Y we indicate by the notation,

fiX Y,

that f is a morphism of complexeg: X — Y(1). A morphismf: X -~ Y induces
morphisms of cohomolog#” (X) — HP*1(Y).

(1.7) The mapping cone of a morphism.Let f: X — Y be a morphism of complexes in
2(. Thecone(or themapping congof f is the complexz = Con f with

xn+1 —3m*t 0 X —a 0
Z" = yn 0, = ( oo ) or, shorterZ .= @ y 07 = Foa)

together with the followingriangle,

z
k=(1 235 ‘\h=(3
f

X Y.

In the matrix defining the family,: Z — Z(1), the lower righto is 9y and the upper lefd
is dx (or more correctly, iti$)x (1)); so the morphism-9 is dx (1).
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Complexes Hot 1.5

Note that the whole triangle is part of the cone GorHowever, when it is unambigous,
it may be convenient to use Cghas a notation for the top vertex

Note that the three morphisms of the triangle and theirshoftm an infinite sequence of
morphisms,

o> X)) ->Y-E) > Z(-) > X > Y > Z - XD >YDH) > ZA) > -

It is easy to see that the cone and the infinite sequence aceofial with respect to the
category of morphismg (of complexes).

Consider an additive functdf: 24 — 93, where®B is an abelian category. Clearly,
extends to additive functors on families and on complexes:

T:2% — B2 andT*: A — B°.

It is easy to see that the extensibhcommutes with the formation of cones.
Note. A related, dual, notation is thenconeéonf. It consists of the following complex
W =Conf,

X ax O

W = ) 8 = )
Cyy W ( f —8y>
and the following triangle
w
k:(lf/ Hf(?)

x I .y

Obviously,Con( f) = (Con(— £))(—1).

(1.8) The long exact cohomology sequence of a confeor a given mapf: X — Y of
complexes with mapping corié, then’th cohomologyH" applied the morphisms of the
triangle and their shifts is a long exact sequence: ©

I_’_ n N = ¢ N = ¢
H"(X) H"(Y) H"(Z) )

I_)_ Hn+l(X) . Hn+l(Y) . Hn+1(Z)
L

Proof. Clearly, there is a short exact, and degree-wise split,essp)

@

10

0—Y Z X (1) 0. (1.8.1)

It is easy to see that the connecting morphisms of this shadtesequencé,: H” (X (1)) —
HPt1(Y), are the maps induced by on cohomology. So the cohomology sequence of the
triangle is the cohomology sequence of the short exact segué.8.1). By (1.5), itis exact.

I
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(1.9) Truncations. Let X be a complex. For an integer the degreep left truncationX =?
is the complex,

XZP: ... »0 >0 »XxP O, xptl 0 xpt2 .
with X? in degreep. It may also be denote®i> 71, Similarly, there is a right truncation
XSP = x<P+1 The left truncations are subcomplexesd®fnd they form an decreasing

filtration of X:
s xZPHl oy x>l L . (12.9.1)

The right truncations are quotient complexesxofin fact, there is a natural exact sequence
of complexes,
0— X7 > X—> XS’ 0. (1.9.2)

Applied to the compleX := X7, the quotient becomes the complex wii concentrated
in degreep. So there is an exact sequence of complexes,

0— X"? — X?P —» XP(—p)—0. (1.9.3)

Consider the following diagram:

S0 xp-1 O xp 0
Lo
~ 0 . xptl 9 yp+t2 0, |

where the nontrivial vertical morphism is in degree- 1. The top row isX <7 (—1) and the
bottom row isX>?. The diagram is commutative, singé = 0. S0d? defines a morphism
of complexesXS?(—1) — X>”. Clearly, the cone of this morphism is the given complex
X:
X
(1.9.4)
x<p(—1) s x>».

Applied to the truncated compleX, := X =7, the lower left vertex is the complex with the
objectX” concentrated in degrge+ 1. So there is a cone of complexes,

X =P
’;ﬁ (1.9.5)

XP(—p=1) — > X>P.

(1.10) Quasi isomorphisms. A morphism of complexeg: X — Y is called aquasi-
isomorphismif for all » the induced morphism on cohomolod¥*(X) — H"(Y) is an
isomorphism. The following result is an immediate consegeeof (1.8).

108



Complexes Hot 1.7

Corollary. A morphism of complexeg: X — Y is a quasi-isomorphism if and only if the
mapping cone of is acyclic. a

(1.11).Let f: X — Y be a morphism of complexes, and consider the ¢one Con f of f.
If g: Y — W is a morphism of complexes such thgt = 0 theng := (0g) is a morphism
of complexesZ — W, itis said to banducedby g:

Z \\
X 7 Y 2 w.

Proposition. Let f: X — Y be a monomorphism, and consider its c@ne= Con f and its
cokernelW := Cok f. Then the induced morphisi — W is a quasi-isomorphism.

Proof. Use the two long exact sequences, of the cBne> Y — Z of f and of the short
exact sequenck — Y — W defined byf, to obtain the following diagram with exact rows:

H"(X) L B (V) e HY(2) > B (X)L B ()

| | i | |

H'(X) '~ H'(Y) 5~ H'(W) 2% B (X)L grtiqy),
Except for the square involvingand A the squares are obviously commutative. Check that
the exceptional square is anticommutative. Conclude bgleenma that the middle vertical
morphism is an isomorphism. a
Similarly, if X — Y is an epimorphism of complexes, with keriiéand coneZ, there is
an induced quasi-isomorphisvi(l) — Z.

(1.12) Cohomology truncationsLet X be acomplex. Consider for an integethe following
inclusion of subcomplexes,

Tng P HXP_ZHXP_J';»ZP 04>04> .
‘L~'<I,X ---*»Xp_zi»Xp_l—»XP*»Bp"’l*»O*»...’

The inclusion is a quasi-isomorphism and both complexeslegeeep right cohomology
truncationsof X: Their degree: cohomology is equal té/" X whenn < p and equal to 0
otherwise. The truncations form an increasing filtratiorXofor instance for the, X:

> T X S THX S T = X (1.12.1)
The quotient complex¢, X /7., X is the complex
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whith Z? in degreep. It hasZ?/B? = H? X as it only nonvanishing cohomology; in fact,
the natural morphism is a quasi-isomorphism:

T<pX/1<pX = HP(X)(—p).

Similarly, there are two left cohomology filtrations , X andz- , X defined as quotients
of X. In fact, there are exact sequences,

0= 1, X > X—>17.,X—0,

O0—1pX—> X —>1.,X —> 0.

(1.13) Definition. Let X andY be complexes of(. Define for every integet an abelian

group,
Hom (X, Y) := ]—[ Homg (XP~", YP).
PEZ

So an element of € Hon''(X, Y) is an infinite family of morphismg/,: X? — y»*",
illustrated by a diagram, not necessarily commutative,

yn Yn+l

Equivalently, Honi (X, Y) is the set of all families of morphism$(—n) — Y (or families
of morphismsX — Y (n)).
Consider the homomorphism of abelian groups,

d": Hom*(X,Y) — Hom"tl(X, Y),

given byd" := dy — (=1)"9x. The image of a familyf = (f,) in Hom'(X, Y) is the
sequence” ( f) in Hom"t1(X, Y) with @ fp: xr—n=1 _ yP given by the equation, for
p €7,

@ ), =)t frt— (=" e

In terms of the differentiadx ) = (—1)"9x, if f € Hom(X, Y (n)) then
d"(f) =0y f — foxcn)-

It is easy to see that the compositidt1d” is the zero map. So the groups Homith the
mapsd” form a complex of abelian groups, denoted HpiX, Y). Note that a familyf e
Hom(X (—n), Y) is a cycle in the complex Hoj(X, Y) if and only if dy f — fOx(—n) =0,
that is, if and only if f is a morphism of complexes: X (—n) — Y. As a formula:

Z" (Homy (X, Y)) = Homge (X (—n), Y) = Homge (X, Y (n)).
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Note that the definition wheli is a single objeciB, identified with the complexB(0)
havingB is degree 0, gives a complex Ho(X, B) which differs by signs in the differentials
from the complex obtain by evaluating the functor Hpfw, B) at the complexX: If the
latter functor is denote@-)* for simplicity, then

Hom'(X,B)= ------ L ox2x 70T 1k 97 0k =0T -1k 9T :

this sign convention is sometimes used when a contravdtiaator is applied to a complex.
The formation of the complex Honis clearly functorial, that is, it defines a functor

Hom": (A% x A — Ab".
It respects the shifts:
Hom*(X(—n), Y) = Hom* (X, Y(n)) = Hom*(X, Y)(n).

If X € A~ andY e AT, then the product defining the group HbOX, Y) is finite;
moreover HoM(X, Y) vanishes when « 0, that is, the complex HomX, Y) belongs to
subcategorb™.

(1.13) Exercises.
1. Lete: Z — {£1} be an arbitrary map. For any compl&xn 2l let . X denote the complex
with ;X" := X" and.9" = ¢(n)d". Define a canonical functorial isomorphistki — X.

2. Define, for a morphism of complexgs X — Y an isomorphism of cones Coif) —
Con(—1)

3. Does the functod — A(0), from 2 to 2*, have a right adjoint? — and a left adjoint?
4. Establish an exact sequence07_,X — 1<, X — (H’X)(—p) — O.
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2. Homotopy.

(2.1) Definition. Recall that we work over a fixed abelian categdiryl et X, Y be complexes
of 2. A family of morphismsf: X — Y is said to benull homotopicor homotopic to
zeroif there exists a family of morphismg’: X? — Y?~1 (called ahomotopy such that
fP = ar~LsP4sP+1yP . Equivalently, in terms of families,= (s?) is afamily of morphisms
s: X —Y(-1 and

f =dy(—=1)s + s(1)0x, (2.1.2)

or shorter: f = ds + sd. The familys will be called a homotopy frony to 0, and we
will indicate it by writings: f >~ 0. A null homotopic family of morphismg: X — Y
commutes with the differentials; hengeis a morphism of complexeg: X — Y.

Two morphismsfp, f1: X — Y of complexes ar@omotopi¢ written

fox f1i: X =Y,

if fo — f1 is homotopic to zero. Clearly, homotopy is an equivalentaticn in the group

Hom(X, Y) of morphisms of complexes, corresponding to the subgrouptbfhomotopic

morphisms. The equivalence classes are cdll@motopy classesf morphisms, and the
homotopy class determined by a morphigmX — Y is denoted f] (or simply by the same
symbol f).

Assume thatf: X — Y is homotopic to zero. Then, for any morphigmY — W and
h:V — X, the compositiongf and f 4 are homotopicto zero. It follows that we may define
a category Ha®l) as follows: The objects of H@() are complexes d?l and if X andY
are objects of HaRl) then the morphismX — Y in Hot(2() are the homotopy classes of
morphisms of complexe¥ — Y. The category Ha®l) is thehomotopy categorgf 2. It
has an additive Hom-structure: the set of morphisms ffoto Y in the homotopy category
is the quotient group,

HoMpoto) (X, Y) := Homge (X, Y)/ ==,

of morphisms of complexes modulo null homotopic morphisiitge natural functor,
2A* — Hot(A)

(denotedX — [X]) respects finite direct sums. It follows easily the Kbt is an additive
category. In addition, the shift§ — X (p) are well-defined in the homotopy category.

Restricting to right complexes, left complexes, or boundethplexes, we obtain full
subcategories HotR(), Hot™ (1), and HoP(2l) of Hot(A); for every additive subclasQ
of 2( we get an additive subcategory HQ¥) of complexes of objects from.

Itfollows from the description in Hot(1.13) that the subgpamf null homotopic morphisms
X — Y is equal to the image of the map!: Hom (X, Y) — Hom%(X, Y), that is, equal
to the degree-0 boundaBP (Homr (X, Y)). The subgroup of morphisms of famili&s— Y
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that are morphisms of complexes is the group of degree-@sycthe complex HomtX, Y).
Hence
Homg. (X, Y) = Z%(Hom* (X, Y)),
Homuotay (X, ¥) = Ho(Hom' (X, ¥)).

More generally, see Hot(1.13),
HOMpot(20) (X (—n), ¥) = HOMHotcan) (X, ¥ () = H" (Hom* (X, Y)).

(2.2) Proposition. Two homotopic morphisms of complex¢s ~ f1: X — Y induce the
same morphism on cohomologit” ( fo) = H"(f1): H"(X) — H"(Y).

Proof. It suffices to prove that a null homotopjt. X — Y induces the zero morphism on
cohomology. So assume th#t= ds + so for a family of morphisms: X — Y (-1).
Consider the following diagram,

Z"(X) — H"(X)

L |

Yl ZM(Y) > HP(Y).

The square, induced by the morphiginis commutative. In the triangle, the morphigfr !

is induced by the differential of , ands” is the restriction ok” to Z"(X). The triangle is
commutative, sincg” = 9" 15" +5"T15" and the last tern" 19" vanishes when restricted
to Z"(X). So the compositioZ”(X) — Z"(Y) — H"(Y) is the zero morphism. Hence,
so is the induced morphis#” (X) — H"(Y). a

(2.3). The functorsX — X", X — B"(X), X — Z"(X), from%A* to %, are not well-defined
on the homotopy category. However, it follows easily frora giroposition above that the
n’'th cohomology, fom € Z, is a well-defined functor,
H": Hot(A) — 2.
It is also easy to verify that the bi-functor Horof Hot(1.3) defines a bi-functor,
Hom": Hot(2)°P x Hot(A) — Hot(A).
Restriction yields a bi-functor

Hom*: Hot™ (2)°P x Hot™ () — Hot™ ().

The formation of the cone is not a functor on the category afghiems of the homotopy
category. It has, however, the following property:
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(2.4) Lemma. Consider a square diagram of complexe®in

X X

N

Y 2>y

and letZ = Conf andZ’ := Con f’ denote the cones of the vertical morphisms. Assume
that the square is homotopy commutative, and consider a togmyo: yf — f'x ~ 0. Then
the family of morphismes,

X(@1) X'(D
7= (x O): & — & ,
sy

Y Y’

is a morphism of complexes Z — Z’, and, in the following diagram, the two “squares”
involving z are commutative if(*:

X x X’
A
Z = —7
f % f A‘
Y Y Y’

Proof. The first assertion is the equation of families of morphistps; = zd or, in matrix

form,
-3 0\ (x Oy (x O\([—-0 O
froo)\s y) \s yJ\Lf 8)°
The equations follow from the assumptioi — f'x = ds + sd. Commutativity of the

squares, corresponding to the equatigins= 4’y andk’z = xk, is obvious. a

(2.5) Lemma. Consider in the setup of Lemnj2.4) the cones of the horizontal morphisms,
X" := Conx andY” := Cony and the morphism of complexes, frddonx to Cony:

X1 Y1)
f// ::(_fs ]9/): e — P .
X’ Y’

Then there is a natural isomorphism of complexas) f” —> Conz. In fact, the isomor-
phism on the families,

Conf' =X X DY eY ~>Conz=XQaoYLHeXxLaev

115



Hot 2.4 The homotopy categories

is given by multiplication by the following matrix,

~1 000
o o010
“lo 100

0 001

Proof. The family f” of morphisms defined by the matrix is a morphism of complexes
by Lemma (2.4) applied to the reflected square. Note the dignge in the homotopy.
interchanging the vertical and and the horizontal morpkishanges the signin the difference

yf—f'x.
The rest of the assertion is a simple computation. You hawdgetatify the 4x 4 matrices
definingdcon r» anddcon, and prove their commutation with. a

(2.6) Warning. In the setup Lemma (2.4), l&t” be the mapping cone of the morphism
z: Z — Z'. Then, by Lemma (2.5), we have to triangles,

z" z"
oy N0 N
z—* 7, x Iy

The first is the cone of. The second is obtained from the cone f8f by replacing the

top vertex with the isomorphic compleX”’ using the isomorphisma of (2.5). It should be
emphasized, that of the two squares deduced from the manphighese triangles,

Y/ Z/ Z// e Z/
Y// Z//, X// X,

the firstis commutative, the second is anti-commutatives 8$sertion follows from a simple
computation.

(2.7) Definition. Two complexesX, Y in 2l are said to benlomotopy equivalenif they are
isomorphicin Hot). Equivalently X andY are homotopy equivalentif there are morphisms
of complexesf: X — Y andg: Y — X suchthagf ~ 1x and fg >~ 1y (in which casef
is said to be domotopy equivalenge

A complex homotopy equivalent to the zero complex is saidetodmtractible As coho-
mology is a functor on the homotopy category, it follows faramtractible complex that
H"(Z) = 0 for all n; in other words, a contractible complex is acyclic.

Consider an additive funct@r: 2l — 98B, whereB is an abelian category, and its extensions
to additive functors on families and on complexes:

T:A% — B% andT*: A° — B°.
It follows from the definition thaf” preserves homotopies. As a consequeficalefines an

additive functor,
Hot(T): Hot(A) — Hot(B).

In particular, ifZ is contractible, then so i5(Z).
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Characterization. The following conditions on a complex of 2 are equivalent:

(i) The identity ofZ is homotopic to zerol; >~ 0, that is, there exists a family of
morphisms: Z — Z(—1) such thatf = 9(—1)s + s(1)0.
(i) Z is contractible.
(i) The complexdomy (A, Z) is acyclic for every objecA of .
(iii) °° The complexHomgy (Z, B) is acyclic for every objecB of L.
(iv) Z isisomorphic irRl* to a complex of the following form, for some fami(y/"):

Un+l Un+2

N A AN

(v) Z isisomorphic irl* to the cone of the identity of some complex

Proof. (i) < (ii): Indeed, the zero object of an additive category is ebtarized by the
property that the identity is the zero morphism.

(i) = (iii): If Z is contractible, then, for any additive functfr. 2l — B, the complex
T (Z) is contractible. In particular, HognU, Z) is contractible, and hence acyclic.

(i) = (iv): LetU" .= Ker 3/, be then’th cycle object ofZ, with the injection : Ut -
7"t Thend” factors ovetV”*+1 as a producd” = i d.

The compositior3§+li is zero. Henceis an(n+1)-cycle in the complex HotU* 11, Z).
By exactness, is a boundary, that is, there is a morphisnt/"*1 — Z” such thai = 9"r.
This equation implies tha/”+1 c Im 9", and hence tha/”+1 = Im 8”. Moreover, from
i = 8"t it follows thatdr = 1,.+1. Therefore, the morphis: Z" — U™+ is a split
epimorphism, with as section. Clearly, Kér = Ker 3" = U,. Consequently, we obtain the
decompositiorz” = U1 @ U™, and the decomposition of;, as asserted.

(iv) = (v): The complex described in (iv) is the cone of the idenditya complextU with
zero differentials.

(V) = (i): Assume that is a complex and thaf is isomorphic to the cone ofl Of the

two matrices,
. (—-9v O . (01
0z ._( 1 3U> ands := (O O>’

the first is the differential oZ. The second, as a family of morphisids— Z(1), is easily
seen to be a homotopy 1, ~ 0,.

Thus the equivalence of the conditions (i), ,(v) has been established. Their equivalence
to (iii) °P hold by a dual argument. i

(2.8) Definition. A triangle in the homotopy category H@at),

z
fﬁ \ (2.8.1)
X Y,
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is called ahomotopy conef is isomorphic in Hot2() to the cone of some morphism of
complexes, that is, if there exists a morphism of complgxeX” — Y’ and an isomorphism
of triangles in Hog),

X’ ~ - X
f Conf | —~2Z
Y’ ~ Y

(2.9) Theorem. The homotopy categorllot(2l) is a triangulated category with the functor
X — X (1) as suspension and the class of homotopy cones as the dishiadwlass.

Proof. Let us walk through some of the conditions of Cat(5.2):

(1)(a). A triangle isomorphic to a homotopy cone is a homptogne. This is obvious
from the definition.

(2)(b). Every morphisnp: X — Y of Hot(2() embeds into a homotopy cone. Indeed,
take any morphism of complexgs X — Y representing. Theng embeds into the cone
of f.

(2)(c) If X is any complex, then triangleX, X, O; 1x, O, 0) is a homotopy cone. Indeed,
by the Characterization in (2.7) the triangle is isomorphitlot(2() to the cone of the identity
of the complexX.

(2) The rotation axiom is a consequence of the following: £d&r a morphism of com-

plexesf: X — Y and its cone
Z
¥ N
f

X Y,
Then the following two triangles,
Z Z(-1)
% ‘& and D %
X (1) ot Besy, e f .Y,

are, respectively, homotopy equivalent to the conk ahd the cone ofk(—1).

(3) The prism axiom is a consequence of Lemma (2.4).

(4) We leave the verification of the octahedron axiom, andvidrdication of (2), as an
exercise. i

(2.10). Clearly, with notations corresponding to the notationsdulse subcategories of
complexes, there are natural triangulated subcategdrigea®):

Hott(2), Hot™(A), Hot’®R), Hote (),

where¢ in the last notation is a given thick subcategoryof
Of the general properties of triangulated categories wetimehere the following:
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Corollary. For any fixed compleX, the functor
Homuotca) (A, —): Hot(A) — Ab
is exact, that is, any exact triandg8.1)induces a long exact sequence of groups,
-+ —> Hompei(A, Y) —> HOoMpot (A, Z) > Homyet(A, X (1)) > HOMpyei(A, Y (1) — - - - .

In particular, for a morphism of complexgs. X — Y it follows that f is a homotopy
equivalence if and only if the cone ¢fis contractible.

By the characterization in (2.4), a morphism of complexesX — Y is a homotopy
equivalence, if and only if for every objedt of 2 the induced morphism of complexes of
abelian groups Hom(A, X) — Homgy (A, Y) is a quasi-isomorphism.

A special property of the triangulated category 0t is that the p'th cohomology
HP?: Hot(2) — Ab (for any fixedp) is an exact functor on H@). Indeed,H?” (X (n)) =
HP*(X), and so the assertion follows from (1.7): For any exact ¢fiaif2.8.1) there is an
induced long exact sequencelin

o> HP(Y) > HP(Z) > HPTY(X) > HPP YY) —> ...
Note also that the functor,
Hot(T): Hot() — Hot(’B),

for any given additive functof': 2 — B, is exact, that is, it takes exact triangles to exact
triangles.

(2.11). Let f: X — Y be a morphism of complexes, and E&tbe its cone. It follows
from the long exact sequence of cohomology tlias a quasi-isomorphism if and only if
the coneZ is acyclic. It follows easily that the class of acyclic coex#s, as a class in the
homotopy category, is a triangular subclass, and that ttesyof quasi-isomorphisms is the
corresponding system of morphisms. As a consequence wia dieefollowing result.

Proposition. The system of quasi-isomorphism is a saturated denomisggiem in the
homotopy categoryot(2l).

We emphasize in particular tlteenominator propertgnd theequalizer property
(LOC 1) Any pair of morphisms of complexes X — X’ and f: X — Y wheres is a
quasi-isomorphism may be completed to a homotopy commatdiagram,

f

X ——Y
Si S/i

y Y
X -->Y

wheres’ is a quasi-isomorphism. An conversely,fif ands’ are the given morphisms with
s’ a quasi-isomorphism, then they may be completed withto a homotopy commutative
diagram with a quasi-isomorphism

(LOC 2) If two morphisms of complexeg, g: X — Y are equalized up to homotopy
by a quasi-isomorphism: X’ — X then they may be coequalized up to homotopy by a
quasi-isomorphism: Y — Y’.

119



Hot 2.8 The homotopy categories

(2.12) The homotopy theorem of injectivesLet X € 2A* be an acyclic complex an@ € 2A™
a right complex of injective objects. Then any morphism omplexesf: X — Q is
homotopic to zero.

Proof. We have to construct a family of morphismisX — Q(—1) such thatf = s(1)d +
d(—1)s. The morphisms?: X? — QP~1 will be constructed inductively. Consider the
equations in degrees at mast

Fr = spar—1 4 PP for p < . (2.12.1)

SinceQ € AT, we haveQ? = 0 (and f” = 0) whenp « 0. So, withs? := 0 for p « 0,
we may assume that (2.12.1) holds wheg 0. Proceed by induction: Assume th&are
defined forp < n such that (2.12.1) holds. We have to che&é! such that the equation
in (2.12.1) holds forp = n + 1, that is, such thaf” = s"t1" + 3"~1s". Now, for the
morphismi := " — 3"~ 1s": X" — Q", we see that

ho' ™l = (f —85)8 = f0 — 850 = (f — 59) = 3ds = 0.

Henceh extends to a morphisi' : Coka;l(‘1 — Q". Now, asX is acyclic in degree,
Coka;l(_1 = Im 8% injects intoX" ™! and Q is injective. Therefore}’ extends to a morphism
n": X"+ - Q". By construction,

ot = h = fn _ an—lsn.
Hences"t1 := h” is the proper choice. 0

(2.13) Corollary. Every acyclic right complex) of injectives is contractible. Every quasi-
isomorphismQ — Q' between right complexes of injectives is a homotopy eqaivee.

Proof. To prove the first part, note that, by the Theorem, the idgfhgtis homotopic to zero;
henceQ is contractible by Characterization (2.4). i Q — Q’ is a quasi-isomorphism,
then the cone of is a acyclic, since cohomology is an exact functor. Henced#oend part
is a consequence of the first part. a

(2.14) Corollary. Let A, B be objects and Iex andQ be positive complexes ovdrandB
respectively, say with co-augmentatiensA — X andn: B — Q. Assume thaA — X is
a resolution, that is, the mapping cone,

Y: —)O—)A—S»XO—»X:L—»XZH

is acyclic, and tha@ is a cpmplex of injectives. Then any morphigmA — B extends to
a morphism of complexes: X — Q,

A—-2»X

fi lf

B> 0,
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andf is unique up to homotopy.

Proof. The two compositions in the square are morphisms of compleam A, concentrated
in degree 0, to the positive compléx Therefore the two compositions are equal if and only if
they are homotopy equivalent. Thus the we are looking fophiems/ making the diagram
commutative up to homotopy, that is, morphisghin the homotopy category such that
is the given compositionf .

By the preceding corollary, Hopbt(X, Q) = 0. Hence, by the dual of the long exact
sequence of Corollary (2.10), the morphisnmduces an isomorphism,

Homuot(X, Q) — Homuet(A, Q),

So, the morphisnaf on the right hand side is hit by a unique morphism on the lefiicha
sides. i

(2.15) Exercises.

1. Let f: X — Y be a monomorphism of complexes, split monic in every degiest.
W = Cok f andZ := Conf be the cokernel and the cone 6f Prove that the induced
morphismZ — W is a homotopy equivalence. [Hint: Use (1.6?) on the com@extained
by applying the functor HortA, —).]

2. Let f: X — Y be a map of complexes. Then with:= Con f there is a natural short
exact sequence, split in every degree,

0-Y "z * x1 —o.

Consider the cone Canof i. By the previous excercise, the induced morphism Ze#
X (1) is a homotopy equivalence, that is, an isomorphism in thedtopy category. So,
replacing Cork by X (1) we have obtained a homotopy cone,

k h
X(l@ Y.

The conclusion is incorrect, cf. the homotypy cones in Teen(2.9)/2). Where is the error
in the argument?

3. In the second square of (2.6) the counter clocwise compositi’ —~» X" ~ww» X is
determined by the following computations:

10100 =(1, 0)((])' (])_ 8 8)0:(100()0:(—100().

Explain the computations, especially the first equation.
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3. Bicomplexes.

(3.1) Definition. A bicomplexin 2l is a diagram,

C o xXPatl N eptle+l
A ! (3.1.1)

S axpa 0 xp+lg

T

of objectsX 74 and morphisme??: x7-4 — xp*+La andas?: xr4 — xP-a+lfor p,qin
Z, such that

0101 =0, 0202 =0, 0102+ 0201 =0. (3.1.2)

The first two equations mean that eaolw X*¢ and eaclcolumnX?-* is a complex. The
last equation means that each small square in the diagramié®mmutative; in particular,
the morphism@f" do not define a morphism of complexgg-* — XP+1e,

There is an obvious abelian category of bicomplexeX,idenoted**.

(3.2). The supportof a bicomplex is the set of pailp, g) € Z x Z such thatX?-¢ # 0.
With restrictions on the support we obtain several naturbtategories of bicomplexes. For
instance, the categofy* =9 consists of all bicomplexes having support in a region of the
form [N, co) x [0, co) for some integeWV. With similar notations we obtain subcategories
with support in regions as indicated on the figure:

2[4—,20 Ql-i—,-i— Q(b,o 91-,—{-

(3.3) The total complex. We denote by2(3;* the full subcategory ofI** consisting of
bicomplexesX such that on every the line+ ¢ = n there is only a finite number of nonzero
XP4. Note thatdy® includes any of the three first subcategories indicated erfigfure in
(3.2), but not the fourth.

For everyX in 3" there is an associatedtal complexTot(X) defined as follows: In
degreen,

Tot'(x)= ] x7. (3.3.1)
ptq=n
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and the differentiad : Tot* — Tot"*1is the sun® = 9+ 9> of the two (diagonal) morphisms
determined by the two differentiadg andd-. Itfollows fromthe equations (3.1.2) tha&i = 0.
So the total complex determines a functor, obviously exact,

Tot: AL — 2A°,

Clearly, A+ and AP are contained ily", and restriction of the total complex functor
defines functors TotAH+ — A+ andAP* — A°.
A bicomplex has shifts in two directions: The primary shdfteicomplexX (1, 0) has
X (1, 0)74 = xP*+14 and both differentials are multiplied byl; the secondary shiff (0, 1)
is defined similarly. Clearly, i € A" then

Tot(X (1, 0)) = Tot(X (0, 1)) = Tot(X)(1). (3.3.1)

Clearly, if 20 has[[y's, the total complex may be defined by (3.3.1) for any bicarpl
alternatively, the finite direct sum could be replaced byrdimite direct sum.

(3.4) Definition. It is often useful to view a bicomplex &sfamily, thatis, aZ x Z)-indexed
family X = (X7-9) of objects, with two given morphisms of familigs: X — X (1, 0) and
d2: X — X (0, 1) satisfying the equations in (3.1.2). Note that the functtri defined on
the category of families correspondingdd°. The differential in TotX), for a bicomplex
X € 2%, isin fact the sundyot = Tot(d1) + Tot(d2).

(3.5) Commuting a bicomplex. In a bicomplexX, each columrX?-* is a complex, but the
differential 3;: X”* — XP*1* is not a morphism of complexes since the small squares in
Diagram (3.1.1) are not commutative. In other words, a cempf complexes corresponds
to acommutativeliagram (3.1.1) (witfd? = 32 = 0), and not to a bicomplex.

Since each small square in the diagram of a bicomplex is@ntitutative, a sign change in
1 or 3 of its arrows will make the small square commutativeer€lare several conventions for
chosing sign changes that make the whole diagram of a bieagpimmutative, and hence
turn a bicomplex into a complex of complexes. The same chwiit¢hen turn a complex of
complexes into a bicomplex.

A sign functiorfor the Diagram (3.1.1) is#1-valued functiors defined on the underlying
graph. So, for the two edges beginningpay the function has a valu.ef" in the primary
direction and a valueg" in the other direction. The sign functionasid, resp.even if for
any small square of the diagram the product of the four signesponding to the four edges
is equal to—1, resp. equal to 1.

Let e be sign function. For any diagras of the form (3.1.1), denote hyX the diagram
obtained fromX by multiplying the morphisna)l.p’q with the sign determined by, that is,

p.q . Psq D9 .
gal — 8[ al , 1 = 1, 2.

124



Bicomplexes Hot 3.3

Observation 1. If ¢ is an even sign function, then there is a canonical choicgjne -9 =
+1 for all p, g € Z such that:®° = 1 and such that for any diagrak of the form(3.1.1)
multiplication bya?-? in X?-4 defines an isomorphisi — . X.

Proof. Definea?? as follows: Choose a path frof, 0) to (p, ¢g) in the graph underlying
the diagram, and let?-7 be the product of the signs given byn the edges in the path. The
product is independent of the choice, simds even. As a consequened, 14 = ef’qal”‘l,
and it follows thatvd; = .01 and, similarlyxd, = .d2«. Hencex: X — X isa morphism
of diagrams. a

Observation 2. Let e be an odd sign function. X is a complex of complexes, theX is
bicomplex. Ify is a second odd sign function, then the bicompleXeand, X are canonically
isomorphic.

Proof. The first assertion is immediate, the second follows fromeDlaion 1, sincey/¢ is
even and transformsX into , X. i

An odd sign functiore transforms a complex of complex&sinto a bicomplex, X, and
X +— X is obviously a functor isomorphisi®*)* — >*. We denote by2*);, the
subcategory o®(*)* corresponding t@(3;*. For a complex of complexesin (A*)%,, the total
complex Tot(X) := Tot(. X) is defined. ClearlyX — Tot, X is a functor,

Tot, : (A%)%, — 2A°.

A different odd sign function defines a functor Jathich, by Observation 2, is canonically
isomorphic to Tat. In fact, the two complexes ToX andTor,X have the same degree

componen@p+q:n X749, and the isomorphism is given by a diagonal automorphisr wit
the signst1.
In the sequel we use the following sign function,
b 1 ifi =1,
gt = L (3.5.1)
(=17 ifi =2

Its effect on a diagram (3.1.1) is to multiply all the diffatals in the odd columns by1.

(3.6) Lemma. The functoffot : (A*);, — 2*, wheree is the sign functio3.5.1) commutes
with shifts, commutes with the formation of the cone, angheess homotopy.

Proof. The first assertion is the equality, for a complexn ()3, ,
Tot. (X (1)) = (Tot.(X))(1); (3.6.1)

the shifton the left side is th@imary shift X isacomplex-- — X?” 0 xptl L with
a differential (called the primary differential). In turaehX?, being a complex, is viewed as
column, with a differentiab,, called the secondary differential. The primary shift nmetree
X? and multiplies the differentiad; by —1. The columns inX of even index are placed in
odd degrees iX (1), and so, when forming(X (1)), their differentials are multiplied by-1.
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So, compared with the differentials pX, all differentials of. (X (1)) have been multiplied
by —1. In other words, (X (1)) = . X (1, 0). Hence (3.6.1) follows from (3.3.1).

Consider next a morphisrfi: X — Y of complexeg®*)3, and its mapping cong =
X(1) @Y. As abifamily we haveZ = X (1, 0) @ Y; the primary and secondary differentials

of Z are:
—-dx1 O 0x,2 0)
01 = ’ ando, = ’
! ( f 3Y,1> 2 < 0 Odyp

Passing to the bicomplex, the primary differential is unchangedi; = 9;; inthe secondary
differential, for a column of degreg the differentiaby » is in a column of degreg + 1 and
dy 2 is in a column of degreg. So the secondary differential is changed to the following,

e 0 saY,Z

Apply the functor Tot, and add the Tot of the two differenialt follows that Tot Z is the
family (Tot X)(1) & TotY with the differential,

3 _ —Totg0x,1 — Tot:0x 2 0
¢0Tot Z Tot f Totcoy,1 + Tot.oy2 )’

which is the differential of the cone of Tof): Tot.(X) — Tot.(Y).

Finally, assume thaf: X — Y is null homotopic as a morphism of complexes, say
f = dys + sdox wheres is a family of morphisms: X — Y(-—1) that is, a family of
morphismss: X? — YP~1. Note that each oX? andY”~1 is a complex, and se is a
morphism of complexes. In other wordscommutes with the secondary differentials,

§0x.2 = dy 2S.
Now, passing fromX andY to the bicomplexegX and.Y, the differentials ofX?” and
Y7~ are multiplied with opposite signs. Hence commutation bee® anti-commutation,
s ¢0x.2 + dy,2s = 0., and it follows that
Tots Tot.dx 2 + Tot.dy 2 Tots = 0.
Hence

Tot(f) = Tot(d1s + s01) = Tot(d1s + s01 + s02 + d25) = d1ot TOts + Tots d7ot,

and Totf is null homotopic. a

(3.7) The Column Theorem. If a bicomplexX in A" has acyclic columns, then the total
complexTot(X) is acyclic. If, in a complex of complexésé € (A°*)%,, each componeri?
is an acyclic complex, th&ot, X is acyclic.
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Proof. Clearly, the two assertions are equivalent. We prove thergkc Consider, as in
Hot(1.9) the truncated complex&s*? and the mapping cone,

X =P
’;ﬁ \ (3.7.2)

XP(—p-1) —L X>P.

Each vertex is a complex of complexes. Apply the functor, Tofhe lower left vertex is
the complex havingX” concentrated in degree + 1. It follows from the Lemma that
Tot, X7 (—p — 1) is the internal shifX 7 (— p — 1) of the complexX”. So the Lemma yields
this mapping cone:

Tot, X=P

)fﬁ“ \ (3.7.2)
XP(—=p—1)—2% » Tot, X>7.

By hypothesis, the lower left vertex is acyclic. Therefdog,the long exact cohomology
sequence of the cone, we obtain for all integees isomorphism,

H"(Tot, X~P) > H"(Tot, X=P).

Now X isin (*)%. So, for a fixed: there are only finitely many nonzero componekits?
onthelinesp+g =n—1,p+q =n,andp +q = n + 1. It follows, whenp « 0 that the
complexes TqtX and Tot X=” have the same components of degiees1, n, andn + 1;

in particular, they have the same degreeshomology. Similarly, it follows forp > 0 that
Tot, X=? vanishes in degree in particular, its degree-cohomology vanishes. Hence, with
p < 0andp’ > 0,

H"(Tot, (X)) = H"(Tot,(X>?)) = - -- = H"(Tot,(X>"")) = 0.

Therefore Tat(X) is acyclic. 0

Naturally there is a correspondifpw Theoremit may be obtained from the bicomplex
version of the Column Theorem by interchanging rows androoki

(3.7) The Row Theorem.If a bicomplexX in A" has acyclic rows, then the total complex
Tot(X) is acyclic. IfX is an acyclic complex of complexése (A*)3,, thenTot, X is acyclic.

(3.8). Assume there is given an additive subcl@ss 2 such that every object of 2l admits
a monomorphismt — Q into an objectQ of Q. Then every object has a resolution with
objects from, that is, an exact sequence,

O%ALQoﬁleﬁ,Qza..., (3.8.1)

with Q' in Q. Indeed, the construction is inductive: Take a monomorphisA < QY into
an objectQ? of 9. Let Al be the cokernel of, and take a monomorphisat < Q1 into
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an object ofQ. Let 3! be the compositio@® — Al — 1, and letA? be the cokernel of
. Continue by induction.
An additive clas$® C 2l is said to haver(ght) dimensiorat mostN if, for every exact
sequence,
RO % ... L RN-1 R .0,

such that the firsi objectsr?, ..., RN =1 belong tof, also the last objedk belongs tdx.
Clearly, if the additive clasg) is of dimension at mosV, then the resolution (3.8.1) may be
taken to be of length at moat, that is, withQ’ = 0 fori > N.

The condition forN = 0 means thaQ = ; for N = 1 it means that any quotient of an
object inQ belongs taQ.

(3.9) Lemma. Assume the conditions ¢8.8) for the classQ. Then, every compleX in2l°
admits a monomorphisixi — Y into a contractible complex of objects fronQ, and every
positive complex admits a monomorphism into a positive dempf objects of).

Proof. Chose for every: a monomorphism,: X" < Q" into an objectQ” of Q. Let Q
be the family of object®)”, and viewQ as a complex with zero differentials. LEtbe the
mapping cone of the identity @d. Then

Qn+1
= @ , 3Y:(C1) 8)
Qn

andY is contractible. Moreover, the famil&f’) is a morphism of complexe¥ — Y, and
obviously a monomorphism.

If X € A0, we may takeQ” = O forn > 0. ThenQ € 2>9 butY hasQ° as
a component in degreel. However, truncation of the negative components, thahis,
redefinitionY” := 0 forn < 0, yields a positive compleX, as desired. a

(3.10) The Density Theorem.Assume the conditions ¢B.8) for the class]. Then every
positive complexx in A=° admits a quasi-isomorphiskfi—> Y into a positive compleX
of objects o). Moreover, ifQ is of finite dimension, then every complexd admits a
quasi-isomorphism into a complex of objects fraom

Proof. It follows from the Lemma thaX admits a monomorphism into a positive complex of
objects ofQ. Therefore, by the observation at the beginning of (??lieghto the abelian
category2>° and the clas€)>?, there is a resolution (3.8.1) &f by objectsY” e Q>0.
The resolution is the cone of the morphight0) — Y, from X as a complex concentrated in
degree 0 to the positive compléxe (229)>C. This cone belongs t®>%)* < 23", and,
by construction, its rows are exact. Therefore, the totaigex of the cone is exact. So the
morphismX — Tot(Y) has exact cone. Consequeniy;— Tot(Y) is a quasi-isomorphism.
Since TotY) is a positive complex with objects 1, the first assertion has been verified.
The proof of the second assertion is similarhas dimension at moat, then the class
of complexexQ* in 2* has dimension of mosY. So the resolutioy may be taken to be a
finite resolution, of length at mo$f. So the cone ok — Y belongs ta2*)P 2A3°. The
rest of the argument is identical to the argument of the fesegtion. a
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(3.11) Example. Fix a complexX € 2*. Recall that for an objecB of 2 we denote by
Hom* (X, B) the complex defined in Hot(1.13) (with the sign conventiomghe differential).
The construction is clearly functorial iB, so it defines a functdll — Ab*. Extending it to
complexes, we obtain a functor

2A* — (Ab*)".

It associates with complex of complexs= ... — Y771 — y? — yrtl 5 ... the
following complex of complexes,

... = Hom"(X, Y”~Y) — Hom"(X, Y?) — Hom"(X, Y?*t1) — ...
Its degreetp, g) term is the abelian group HofiX —7, Y?). The categorAb has infinite

products, so the total complex is defined for an arbitrargimiplex. It is easy to that the total
complex of this bicomplex is the complex Ho(X, Y) defined in (1.10).
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4. Multicomplexes.

5. Additive functors.

6. Standard filtrations.
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Derivable functors in abelian categories

Let 2 andB be abelian categories.
1. The classical sequence of derived functors.
(1.0) Setup.An additive functofT : 2 — 9B has obvious extensions to functors of complexes,
T:A° — B, T:A7 - B", etc,
and to triangular functors on the homotopy categories,
T: Hot() — Hot(B), T: Hot™(A) — Hot™(B), etc.,

(1.1) Definition. An additive functor7: 2t — B is calledright uniformly derivable or
simplyderivable if there exists an additive class of objects satisfying the following two
conditions:

(i) Every objectA of 2 admits a monomorphism — Q into an object of].
(ii) If U is an exact right complex of objects {9, then the complef U is exact.

A classf with the two properties is said to #&-unfolding

Note that the first condition is independent of the fun@pwe shall refer til the condition
by saying that the clas3 is a (right)dense subclassf 2I.

If T is derivable, then the’th derived functorR"T is defined on a right compleX as
follows: Chose a quasi-isomorphismX — U into a right complexU of objects from the
T -unfolding clasQ; this is possible by The Density Theorem Hot(3.10). Deffd (X)
as then’'th cohomology,

R"T(X):= H"TU. (1.1.1)

Note that the morphisminduces a morphisfi X — T U and hence a morphism of coho-
mology
H™(TX) — R"T(X). (1.1.2)

It is important to notice the following consequence of coiodi (2): If s: U — U’ is a
quasi-isomorphism between right complexes of objects fiprthenTs: TU — TU' is a
quasi-isomorphism. Indeed, the conelof— U’ is acyclic with objects in). Hence the
cone ofTU — TU' is acyclic by (2). Thereforel U — T U’ is a quasi-isomorphism.
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(1.2) Proposition. Assume thafl : 2l — 9B is derivable. Then the formation of the ob-
jectR"T (X), for right complexesX, determines a well-defined, triangular functor from the
triangulated homotopy category to the abelian cate@®ry

R"T: Hott(2A) — B.

Moreover, a quasi-isomorphis# — Y induces an isomorphis/R"T (X) —> R"T(Y).
Finally, with respect to shifts, we have the equaRfyT (X) = RT (X (n)).

Proof. Consider, in the first part of the proof, a morphigmX — X’ of complexes ir(*.
Chose quasi-isomorphismsX — U ands’: X' — U’ withU, U’ € Q*. We have to prove
that there is a natural morphisi" (TU) — H"(TU’), depending only on the homotopy
class of f. Apply the left denominator property Hot(2.8)(LOC 1) to titm®rphismss and

s’ f to obtain a homotopy commutative diagran®ifi, with a quasi-isomorphism

f

x o xSy
l tl . (1.2.1)
U h V.

There is a quasi-isomorphism frovto a right complex inQ™; ReplacingV by the target,
we may assume that e Q. ThenTt is a quasi-isomorphisfiU’ — TV, and we define
H"(TU) — H"(TU’) as the composition, denotéd for simplicity,

H"(Th) H"(Tt)™1
_—

he: HY(TU) H"(TV) H"(TU").
We claim that the morphisin,.: H"(TU) — H"(TU’)isindependent ofthe dlagram (1.2.1).
Indeed, consider a second homotopy commutative dlagrqmvlﬁamorphlsmsh U—V
and7: U’ — V, and the corresponding morphlsmg. The equalityr, = h, is obvious,
if the second diagram is obtained from the first by repladigith the target of a quasi-
isomorphisn¥ — V. Ingeneral, apply the left denominator property Hot(2.8)C 1) to the
morphisms: U’ — V andi: U’ — V. Itfollows, replacing if necessary andV by targets
under quasi-isomorphisms, that we may assume in the hoyotgpgory that’ = V and
¢t = f. Soitremainsto prove that" (Th) = H"(Th)if h, h: U — V both make the diagram
(1.2.1) homotopy commutative. If this is the case, themdh are equalized in the homotopy
category by the quasi-isomorphism So, by equalizer property Hot(2.8)(LOC 1)andh
are coequalized by a quasi-isomorphigmV — V. ReplacingV by the target of a quasi-
isomorphism, we may assume thais in Q*. ThenT« is a quasi-isomorphism coequalizing
Th andTh. ThereforeH" (Th) and H" (T h) are coequalized by the isomorphisifft (T u).
HenceH" (Th) = H"(Th).

TakeX’ = X and f = 1y in this result. In particular, then the top morphism in dagr
(1.2.1) is a quasi-isomorphism. Hence the bottom morphigsra quasi-isomorphism. Con-
sequentlyZ & is a quasi-isomorphism, and the induced morphism is a caakisomorphism
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H"(TU)— H"(TU’). In other words, the obje®"T (X) := H"(TU) is well-defined.
Again, by the result in the first par¥ — R"T (X) is functor on the homotopy category,
since the diagram (1.2.1) is only assumed to be commutapite bomotopy.

To prove thaR” T is triangular, that is, takes exact triangles to exact secgs, consider an
exact triangle in the homotopy category ). We may assume that the third verté% is
the cone ofamorphisni: X — X’ of complexesi®(*. Chose a quasi-isomorphism— U
into a complextU € Q7. By the left denominator property Hot(2.11)(LOC 1) therais
commutative square in the homotopy category, with a qusshiorphism’,

x Lo x

u-"u.

We may assume thét’ ¢ Q. LetU” be the cone of. ThenU” € QT, and the diagram
extends with a morphisni’: X” — U” to a morphism of triangles. As the two morphisms
s ands’ are quasi-isomorphisms, so is the third. So, the sequRht€X) — R"T(X') —
R"T (X")is, by definition, the sequencH;"(TU) — H"(TU’) — H"(TU") which s part
of the long exact cohomology sequence of the conig ahd hence exact.

Finally, it results immediately from the definition, thatif — Y is a quasi-isomorphism,
thenR"T (X) — R"T (Y) is an isomorphism. a

(1.3) Notes. (1) If the category?l has enough injectives, then the class of injectives is
unfolding for any additive functof'. Indeed, take a8) the class of injective objects @f.
Then condition (i) is exactly the condition of having enougjlectives. And (ii) is automatic,
because an acyclic right complék of injectives is contractible; henc®U is contractible,
and hence acyclic.

(2) The derived functor®”T are, in particular, defined on complexes concentrated in
degree 0, that is, they define functors,

R'T: A — B.
To obtain the valuk” T (A) for an objectA e 2, choose a resolution,
00— A— QO—> Q1—>

b

with Q' e 9 (thisis possible by (i)). It defines a quasi-isomorphism> Q, andR"T(A) =
H" (T Q). Note that the morphism (1.1.1) far= 0 is a transformation of functors,

TA — RT(A). (1.3.1)

The sequence 8 A — Q% — Qlis left exact. Hence (1.3.1) is an isomorphisnTiis
left exact.
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(1.4) Properties of derived functors.Let us emphasize that the exactness part of Proposition
(1.2), given the commutation with respect to shifts, is thiéofving assertion: Assume that
T: 2 — B is derivable. Then every exact triangle in the homotopygrate Hot™ (),

Z
¥ N
u
induces a long exact sequence connecting the fun®&ers

]
L. R"T(X) > R"T(Y) > R"T(Z)

X

Y,

-
L. RHT(X) > RIT(Y) — RHIT(Z)

L

Several important properties are straight forward conseges of the definition. For
instance: IfX is a complex iRV, thenR!T(X) = 0 fori < N. In particular, ifA is an
object of2(, thenR"T (A) = 0 forn < O.

The most important is the following property, immediatenfrthe definition:

—

Theorem. A quasi-isomorphisnX — Y of complexes irRl™ induces an isomorphism of
then'th derived functorR"T (X) —> R"T (Y).

For a short exact sequence9 X' — X — X" — 0 of complexes i, thereis along
exact sequence similar to the one above,
.o+ > R"T(X") > R"T(X) — R"T(X")

—

Lo R*7 (X)) > R™IT(X) = R™IT(X") = - -

Indeed, letZ be the cone of the morphisY — X. Then the induced morphis@ — X”
is a quasi-isomorphism. By the theorem, the induced mompt&%7 (Z) — R"T(X") are
isomorphisms. Hence the second long exact sequence isettfabm the first by replacing,
for eachn, R"T(Z) by R"T (X").

In particular, when applied to a short exact sequenee @’ —~ A — A” — 0 of objects
of 2, it follows that the functoR%7T : > — B is left exact. Hence, the morphisih— R°T
is an isomorphism if (as noted in (1.3)(2)) and only'ifs left exact.

(1.5) Acyclic objects. If T: 2l — B is derivable, then an obje@ of 2 is calledT-acyclic

if TQ — ROT(Q) is an isomorphism an®” T'(Q) = 0 forn > 0. Clearly, any object from
the givenT -unfolding class ig'-acyclic. Conversely, we have the following assertionslt i
part of the assertion that the derived funcRHT is independent of the unfolding class that
is part of its definition.
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Observation. If T: 2l — B is derivable, then the class Bfacyclic objects ig -unfolding,
and it may be used in the computation of the derived funa@d/B.

Proof. Let Q be aT-unfolding class.
We prove first for any right compleX consisting ofr -acyclic objectd/! thatthe morphism
of (1.1.2) is an isomorphism:
H™(TU) - R"T(U). (1.5.1)

Assume for simplicity thal/ is positive: U’ = 0 fori < 0. Recall that a quasi-isomorphism
from U to a positive complex of objects from may be obtained as follows: There exists an
exact sequence of positive complexes wWithe 9>0:

i 0 U U5 Ut S UP > (1.5.1)
and thenU — TotU" is the required quasi-isomorphism; in particular, th&Hr'(U) =
H"(T TotU*). Thei’th row in (1.5.1) is a resolution af/’. Apply the functorT to (1.5.1).
Since eachU/ is T-acyclic, the resulting’th row is still exact. ConsequenthyfU —

T TotU"* is a quasi-isomorphism. Whence, (1.5.1) is an isomorphism.

Assume now that is an exact right complex of -acyclic objects. Then the zero-
morphismU — 0 is a quasi-isomorphism. So, by (1.4), we h&/& (U) = 0. Therefore,
by the isomorphism (1.5.1);U is exact. So condition (ii) holds for the class Bfacyclic
objects. Moreover, condition (i) holds, because it holdglie clasx).

So the class of -acyclic objects is'-unfolding. Ifs: X — U is quasi-isomorphism of
right complexes and is a complex off'-acyclic objects, the®R" T (X) —> R"T (U) since
s is a quasi-isomorphism, aml'T (U) = H"(TU) by (1.5.1). SaR"T (X) could have been
defined as the cohomology 61U . a

(1.6) Definition. Let 7: 24 — B be an additive functor. LeT* be a positive complex of
additive functors fron®( to B,

m: . -0-nMl-mnt-mn?-...,
with a givencoaugmentatioa: T — I1°. So eacHT’ is an additive functo?2l — 93, and the
compositionl1” — I1"*1 — [1"*2 is zero. In addition, the coaugmentation is a morphism

of functorse: T — 19 such that the compositiofi — HO — It is zero. Note thafl®
extends to complexes: K € 2(* is a complex, then eadii’ (X) is a complex irB3*, and

nx): ---—0— Mn%x) - ntx) - mx) - ---

is a complex of complexes. K e AT, sayX e A=V, then eacHT’(X) belongs tR(>";
hencell*(X) e (°)% and we may form the associated total complex. Viewihg as

a complex of complexes concentrated in degree 0, the coaugtite is a morphism of
complexes (of complexes): TX — I1°(X), and itinduces a morphism of total complexes:

ex: TX — TotIT*(X). (1.6.1)
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The complex of functord1 with the coaugmentation: T — II* is called anexact
resolvent complefor T, if the following two conditions hold:
(i) Every objectA of 2l embeds into an obje@ such that the following sequence is exact:

0> T(Q) — 0°%0Q) > 0 Q) — . (1.6.2)

(ii) Each functorTT’ is exact.

(1.7) Theorem. Assume that the additive functdr. 24 — B has an exact resolvent complex
e: T — II*. ThenT is derivable, and, for any complek in 24" and any intege, there is
a canonical isomorphism 8,

R"T(X) ~ H"(TotII*(X)). (1.7.1)

Moreover, the clas of objectsQ such that the sequen(®6.2)is exact is equal to the class
of T-acyclic objects.

Proof. First, for any compleXX e 2" consider the complex of complexes,
T (X): e 0> TX > X)) > THX) > -+,

with 7 X in degree—1. The coaugmentationt 7X — I1°(X) is a morphism of complexes
(of complexes), andl (X) is its mapping cone. Hence Tht (X) is the mapping cone of
the morphisney in (1.6.1).

Now we make the following two observations:

(@) If Z € AT is an exact complex then, by condition (i), the compléX Z) has exact
columns. Hence, by the Column Theorem, the compleXTidf) is exact. As a consequence,
since Tofl1* preserves cones, ¥ — Y is a quasi-isomorphism of complexesit, then
TotI1°(X) — TotII*(Y) is a quasi-isomorphism.

(b) Let U be a right complex of objects from. Then the compleXI (U) has exact
rows. Hence, by the Row Theorem, Tot(U) is exact. The latter complex is the cone of
the morphisney . Therefore, the morphisay; of (1.6.1) is a quasi-isomorphism.

Now, consider an exact right compléx of objects from£. It follows from (b) that
ey.: TU — TotIl*(U) is a quasi-isomorphism, and it follows from (a) that TbtU) is
exact. Thereforel U is exact. Hence condition (1.2)(ii) is satisfied. Since ¢bod (1.2)(ii)
is part of the hypothesis, it follows that the cla3ss T-unfolded.

Let X be a right complex and choose a quasi-isomorphisixi — U into a right com-
plex U of objects fromLQ. Then we have the following commutative diagram of degree-
cohomology,

H"(TX) —%~ H"(TotII*(X))

HY(TU) —Y» H"(TotII*(U)).
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The left vertical morphism is an isomorphism sinc€X — TU is a quasi-isomorphism
by (a). The lower horizontal morphisey is an isomorphism, SincBU — TotIT*(U) is a
guasi-isomorphism by (b). Composition of the isomorphigiakls the isomorphism (1.7.1):

R'T(X) = H(TU) "~ H"(TotI1*(U)) <~ H"(TotTI*(X)).

When the complexX is an objectQ e 2, concentrated in degree 0, the total complex
TotI1°(X) is simply the compleXd1*(A). So, by the isomorphism above, we have that
R"T(Q) = H"(IT*(Q)). HenceQ is T-acyclic if and only if the sequence (1.6.2) is exact,
that is, if and only ifQ € Q. a

(1.8) Confusing example Let®l := 9 be the abelian category of complexe&in Consider
the following two functors:
I, K: — B,

given by 7(4) = Im(A~1 — A% andK(A) := Ker(A° — Al). LetII*(A) be the
truncated complexi®(A) = A>°, and viewII* as the complex of functorE”: A — B,
given byI1"(A) = A" forn = 0,1,.... So each functofl” is exact. With the obvious
coaugmentations given by the inclusiohéd) < K(A) — A9, the complexII* is a
resolvent complex for both functodsand K. Indeed, every objecA of 2 embeds into an
acyclic objectQ (for instanceA embeds into the mapping cone of the identityAfand
the mapping cone is even contractible), and it suffices te tiwt the sequence (1.6.2), for
T = K is exact if Q is acyclic in positive degrees, and for= [ is exact ifQ is acyclic in
nonnegative degrees.

In particular, it follows that the’the cohomology of an object in ®8°, forn > 1, is the
n’th derived functor,

R"I1(A) = R"K(A) = H"(A).

Forn = 0, we have thar®/ (A) = ROK (A) = K (A).

Note that the derived functo®’ K are defined on right complexesihe T, that is, on
the category (B)*)™ of right complexes of complexes iB. It follows from the description
i (1.7) thatif X € (B9, then the valu&k” K (X) is equalH" (Tot X) for all n.

(1.9) Remark. An exact resolvent complex for the identity functor 126f
o5 0>1m>nt— ... (2.9.1)

is also called an (exactgsolutionof the identity, since, for instance by the theorem, the
sequence (1.9.1) is necessarily exact. Consider the fmitpeondition: Every object of
embeds into an obje@ such that the sequence,

o505 0> > 10— ...,

is contractible (in the terminology of relative abelianezadries the sequence (1.9.1) is a
relative resolvent complex for the identity). Clearly, under thisdiion, if 7: 24 — B is
any additive functor such that all the functdf$1” are exact, them — TTI* is an exact
resolvent complex fof" (in fact, a relatively exact resolvent complex).
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(1.10) Example. Let B be an object ofl with a projective resolutio® — B,
o> Pr—>PL—>Ph—>B—->0— ...

Consider the functol' = Hom(B, —). Then there is & -augmented complex of functors
2A — Ab,

-+ —> 0— Hom(B, —) - Hom(Py, —) - HOm(P,—) — -- -,

and each functor Ho®;, —) is exact. The complex is a resolvent complex for H&N—),
if and only if Hom(B, —) is derivable (for instance, #t has enough injectives).
Note that in any case, the cohomolog} Tot Hom(P, X), for any complexX e ™
(in fact, for any complexx € 2A* if Tot of a bicomplex of abelian groups is determined by
products), is the ext-group,

H" Tot Hom(P, X) = Ext"(B, X).

Indeed, we have the equalities,

Ext’(B, X) = Homp (B, X (n)) => Homp(P, X (n))
= Homuot(P, X (n)) = H" Hom}y (P, X) = H" Tot Homy (P, X).
The first is the definition of the ext-group as the hom-grouphim derived categoryy) =
D®), the second holds becaug®e— B is a quasi-isomorphism, the third holds because

P is a left complex of projectives, the fourth holds by defmitiof the homotopy category
Hot = Hot(2l), and the last holds by the definition of Homs Tot of a bicomplex.
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2. Derived categories of complexes.

(2.1) Setup. Recall that the homotopy categories k¥t and Hot" () of complexes and of
right complexes are triangulated categories. A morphisagsasi-isomorphismiifitinduces
an isomorphism in cohomology, or, equivalently, if its canacyclic.

The class of quasi-isomorphisms is a saturated denomosgstem in the homotopy
category. Thdull derived categoryf 2 is the category obtained by localizing the homotopy
category Hotl) at the class of quasi-isomorphisms; itis denotg@( D The objects of ()
are the complexe¥ of objects ofA. The morphismsin () from X to Y are represented by
pairs(s, ), wheres: Y — Y; X — is a quasi-isomorphism, anfl: X — Y; is a morphism
of complexes. The well-known equivalence relation of pa&ises into account that the
localization is obtained from the homotopy category whé morphisms are homotopy
classes of morphisms of complexes.

A similar derived category D(2) is obtained by localizing Hot(®2() at the class of
quasi-isomorphisms. The subcategory H@&) of Hot(2l) is localizing with respect to
guasi-isomorphisms: 1K is a right complex and: X — X' is a quasi-isomorphism into
an arbitrary complexX’, then there exists a right complek” and a quasi-isomorphism
t: X' — X”. As a consequence, the derived from H@) is a full subcategory,

DY) € D).

3. The functors Ext and RHom.
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Simplicial cohomology

1. The basic simplicial categories.

The categoriess), (s9, and(ssg. Simplicial objects. Simplicial sets. Augmentation.
Simplicial categories. The associated complex, and itecahogy. Simple retraction.
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2. Basic examples.

The functor [ }: (5) — (GrCab, [ ]ss: (59 — (Cat), [ ]sss (559 — (PreCaj.

Powers: The c&objectn — Al thes-objectn — A®I": the notationA®’ indicates
the direct sum (the co-product) of drindexed family of objects all equal t#).

The functors: > R andn +— R®!"], Then notatiorR®’ is rather ambigous, since it
depends on the category in whighis considered as an object. In the context here we will
think of the abelian category @&-modules. In particular, then for finite sets we may identify
R’ andR®’, but the dependencies drare different: the formation d&’ is contravariant in
1, that of R®/ is covariant in/.

For instance, for a morphisgi: n — p in s, that is, a map of setg: [n] — [p], there
are induced morphism morphims R®" — R®P] ande*: RIPI — R[: they are given,
respectively, by

(p(t(),"',tn):(u07"‘vup)9 up = Z thja
p()=i
QD*(MO,...,MP):(fo,...,tn), t] :u(p].

ne> Ayg=1{teRM|4>0) 1 =1)

sing

subfunctor ofs — RO,

The functor
[]: (53 — (Cat).

For any small category, let ¢/ = Funci/, ¢) denote the category of functois — ¢.

Its objects are the functors — €&, and its morphisms are the transformation of functors.
The formation is contravariant if. for any functore: J — I, there is an induced functor
¢! — ¢/, If K andJ are small categories, thet{ = Funci(/, K) is a set; so we obtain at
categoryCat of small categories such that

&1 = FunctI, K) = Homcai (I, K):

in particular, each Hom-set ((Cat) is a category.
For any small category, we obtain arssobject in(Cat):

n > 1" = Homear([n], I).
The category "] has as objects the set of alistringsof I:
ig—> - — I
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For any small category, let I'* be the category,
I" = Homcat (7, [1]s9).

Note that an object ii* is a division of the objects df into two disjoint classed, = Ip U I1,
with the property that there are no arrows from an objedt ito an object infp.

Let (Catgg) be the category of small categories with chosen extremaictdyan initial
object and a terminal object); the morphisms(®atgp) are the functors preserving the
extremal objects. Clearly, for two objedts/ in (Catpg), we may view the Hom-set,

HorT]CHtOO(I’ J) g HomCat(I» J)’

as a full subcategory.

Note that/* is in (Catgp): its two extremal objects are the two constant functors. 8o w
may viewl — I* as a contravariant funct@Cat) — (Catpg). By composition, we obtain
a contravariant functor,

(s - (cat) -2~ (Catop),

and hence for every in (Catgg) a cosscategory,
n — Homcat([n]*, J).

Note that the elements o[* are the increasing maps][— [1]. ForO< i < n + 1, let
i*:[n] — [1] be the increasing map such thiatx) = 0 for x < i andi*(x) = 1 otherwise
(in particular, @ is the constant map 1, ard + 1)* is the constant map 0). Thenl[ is the
ordered set,

] ={(n+ D" <n* <-.. < 0%}

In other words, the objects of the category Heyw, ([#]*, J) is the category oferminated
n-stringsof j,
a = jo— - j1—> b,

wherea andb are the terminal objects of.
WhenJ = [0, 1] is the unit interval as an ordered set we obtain the detsmnip

Homeaty,([7]*, [0, 1)) = {(ts, ..., 11) |0 <1, < --- <11 < 1Y,

4. 2.20 (1) Prove that the two contravariant functo@at) — (Catgp) and(Catgg) — (Cat),
are adjoint:
Homcai (1, J*) = Homeatgo(J, I7).

(2) Prove that}]** = [n] forn = —1,0,....
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3. Simplicial sets.

4. Homology of simplicial sets. Acyclic simplicial sets.
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5. Standard resolutions and canonical resolutions.

(5.1) The star product. Consider functors’,G: 8 — & andF',G": 8 — R’. Let
9. F — G and¢’: F’ — G’ be transformations of functors. Then there &ar productof
transformations,

¢ x¢: F'F - GG,

of functors® — K" defined as follows: For any objedt in &, we have the morphism
¢(X): FX — GX in & and hence, sincg’ is a transformation of functors, a commutative
diagram inf”,

F/FX F (QD(X)) F/GX
w’(FX)i lqo/(GX)

G'FX———~ G'GX.
G'(p(X))

Define (¢’ * ¢)(X) as the composition in the diagrami;FX — G'GX. The arrows in
the diagram are given by transformations, denoted resebett’ ¢, ¢'G, G'¢, and¢'F. In
particular, the star product is a transformation of funef®r> R”.

The formation of the star product is functorial in the foliogy sense: Assume there are
further functorsH: & — & and H': & — £”, and transformationg': G — H and
Y’ G’ — H'. Then we have the equality,

W Y@ * @) = W'o) x (Vo), (5.1.1)

of transformationg”’ F — H'H.

It is easy to extend the definition to a star product of mor¢ftina transformations: For
composable functors and transformatignsF; — G; fori =0, ..., n the star productis a
transformation,

R X/ FOFn — GO"'Gn»

with functorial properties extending (5.1.1).

(5.2) Setup. Fix in the following a category, a functorF: K — &, and a transformation,
5:1— F,

from the identity functor 1 to the functar. Consider fom > —1 the composition,

+1
n
FMl=F...F;

for n = —1, the composition is the identity functor. Lét p — n be a morphism ifSsg,
that is, a strictly increasing mafy: [ p] — [n]. Associate withf a transformation (denoted
by the same symbol): FIPl — Fl"l asfollows: Forj =0, ..., n, if j isin the image off,
let F; := F and letp; = 1: F; — F be the identity transformation; otherwise, Igt := 1
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be the identity functor and lgt; = §: F; — F be the given transformation (beware that the
symbol 1 is used both for the identity functor &fand for the identity transformation of a
given functor). Define the transformatighas the star product,

n+1 n+1

e e

Clearly, with this definitionz — FU"] is a functor from the categor§gss to the category of
endomorphisms of. In other words, it is a c@Ssobject of endomorphisms o,

=T Lo h= = (5.2.1)

It is called the (co-augmented)andard objectissociated to the transformatiénl — F.
Evaluation at any object of £ yields a cosssobjectFI1 X of &,

Note that face morphisms corresponding to the ndgps — n-+1 have a simple inductive
description: under the identificatian*+1 = Fll p,

§ o =1x8: FM 5 plilp g —srly 1 pln-lp o plilp

where the factor 1 in the first star product is the identitpsfarmation of FI”] and in the
second product (for & i < n) is the identity transformation af .

(5.3) Examples. (1) For & = (Cat), consider the functor +— I that adds a final object to
the category. The obvious inclusion,

I — 1T,

is transformation of functors: 1 — ()*. The corresponding standard object, evaluated on
any category is a functor(ssg — (Cat). In particular, evaluation at the empty categ@ry
yields the standard functot,— [n], from (SS3 to (Cat).

(2) For& = (Top), consider the functoX +— C(X), whereC(X) is the cone ovek (the
mapping cone of the identity df). The obvious inclusion,

X < C(X),

is a transformation of functors &> C. The corresponding standard object, evaluated on
X =0, is the topological realizatiom, — Af,,, restricted tasss.

(3) Consider a pair of adjoint functorﬁ,# £, with p right adjoint tox. Let F := pA.
The adjunction isomorphism,

Home (L X, Y) = Homg (X, pY),

is, like any functorial map from the left side set to the rigitde set, given by a functorial
morphismX — pAX, thatis, by a transformation pi = F.
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(5.4) The Standard Contraction Lemma. (a) Let S: & — K be a functor such that the
transformatiord « 1. S — FS has a retraction. Then the &8sobject of functorst’ — 1,

Fls: s—rszrllsz3 P .

has a simple contraction.
(b) LetT: 8 — 8 be a functor such the transformatibs §: T — T F has a retraction.
Then the casSsobject of functork — R/,

TPl T TF3TFUZ TFAZ

has a simple contraction.

Proof. For (a), letr = r%: FS — S be a retraction for the transformatién: 1: S — FS.
Forn > 1, definer": Fll§ — Flr—1g as the star product,

" =1"xr: FM§ = F1(FS) — F'S = FI"~Yg,

where T is the identity transformation af”. From the description of the face morphisms
81, it follows easily thar"+16 . = 1 and thar"*+1s = 8/~ for 0 < i < n. Hence the
r" form a simple retraction of the cg&ssobject.

The proof of (b) is similar. a

(5.5) Example. (1) Fix a category/. Consider the transformatioh — I* of (5.3)(1),
and the corresponding &ssobject of endomorphisms afCat). Composition with the
(contravariant) functof’ = Homcgai( , J) gives arsssobject of contravariant functors from
(Cat) to (Sets. Evaluation atl is the followingsssset:

Hom(1, J) <~ Hom(I*, J) & Hom(I*T, /) & ---. (5.5.1)

Assume that the categoryhas a final objeat. Then there is an obvious functor J* — J
equal to the identity oy c J*. So, for any functorf: I — J we obtain a functor
rft: 1T — J* — Jextendingf. Inotherwordsf — rf T isasection of Horu *, J) —
Hom(1, J), andin fact a section of the transformatibn)™ — 7. Therefore, by the Standard
Contraction Lemma, iff has a final object, then, for any categdrthesssset (5.5.1) has a
simple contraction. In particular, fdr= ¢, the followingSssset has a simple contraction:

+ < Hom([0]. /) & Hom([1]. /) £ Hom([2]. /) £ - (5.5.2)
The Hom-sets are for the categai@at); each [z] is considered as a partially ordered set,
and hence as a category. Thus Hpwh, J) is the set ofi-stringsjo— j1— - - - — j, in J.
A modification of the functor )™ for the category of sets yields a similar resultMfis a

set, letM ™ be the set obtained by adding an extra elemeM tBy the same arguments we
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obtain the following result: 1fV/ is a nonempty set, then the followiggsset has a simple
contraction:
x < M &yl £ Yy g e (5.5.3)

(2) Fix a topological spacg. Consider the transformatioxi — C X of (5.3)(2), and the
corresponding c&ssobject of endomorphisms @¢fTop). Composition with the (contravari-
ant) functor?” = Homrop( , ¥) gives ansssobject of contravariant functors froop) to
(Set9. Evaluation atX is the followingsssset:

Hom(X, Y) < Hom(CX, Y) £ Hom(C?X,Y) § cee (5.5.4)

The Hom-sets are the sets of continuous maps. In particuidr,X = ¢, we obtain the
topologicaln-simplexA” = C"@, and thesingularssssetof Y,

x < Hom(A%, v) &= Hom(Al, ¥) & Hom(AZ?, Y) % _— (5.5.5)

Assume that the topological spakeis contractible that is, the inclusio — CY has a
retractionr. As above, we obtain for any map — Y an extensioff X — Y, wich defines

a section of the map Ho@@'X, Y) — Hom(X, Y). Therefore, by the Standard Contraction
Lemma, ifY is contractible, then, for any topological spatgthesssset (5.5.4) has a simple
contraction; in particular, the singulassset ofY has a simple contraction.

(5.6) The standard complex. If, in the setup of (5.2), the categosyis additive then there
is a co-augmented cochain complex of functors associatérktcosssobject FL1:

Cstand’ 0—>1— FlOI 5 pll gl . (5.6.1)

It is called thestandard complexassociated to transformatién 1 — F. The differential
d": Flll — plr+1l s the alternating sum

n+1 .
d" = Zizo(—l)’(s?.

Forn = —1, the definition reduces to the given transformatiod — F. More generally, if
£is an arbitrary category arill: & — B is a functor into an additive catego®, then there
is a standard compleRCstangassociated to the cgssobject7 FL1.

(5.7) Proposition. Let?2 be an abelian category, IEt 21 — 2( be an additive endomorphism,
and lets: 1 — F be a transformation. Assume the following conditiof¥.F is exact(ii)
the transformatiod: 1 — F is monic, andiii) the transformatiod x 1: F — FF has a
retraction. Lefl : 2l — 9B be an additive functor into an abelian category such THatis
exact. Then the standard complex,

TCstang: 00— T — TFO » rpll 5 7pl@ .. (5.7.1)
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is a resolvent complex fdr. In particular, the standard complex is a resolution of teaitity
of A:
0—>1— FlO 5 pltl 5 pl2 (5.7.2)

Proof. SinceF andT F are exact, it follows that the functofaF["!, forn > 0, in (5.7.1) are
exact.

The condition (iii) implies, by (5.4) with§ := F, that the cosssobject FI! F has a
contraction. Therefore, the complex (5.7.2) is contraetithen evaluated on an object of the
form FX. Hence, soisthe complex (5.7.1). In particular, the com(@er.1) is acyclic when
evaluated on an object of the foran= F X. It follows from condition (ii), that every object
X has an embedding into an object of this form. Therefore 1%ig.a resolvent complex for
T. The assertion for the identity is the special cése 1. a

(5.8) The canonical complex. Assume tha®l is an abelian category, that: 24 — 20 is

an additive functor and that 1 — F is a transformation. In particular, then the standard
complexCstangassociated té is defined. A second complex associated is obtained as
follows: For any objectX of 2, letx(X): FX — NX be the cokernel of the morphism
X — FX. ThenN is an endomorphism &, «: F — N is a transformation, and we have a
right exact sequence of functors- F — N — 0. By composing with the powerg!, we
obtain right exact sequences,

1—- F— N-—DO0,
N—>FN—>N2—>O,
N2—>FN2—>N3—>O,

Hence, with the compositionBN” — N"*1 — FN"t1 as differentials, we obtain a co-
augmented cochain complex of functors,

Cean: 0>1—> F— FN —> FN?°—> FN? > ..., (5.8.1)

called thecanonical complexassociated to the transformatién Its degree: part is FN",
for n > 0. From the right exact sequences we obtain for the cohorngosgp forn = —1,

H"(Ccan) = Ker(N"t1 — FN"TLy.

In particular, the canonical compl&anis acyclic if and only if 1— F is monic .
It is easy to check that the transformations defined by threpstaluct,

sk FI'l = FF" — FN™,
define a morphism of complexes,
0 1 rl0l Fl1 gl

o

0o—1 ~F ~FN —~ FN?2 —~ ...
from the standard compl&Xstangto the canonical comple&can.
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ss 5.6 Simplicial cohomology

(5.9) Proposition. Assume in the setup ¢5.8) that the transformatiod« 1: F — F? has
a retraction. Then the complex,

E(:a.r'l}?,
i.e., the canonical complex composed with the funétois contractible.

Proof. Let us say for the moment that an endomorphisof 2( is specialif the transformation
8 %1:G — FG has aretraction. Clearly, @& is special andd is any endomorphism, then
G H is special. Note also thatdf is special and; — H is a transformation with a retraction
(or with a section), thei#/ is special. By hypothesig; is special.
Consider the right exact sequencesl F — N — 0, and compose it witli; to obtain
the right exact sequence,
G— FG— NG — 0.

Assume that is special. Then the sequence is split exact. Hence the gpimson FG —
NG has a section. MoreoveF,G is special because is special. Thereforey G is special.
Apply the argument repeatedly. It follows, fer= 0, 1, ..., thatN" F is special. There-
fore, the right exact sequences of (5.8) become split exaenveomposed witli’. Conse-
quently, the compleX canF, built out of these sequences, is contractible. a

(5.10) Corollary. In the setup o5.7), the same conclusion holds if the standard complex is
replaced by the canonical complex.

(5.11) Theorem. Assume in the setup ¢6.8) that, (i) the transformatiod x 1: F — FF
has a retraction, an(@) the sequence,

0> F1 ¥, prp % pN 0,

is split exact. Then the morphism of complex&sand— Ccan is @ homotopy equivalence.

Proof. Consider, fom > 0, the following diagram of functors:

| I

1.8, p_ o, .. 8, pyn_d pllyn _d'| plRiyn 4>
1 5 F d d FN" 0 FNIH—l do, F[l]N”+14>dl

The top sequence hasN4 in degreeg for 0 < ¢ < n, andFIPIN" in degreep + n. The
morphisms labelled are the differentials of the canonical compl€¥a., The morphisms
labelledd are induced from the differentials Gktand in fact, the top sequence from the index
n is the complexCsiangV" obtained from the nonaugmented compi&yangby composition
with N”. Since the last morphis#in the top row itthe compositioARN"~1 — N" — FN™",
the compositio?3 in the top row is equal to zero. Hence the top row is a complesndde

it C,. Then the bottom row is the compl€X,.1. The nontrivial vertical morphisms in the
diagram are the transformations, fer> 1,

1xk*1:FIPIN' = FPFN" — FPNN" = Flp—Hpyn+1, (5.11.1)
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It is easily seen that the diagram is commutative. Henceitdmgam defines a morphism of
complexes, . .
th:C, — Cn+l .

The complexCy is the standard compleéXcan. Moreover, the morphism: Ccan — Cstand
is the infinite composition,
t = ---121110,

which isfinite in every degree. Therefore it suffices to pritnaz,, is ahomotopy equivalence.
In degreey < n, the morphism is the identity. Considgrin degreez + p, for p > 1. Itis
the morphism (5.11.1). In particular, it is induced by therplosm F F — F N. Therefore,
by condition (ii), it is a split epimorphism, with kernel egjuo F” N". In fact, it is not hard
to see that the kernel af, as a complex, up to a shift in degree, is the complex,

CeanF N".

The condition (i) implies, by (5.4), that the compl€xanF is contractible. Hence so is the
complexCcanF N". Therefore each,, and hence alsqg is a homotopy equivalence. [

(5.12) A relativized version. The previous results are even more appealing(?) in thegetti
of relativized abelian categories. Consider for simpfitite adjoint functors case: There is
given a pair of adjoint functors of abelian categor'@sﬁ 0o, with p right adjoint tox,
and the transformatiofis the canonical transformatiof; 1 — pi, of endomorphisms of
2. (Similarly, there is a canonical transformationip — 1, of endomorphisms di.)

For an abelian catego®y, indicate with the notatiofispiit that2l is considered as arelative
abelian category: the relative monomorphisms are themgpiitomorphisms. Now is a left
adjoint, and hence right exact. Therefore, a second reatien of 2, indicated with the
notation; spiit, Is obtained via.: a morphisms in 2 spiit is a relative monomorphism if
A(s) is a split monomorphism. So, almost by definitiaris a relatively exact functor,

A2y split — (o) split- (5.12.1)

Any additive functorT : 20 — 9B of abelian categories is a relatively exact funcligpiic —
Bspiit- SO the functor” = pA is a relatively exact functor,

F 2y spiit = Aspiit; (5.12.2)

in particular, F is a relatively exact endomorphismf, spjit.

The category of functors intth (from any fixed source) is relativized similarly: A transfor
mationS — S’ is relatively monic if the transformationS — 1S’ is split monic. According
to this definition, the natural transformatiénl — pA, or

5:1— F, (5.12.3)

is a relative monomorphism of functors. Indeed & A — AF is retracted by * 1.

155



ss 5.8 Simplicial cohomology

(5.13) Proposition. In the setup o(5.12) the standard complex and the canonical complex,

Cstand: - —0—1— Flol _ pOI 5 pl2] 5 ...

Coan: -+—>0-51—F—FN— FN?>> ...,

b

define relatively exact resolvent complexes for the idgtit a functoRl; spiit — Aspiit- In
particular, any morphism between the two complexes whielgigl to the identity in degree
—1, is a homotopy equivalence.

Proof. Recall that ifT: 2l — B is an additive functor between relative abelian categpries
then a complex of functorgd — B,

C: - 50>T>C>ctsc0?> .,
is a relatively exact resolvent complex foy if the following two conditions hold:

(i) EachC™" is relatively exac®l — B.

(i) For every objectA of 2 there is a relative monomorphism into an objéctor which
the complexC (Q) is relatively exact irB.

Consider the standard complex. First, to verify (i), notatth: 2, spit — 2 spiit IS
relatively exact. Hencé™” : 2, spit — 2 spiit IS relatively exact for alk > 0. Therefore,
viewing F as the relatively exact functor (5.12.2), it follows thfeltd = FF" is relatively
exact2, spiit — Aspiit. T0 verify (i), note thatA — FA is arelative monic, and th@ltsiangF
is contractible by (5.4)(a); in fac standh is contractible sincé « 1: 1 — F is retracted by
lxe.

Consider the canonical complex, and the condition (i). Turecfor N is defined as the
cokernel of 1— F, that is, by the right exact sequence,

0O—-1—F—N-—DO. *)

Apply A. Since 1— F is relatively monic, the resulting sequenaé€*), is split exact. Plug
in (as columns) a relatively short exact sequenca;ipiit; the result is 3x 3 commutative
diagram in2(p with split exact rows. The first column is split exactda. ASAF = FA, it
follows that the second column is splitexact. Hence theltmtumn is split exact. Therefore,
the functorN is relatively exac®l; spit — 2. spit- By the argument used above f6y; it
follows thatF N* is relatively exacl; spit — Aspiit. Condition (i) follows from (5.9).

(5.14). As a consequence, any additive functarl — B, viewed as a functor of relative
abelian categorie; spiit — Bspiit, has relatively resolvent complexes, for instafi@@tand
andT Ccan

Corollary. Assume in the setup ¢5.12)thatF = pJ is exact and that: 1 — pA is monic.
If T:2A — B is any additive functor such thatF is exact, therl Csiang @and T Ccan are
resolvent complexes fdr.
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6. Cohomology of categories (Draft).

(6.1) Setup. Fix a small category and an abelian catego®y. Assume that products 2
indexed byl (that is, indexed by set& of cardinality at most equal to the cardinality of the
union of the Hom-sets df) exist. These products, as functors from the categoky-afdexed
families of objects ofl to the categor{, are left exact. Itis essentially Grothendieck’s axiom
AB4* that they are exact.

Consider the categof}’ of I-systemsn 2 (or 2A-valued coefficient systems b)) that is,
the category of functor§: I — . In this notation2!’! is the category of -familiesin £,
that is, the category of all-indexed families — &,; of objects of. Note that a sequence
of I-systems,

0-3F ->35—->3 —0, (6.1.1)

is exact in2(! if and only if the following sequences i, for all x € 1, are exact:
0—>3F — 3 —> 3. —0. (6.1.2)

In other words, ifd: A/ — Al is the obvious forgetful functor, then a sequencélinis
exact if and only if its image undéf is exact in2(!.

The sequence (6.1.1) is calleslatively short exactf all the sequences (6.1.2) are split
exact; a compleg§ of 7-systems is callecelatively exactf all the complexess, in 2 are
contractible. In the language of relative abelian categgothe categoi! is split relativized
via the functorJ.

By the Kan construction, the forgetful functiarhas a right adjoint functas,

O:al — ol prll —
It associates with an-family & = {&,} the I-systemo® defined by

(pB)y = l_[ & ;

X—>Z

for an arrowf: x — yin I, the morphismf: (p®), — (p®), is given by

pry—)z f = prx—)z ’

where the right side arrow — z is the composition of the left side arrow wigh Note that
the functorp: A/l — A7 is left exact; in the presence of AB4*, it is even exact.

An I-system of the formp & is calledcoinduced In the setup of relative abelian categories,
anl-systemis relatively injective if and only if it is a direatmimand of a coinduceldsystem.

Letr := pl] be the composition, antt 1 — 7 the adjunction morphism; in addition, let
k. — v be the cokernel of. For anl-systemg, the morphisnd: § — 7§ is determined
by the morphisms,

e

X—>y

157



Ss 6.2 Simplicial cohomology

whose projection, pr, , é,, on an arrowr—y is the morphisn§, — §, induced by the
I-system3. Note that the index set of the product contains the idermtitpw of x; the
corresponding projection &f; is the identity of§,. So the cokernelvy), may be identified
with the product,
/
o =[] 5.

xX—>y

where the product is over all arrows different from the idtgrif x. More precisely, ift'§,
is product on the right side, theng, = F, ® 7'S,. Accordingly,s, = (1, 8.)" with
a morphismé.: §, — 7'§y. So(vF), = 7'§, andx: 7F, — 7', is the morphism
(=5, 1).

The transformatiod: 1 — 7 induces the standard compl€ganawith C2 4= 7" and
the canonical comple&canwith CZ,,,= mv". The functorst!”l andszv" are determined as
follows: )

(ﬂ[n]g)x = l_[ Sx,,, (T[Vng)x = l_[ Sx,,;

X—>Xp—> - —>Xp X—>X0—>—>Xp

the first product is over allz + 1)-strings of the category, the second is over those + 1)-
strings where none of the lastarrows are identities. The two complexes define relatively
exact resolutions of the identity @. In particular, since a relative monomorphism is a
monomorphism, they are also exact resolutions.

LetB be an abelian category affid 2/ — 9B an additive functor. Thenmlatively exact
resolvent complefor T is T-augmented complex of functo?§ — B,

C: -+ .50->T—>C">clsc?— .. (6.1.3)

such that,

(i) if Qisaninduced-system, therC (Q) is a contractible complex @B.
(ii) each functoIC! takes relatively short exact sequence® bfnto split exact sequences
of B; and,

Relatively exact resolvent complexes are unique, up to opyo And they exist:T Cstang
and T Ccan are examples. Sinc€siangis an exact resolution of the identity, it follows in
particular that its first part, 6> 1 — CQ_ .4 — ClL,.4 is exact. Therefore, i is left
exact, then the sequence-® T — TC3_ . — TCL_ . 4is exact; hence so is the sequence
0— T — C°% — (1, for any relatively exact resolvent complex (6.1.3). Inesttvords,T
is the kernel ofc® — C1,

Note that if, in a relatively resolvent complex (6.1.3), ledienctorC” is exact, then the

complex is an exact resolvent complex forin particular, thert" is derivable.

(6.2) The inverse limit. The inverse limit is a functor_lin AT — A. A relatively exact
resolvent complex for this functor,

C: > 0-lm—>C®>ct—>c?— ..., (6.2.1)
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will simply be called aesolvent complex for the categaky The p’th cohomology of with
coefficientsn § is, by definition, thep’th cohomology of the nonaugmented comp&&s);
it is independent of the choice of complex, and it is denoted

H(1,%) o mP & or m?) 5.

Since the inverse limitis a left exact functor, it is necebgaqual to the kernel of © — 1,
that is,
lim, § = H°(, ).

In the presence of AB4*, the functc()r_lﬁ’ﬁ is the p’th derived functor of lim; in general, it
is the relatively derived functor.
Clearly, for an induced systep® we obtain for the inverse limit,

im(p®), =lim [ &, =[] &,- (6.2.2)

xel xel xy yel

Hence, from the standard complex associated with the wemstion 1— =z, we obtain a
resolvent complex with

C'F=lm,x"5="[] - (6.2.3)

XQ—> - —>Xp
It will be denotedC(/, §). Similarly, from the canonical complex we obtain a resotven
complex with
/
C'F=lm,m"F= ] 3. (6.2.4)

XQ—>—>Xp
where the product is overstrings of/ with no identities.

(6.3) Observation. Consider for an index of 7 and an object of 2 the 7-family & with
&, =0fory # zand®, = A. The corresponding coinducdesystemp®, denotedo; A,
is determined by

(pzA)x = l_[ A= AHom(x,z), and li_ml pzA = A;

X—>Z

the last equation follows from (6.2.2), or directly. Clgaainy coinduced -systemo® is a
product of/-systems of this special form; in fagi® = []. o, .. Hence, if the functore™

in a complex (6.2.1) are relatively exact and commute withdpcts indexed by, then the
complex is resolvent fof if and only if all the complexe€ (p, A) are contractible.

(6.4) Example. Consider the “one-point-category” (or better “one-arrcategory”) 1. It has
one object, denoted 1, one arrow, denoted 1, and hence onenerghism, denoted 1, one
transformation, denoted 1,. . Clearly,2! = 2 and the inverse limit is the identity. The
standard and canonical resolvent complex for the categarg the following:

50> A=—A % A—4 % ..and--->0>A=—A—>0— .-
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Consider similarly the categoily= (¢' — e < o”), with three objects and two nontrivial

arrows. An/-systent is a diagrand’ S A< Avinal itis easy to see that a resolvent

complex of functors for this category is determined by tHefing complex:

c@: ---—0— A’xAA”aA’@A”ﬂ»A%o_)..._

(6.5) Example. Take as category the category0=1). Here anl-systemg is a pair of
morphismsf, g: §o — $1. The following complex is resolvent far.

C: 5 0-1lm > 50505 -, withCig=3;.

Indeed, each functar” is relatively exact. The two complex€gp, A) withz = 0andz = 1

are:

(l’l)tl' (15_1)

04554 9%0-50 054 ~ A2 -~ A— O

clearly, both complexes are contractible.
As a consequence,

H°Go=331) = Ker(f —g), and HY(§o=231) = Cok(f — g),

and cohomology in degree higher than 1 vanish.

(6.6) Note. An I-systemg: I — 20 may alternatively be viewed as a (covariant) functor
§: I°P — 2P that s, as ad°P-system irR(°P. As such, itsp’th cohomology is an object in
2A°P. As an object irRl, it is called thep'th homologyof I with coefficients in§, and denoted

Hy(1,3 or I g or lim?, 3,
A contravariant functos: I — 20 may be viewed as an°P-system in2l. As such, the
homology and cohomology are objectsf

H,(I°, &) and H?(IP, &). (6.6.1)

The indicationin (6.6.1) that the opposite category sfconsidered is hardly necessary since
it is only in the case of a constant functor that its variarscedt obvious. And even in the
case of a constant functor, the indication is not necessadged, consider more generally
a local systenfy on I, that is, a functog: I — 2 transforming any arrow of into an
isomorphism ofl. Then there is an associated contravariant furgtdr. 7 — 2. Itis given

by 331 = §.: if f1x — yisanarrow off, thenF~1(f): §, — . is the inverse of the
isomorphisn§(f): §x — §y. Consider the standard complexes (6.2.3F@ndF 1:

.= [] 8u and C*ud®FhH= J] Bu.

XQ—>—>Xp XQ<—<Xp
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Sinceg is local system, there is an obvious isomorphsmC” (§) — C” (S_l),_and it is
easy to see that the morphisiasl)”"+9/2;" form an isomorphism of complex€xF) —
C(&‘l). In particular, there is an identification,

HP(I,%) = HP (I°°, 71). (6.6.2)

(6.7) Example. Let s be one of the simplicial categoriés, (s9, or (ss3. An s-systemg in
20 is a cos-object of2(; it may be visualized as a diagram,

§: 3353583

where only the face morphism$ have been indicated. LEX(S) be the associated complex,
that is, C"(§) = §" with the differentiald” = Z(—l)"cS?. The following complex is
resolvent for the categomy

C: ---—>O—>|jm5—>Co—>Cl—>C2—>---;

in particular, the inverse limit limg is equal to the kernel af® = 89 — 9: 3° — ..

Indeed, eaclt’” is exact and relatively exact, and commutes with produtt®nhains to
consider the comple&(p, A) of a coinduced system of the form A. The complex will be
denoted” (p, A). Clearly,C~*(p, A) = lim_ p,A = A and, forn > 0,

C'(p, A) =[] A= afomnp),

n—p

In fact, the complexC (p, A) is the associated complex of the &mbject obtained as the
composition ofl': n — Hom; (n, p) andS — AS,

C(p,A): - —> 0> A— AHMOp)_, pHoMLp)_, gHom:@p)_, .. (6.7.1)

It remains to prove the following:
Lemma. The complex6.7.1) for a fixed objectA of 2 and a fixedp > 0, is contractible.

Proof. Note that Hom(n, p) is a singleton when = —1. So thex’term in the complex is
equal toAHom: (.7) glso whem = —1.

Below, we define, especially far= (ss9, a contraction for the complex. Later we will
give a different proof. Let us, just for fun, note that theeatien for the two case&s9
and(s) follows from the Standard Contraction Lemma of Section 5 & (s9 note that
the set p] is a partially ordered set. Hence][may be viewed as a category, and clearly
Homecat([2], [p]) = Homeg(n, p). Therefore, th&ssset of (5.5.2), with/ = [p], is the
following:

% <— Homss(o, P) t Homss(l, p) g H0m55(2, p) g R (672)
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Since [p] (as a category) has a final object, it follows from Sectio®)Bhat thesssset has
a simple contraction. Therefore, the complex (6.7.1), iokbthfrom (6.7.2) via the functor
S — AS, is contractible. The argument fer= (s) is similar, using (5.5.3) with/ := [p].

Of course, the contraction ﬁ(p, A) given by the considerations in (5.5) may be deter-
mined explicitly. Seff}, := Hom, (n, p). For any mapf: [n] — [p], let f: [n + 1] — [p]
be the map withf (i) = f(i) fori < nandf(n + 1) = p. Note fors = (s) ands = (s9,
thatif f € T,, thenf € T,,1. Consider the morphisms

s"TL AT 5 AT given by pIf)s" Tt = pr(f),

where px f) is the projectiorA’» — A corresponding to the indek € 7,,. The morphisms
define the contraction of (6.7.1) since the following equais easily verified:

s — gLt =~ (6.7.3)
In the case = (ss9, the definition of the morphismshave to bg modified. In this case, the
elements of/}, are the strictly increasing mags [n] — [p], andf is only strictly increasing

if fisfrontal, thatis, if f(n) < p. Defines: AT»+1 — AT» by

pr(f) if fisfrontal
0 otherwise

pr(f)s = {

Let f:n — p be a morphism irSss. Clearly,

- if i = 1;
f‘S?:{f —1\~ Il "
(f8;7 )" ifi <n.

Consequently, iff is frontal, then p€f)ss;,  ; = pr(f) and ifi < n then
pr(f)ss! = pr(Hs} = pr(fs) = pr((f8; =) = pr(f)s; *s;

Hence,
pr(f)sd — pr(f)ds = (=1 L pr(f).

On the other side, if is not frontal, then prf)sd = O; moreover, i < n thenf(S?_1 is not
frontal, and then pif)s! s = pr(f8"~1)s = 0. Hence,

pr(f)sd — pr(f)ds = —(=1)" pr(f)8" s = (=1)" M pr((f87 1) = (=" pr(),

where the last equation holds becayige) = p. Therefore, with this definition of, equation
(6.7.3) holds also when = (ss3. HenceC(p, A) is contractible in all three cases. a
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(6.8) Example. Let S be a simplicial set, that is, arobject in the category of sets, visualized

by a diagram,
SotS]_gSz%

Then there is category associatedStoThe objects of the category are thienplicesof S
(the elements in the disjoint union of the s&t3, the morphisms from a simplexe S, to a
simplexx € S,, are the morphismg: p — nin s for which f*x = y. With this structure on
S as a category, afi-systemg associates with each simplexe S, an objectg, of 2, and
with each morphisny': p — n in s a morphisn§ s, — §, (with obvious compatibilities).
The following complex of functors is resolvent for the caiggs:

cC: --->0—> limg — > clt—>c?— ..., withC"g = l—[ .
xesS,
itis easily seen that th€"§, in a natural way, form a ce-object of2l and the complex (g)
is the associated complex.
Indeed, each functo€”: 2A5 — 2 is obviously relatively exact, and commutes with
products. It remains to prove, for a fixed simplexs S, and an objecA of 2, that the
complexC(p,A) is contractible. Clearly, for a simplexin S, sayx € S,,

(A= []a=[] 4

X—>Z f*z=x

where the product is over all morphisnisn — p in s for which f*z = x. By taking the
product over € S, it follows that

C(p:A) = ATomenp),

Hence, by the lemma in (6.7), the compl€xp, A) is contractible. As a consequence, the
inverse limit Jim, § is equal to the kernel of the morphism,

d°=50—-8%: T[] 8~ []3x-

xeSo xes1

(6.9) Example. Let G be a group, considered as category of one object and the mieme
of G as morphisms. Then@-system in2l is an objectA of 2 with a given representation
G — Aut(A); it is also called a (co€y-object of. Its inverse limit is often denoted®
(which should not be confused with a coinducedystem, of the fornj [, ; A for an object
A of ).

The standard complex (6.2.3) or the canonical complex4pdefine the cohomology of a
G-object. For special groups, special resolvent compleseegigen in the examples section.
Let us just note here, for the cyclic groap= Z/2 of order 2 and a constafil/2-objectA,

that the canonical complex is the following:
0> A5 A4-9 42, 4.9 42, A ...

’

in particular, H%(Z/2, A) = A, H"(Z/2, A) = »A (the kernel of 2) whenn > 0 is odd,
andH"(7Z/2, A) = A/2 (the cokernel of ) whenn > 0 is even.
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(6.10) Example. Let I be aunique factorization categoryhat is, there is a subsét of
arrows of/ such that any morphisryi of I factors uniquely as a compositigh= p1 - - - px
with arrowsp, in P. Then there is a resolvent complex fior

C: 5 05lm—>c® 5050, (6.10.1)
1

with )
% =[]8: cF=]] 3

u—Xx

where the second product is over the arrow®inThe C° above is thaC? of the standard
resolvent complex (6.2.3) and tidg above is a quotient of the standard; accordingly, the
differentiald® in (6.10.1) is the differenca® = 8, — 87 where py,_, . 8, = pr, and pr,_, , 8}
is the projection py on g, followed by the morphisn§, — 3.

To prove the assertion, consider the evaluatio@ oh a coinduced system A. It yields
the complex,

0— A— l_[A—> H, A — 0, (6.10.2)

X—>Z U—>x—>z2

where the second product is over strimgs x— z with u—x in P. Consider the morphisms,

s HA—>A, and ¢: 1_[/ A — HA,

X—Z U—>x—>z2 X—Z

wheres is the projection py on the identity oz and

pPry_ .t = Z pru—>y—>z ’

X—>U—>y—z

where the sum, for a given arrof. x — z is over all factorizationy = (x - u — y — z)
with an arrowu — y in P. Of course the sum if finite: iff = p1... px is the “prime”
factorization of f, then the possible — y in the sum are the,. It is easy to see that the
pair (s, t) defines a splitting of the complex (6.10.1).

Note that unique factorization holds for partially ordessds with the property that each
interval [x, y] is a finite totally ordered set; in particular, it holds ftvetordered set&Z, <)
and (N, >). It also holds for a free monoid (generated by an alph&@jetonsidered as a
category with one object. And it holds for the categorieib).

(6.11) Definition. Consider, for an object of 2l the constant functos: 7 — 2. Clearly,
there is a canonical morphisi — Iim; A, and hence for every resolvent comptéxor /
areduced complex

C(A): > 0= A— C%A) > clA) - ...,
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obtained by a change in the coaugmentation. For inst@nc®y be taken as the standard
resolvent complex (I, ). Note that the two complexeS(A) andf(A) differ only in their
term of degree-1. The cohomology of the comple&(A) is thereduced cohomologyf /
with constant coefficientd, denotedH ? (1, A). It differs from the cohomology?? (1, A)
only in degree-1 and 0. Moreoverd ~(1, A) = H°(I, A) = O if and only if im, A = A.
Thereduced homologﬁp(l, A) is defined similarly.

The category is calledacyclicif one of the following equivalent conditions hold:

(1) H,(1,7) = 0 for all . Equivalently,H, (I, Z) = 0 forn > 0 andHo(I, Z) = Z.

(i) H"(I, A) = 0 for all n and all abelian groupas.

(i) C(1, A) is contractible for any in any abelian category.

To see that the conditions are equivalent,det:= C.(1, Z) be the reduced homology
complex corresponding to the constant sys&nThen (i) holds if and only i, is acyclic.
Now C, is a left complex of fre&-modules; hence it is acyclic if and only if it is contracgbl
Therefore (i) holds if and only i€, is contractible.

On the other hand, for any abelian groapwe have that

C(I, A) = Hom(C., A).

HenceC (I, A) is acyclic for all abelian groupa if and only if C, is contractible. Thus (i)
and (ii) are equivalent.
If C. is contractible, then a homotopy C, — C.(—1) from the identity 1 to 0, yields by
transposing, a homotopy
sT:C, A1) — C, A),

from 1 to O, for any object in any abelian categof. Therefore (iii) is a consequence of
(). Conversely, it is obvious that (i) and (ii) follow froniij.

(6.12) Lemma. (0) An acyclic category is nonempty and connected.
(1) If I is acyclic, then so i$°P.
(2) A nonempty filtering (to the left or to the right) category tyalic.
(3) A nonempty directed union of acyclic categories is acyclic.

Proof. (0) Assume that is acyclic. Then, in particular, the first part of the redubedhology
complex is exact:

Ci1(I,Z) — Co(I,72) — 7Z — Q.

COZ@Z, C1= @ Z.

xel X1—>X0

Here

SinceCo — Z is surjective, it follows thaf is nonempty. For any pair of indicesg, x1 in 1,
the elemenkg — x1 in Cg is a cycle, and hence the boundary of an elemeayinFrom that
element inC1 it is easy to connecty andx; with arrows.

(1) The assertion follows from the considerations in (6.6).
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(2) Assume that is filtering to the right. Then, as is easily seen, the dirgcit)
lim, : (Ab)' — (Ab),

is an exact functor, and the direct limit of the constanteysf is equal toZ. Therefore,
since the standard complex is an exact left resolution oidietity of (Ab)’, it follows that
left complexC. (I, Z) is exact.

(3) Again, the assertion holds, because the direct limitr @vdirected set is an exact
functor. a

(6.13) The restriction. Let ¢: J — [ be a functor of small categories. Arnysystem
&: 1 — 2 restricts to aJ-systemFy: J — 2 and restriction is a functor ReSt! — 2/,
often denote@™ or Dg; it is obviously exact and relatively exact. Clearly, foetstandard
resolvent complexes there is an obvioestriction morphism

C(I,3) — C(J, Res3). (6.13.1)

(6.14) Proposition. In the setup 0(6.13) the following conditions are equivalent:

(i) The restriction morphisrt6.13.1)is a homotopy equivalence.
(ii)y All left fibers J/x, for x € I, of the functorp: J — I are acyclic.

Proof. Recall that the left fibey /x, over an objeck of 7, is the category whose objects are
pairs (v, f), with v is an index inJ and f is a morphismf: ¢v — x; a morphism from
(v, f) to (u, g) is a morphisnk: u — v in J such thatfo(h) = g.

Clearly, there is a canonical (functorial) morphigm Jifn— ljm ; Resg. The targetis the
kernel of CO(J, Resg) — C1(J, Resg¥). So the right side complex in (6.13.1) may be co-
augmentated with the object lin§ in degree-1. LetC (J, §) be the co-augmented complex.
In degree—1 it has the same term as the co-augmented conP{éxF) corresponding to
the left side of (6.13.1). So we obtain an extension of (&.)13.

C, ¥ — CU, D), (6.14.1)

and (6.13.1) is a homotopy equivalence if and only if (6.14&1
Let us evaluated the right side of (6.14.1) at a coinduceidsysf the formp, A. In degree
—1 we obtainlim p;A = A. Clearly, for the restriction, we have

(Resp;A)y = (:A)pw = ] 4

QU7

the product on the right side is exactly over all objects imfiberJ/z. More generally, it
follows easily thatC” (J, Resp,A) = C"(J/z, A). Infact, itis easy to obtain the equality of
complexes,

C(J, p,A) = C(J/z, A), (6.14.2)
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where the right side is the reduced complex of the constatésyA on the fiber//z as in
(6.11).

Now, for the equivalence of the two conditions, assume {ip).prove that (6.14.1) is a
homotopy equivalence, if suffices to prove that the righe ssdresolvent for. Clearly, each
functorC* (J, Rey)) is relative exact and commutes with products. So it remaingtify
that each complex' (J, p,A) is contractible. The verification is immediate, given (62)4
and (ii).

Conversely, assume that (6.14.1) is a homotopy equivalefwen, in particular, the left
side of (6.14.2) is homotopy equivalent@dl, p, A). The latter is contractible, singg A is
a coinduced -system. So the right side of (6.14.2) is contractible, ikafii) holds. a

(6.15) Example. A categoryl with an initial object is acyclic. This is contained in Lemma
(6.12)(2). It may also be obtained from (6.14). Indeed, dfifibers of the inclusiofp} — 1
are one-point categories, and hence trivially acyclic.H&aéstriction morphism (6.14.1), for
a constanf-systemA, is a homotopy equivalence fro@x1, A) to the contractible complex
C({b} A). It follows easily thaiC (I, A) is contractible and equal 0(1, A).

As a second application, consider the complex in (6.7.1)suf®e first that = (s9.
Consider each finite sep[ as a partially ordered set, and hence as a category, dendted
A morphismf:n — pin (s9 may be identified with a weakly increasing sequence,

foS fis< < fa,

of elements of p], and hence as am-string in the category]ss. It follows easily that the
complexC(p, A) of (6.7.1), fors = (s9, is equal to the comple& ([ p]ss, A), Obtained by
reaugmentating the standard complex. Hence it is conttactbecause the categony]fs
has an initial object.

For the simplicial categorys), view the set p] is a groupoid, denotedp]s, with one
arrowi — j for any pair of elements j in [p]. Again, the complexC(p, A) of (6.7.1),
for s = (9), is equal to the comple& ([ p]s, A), and hence contractible, becaugé;[has an
initial object.

Finally, assume that = (ss3. Up to homotopy equivalence, the compléxZ, A) may
be obtained by reaugmentating the canonical complex idst€bkearly, with this definition,
for I = [plss the complexC ([p]ss, A) is equal to the compleg (p, A) for s = (ss3. So
C(p, A) is contractible, because the categagrysk is acyclic.

(6.16) Definition. Obviously, if the categorgl! has finite relative conomological dimension
d, that is, if any/-systemg has a relatively exact relatively injective resolution efgthd,
then the cohomolog¥? (1, §) vanishes fop > d. This is in particular the case whérhas
finite Krull dimensiond, that is, wheni is the longest length of string of nontrivial arrows of
1. Indeed, in this case, we ha@a, = 0 for p > 4.
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Cohomology of combinatorial spaces

7. Cohomology of simplicial objects.

8. Cohomology of simplicial sets.

9. Cohomology of pos’s.

10. Cohomology of combinatorial spaces.
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The Koszul komplex Expl 1.1

Examples; illustrations

1. The Koszul komplex.

(1.1) Setup. Fix a commutative ringd and anr-tuplef = (f1, ..., f,) of elements ofA.
Let 7, be the set of all subsets of cardinaljyof the the sef 1, ..., r }. For everyA-module
M, consider the product,

KI (M) := M', theA-module of all maps: I, — M.

Identify the elements of, with p-tuples(iy, ..., i,) of integers < - -- < i, inthe interval
[1, r], and hence the elements &f’» with functionsx (i1, ...,i,). In this notation define
3: KP — KPtlpy

9x(io, ..., 1p) = Xp:(—l)”fivx(io, e dy e ip), (1.1.1)
v=0
where the “hat” indicates an omitted index. Then,
KiiM): 0— Kfo—> Kfl—> - —> Kf =0,
is a positive complex, thioszul(cochainfomplexof M. with Koszul cohomology groups
H (M) = HP (Kt (M)).

Note thatlp and, are one-point-sets consisting, respectively, of the ersptyuenc® and
the full sequence.2, ...,r. Hence we may identiik® = M andK” = M. Clearly,
H® C M is the submodule consisting of elements M with f,x = 0 for all ,, andH" is
the quotientH” = M /f M.

The dual construction leads to tKeszul chain complexConsider the direct sui®»

Kly: 0> Kl - > K] > Ky >0, K =M.

with differentiald: K,.1 — K, given by the formula,

9 tig,....ip = Z(_l)vfiv igsor ooy (1.1.2)
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Let us make it a little more concrete: The modilg,; = MO+t s the direct sum of
identical copies oM, sayM;,. ... i, =M, indexed by sequenceé®, ..., i,) € I,4+1. So for
anyx € M thereisanelement, ;, i, € M, andthe elements ik, 1 are sums of
elements of this form, for varying andio, ..., i,. To define the differentidd K, 1 — K,
it suffices to define it on an element of the fowy, . ; , forx € M. The formula (1.1.2)
yields this:

.....

)4
0 Xig,..., i, = Z(_l)vfiv Xigy oy (1.1.3)
v=0

It should be emphasized that in spite of the striking sintjarsetween (1.1.1) and (1.1.3),
the objects that appear in the formulas are of a very diftarature: In the first formulay is
a function/, — M, in the secondy is an element oM.

The caseV := A leads to the chain complek! (A) and the augmented chain complex,

0— K, (A) - ---— K1(A) - Ko(A) > A/(f) — 0. (1.1.4)
It is easy to obtain isomorphisms,
ki) =kl @M, Ki(M) = Homy (K (4)), M).

The module,(A) = A®’» er freeA-modules of rankl, | = (;) and so the differentials
are described by matrices of various sizes. For instaneesi#l, the Koszul chain complex
has the form

s 0> A q4 B 46 R 4d N4 g

4 . . . .
The modulek,; = A® has basig;, i, (= 1,.i, in the notation of (1.1.3)), say in the order
e12, €13, €14, €23, €24, €34, aNd K1 has basig1, e, e3. S00e12 = fiex — foeq, €tc. Soit it
immediate to write up the matrix fax:

—f2 —fz3 —fa O 0 0
3, — | M1 0 0 —fs —fa O
O A 0 f2 0 —fa
0O 0 A 0 fo f3

As we will see, the sequence (1.1.4) is exact, whas a regular sequence ia. If
(1.1.4) is exact, then the Koszul chain compk(A) is a resolution ofd /(f), and we obtain
isomorphims,

Hi (M) = Ext,(A/f, M), HI(M) =Tor(A/f, M).

(1.2) The Koszul complex of a complex.lt is a terrific excercise to prove the following:
For any sequencs, f1, ..., fr ofr + 1 elements oA there is a canonical isomorphism of
chain complexes,

K01 Ir (M) = Con( fo, K/tI7 (M), (1.2.1)
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whereCon( f, X), for a complexX andf € A, denotes the mapping cone of multiplication
by f onX.

Hint. Letf be the sequencgfs, ..., f-) and indicate with a prime objects associated to the
extended sequendé = (fp, f), with indices Q...,r. HenceI[’, consist of alle sequences
i1,...,ip With 0 < ia,... < ip < r, etc. In particular, thd,, is the disjoint union of
two subsetd, and/, 1 consisting, respectively, of sequence0. . ., i, and of sequences
io, i1, . .., iy With ig > 0. Accordingly, we may splitK]’JJrl = K, ® K,+1. Now check that
the differentialag, under the splitting corresponds to the differential of thegoping cone of
fo: K — K. O

It is natural to take (1.2.1) as the definition of the Koszuinpbex of a complexX of
A-modules. So we define:

K/ (X):=Con(f,X), KMJr(X):= KN(K2T(X));
for the Koszul co-chain complex we use the cocone:

Kr(X):=Con(f. X), Ky 1(X):=Kp(Kp,.. 1 (X))

(1.3) Observations.(1) The formation of the Koszul complekf(X) = K/t fr(X) is
functorial with respect t&, and defines an additive funct&r : 9tod & — Moo ;.

(2) The functork " is exact.

(3) The functork® commutes with formation of mapping cones.

(4) The functork' respects homotopy.

(5) The functork ' respects quasi-isomorphisms. In particulaX, i acyclic, therk f (X)
is acyclic.

Hints. For all five observations it suffices to treat the case 1, f1 = f. (1) and (2) are
obvious: A morphismp: X — Y commutes with multiplication by, because it is linear.
Hence it induces the diagonale morphism on the cokesip): K/ (X) — K/ (Y).

Consider (3). LetZ be the mapping cone @f. Then there is natural isomorphism of
complexes from the mapping conekf (¢) to the Koszul compleX / (Z). Indeed, the two
complexes, and their differentials, are the following:

X(2) 5 0 0 0 X(2) 5 0 0 0
x1) [-f -5 0 o Y() [-¢ =3 0 0
vy | o 0o —s 0] ®xa | f o -5 0]
Y 0O ¢ f 0 Y O f ¢ 0

and an isomorphism from the first to the second is given by thiix)

-1 000

o OO

010
100
001
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Consider (4). Assume that = ds + sd, with a homotopy: X — Y(1). Use thats is
A-linear to prove that

f. . (¢ OV (-5 O -0y O —dy O —s 0
o= ¢)= (o D7 )7 a) (5 2)
Finally, consider (5). A quasi-isomorphism X — Y is characterized by the condition
that the mapping cong = Cong is acyclic. Therefore, by (3), it suffices to prove the specia
case. Again, we may assume that 1. Then, sinced"X = 0, it follows from the long

exact cohomology sequence associated to the corfe &af — X that H"(K/ (X)) = 0.
Hencek / (X) is acyclic. 0

Corollary 1. The Koszul complex i/ (X) is, up to canonical isomorphism, invariant
under permutation of thé .

Hint. We may assume that= 2, and then the isomorphisk/ (K$(X)) = K&(K/ (X)) is
a special case of (3). a

Corollary 2. Multiplication by f; in K* (X) is homotopic to zero. In particular, the homology
modulesHI‘; (X) are annihilated by thé and hence by all elementsintheidegl, ..., f,)A.

Hint. By (4), we may assume that= 1. Now check the equation,
f 0y (01 —80+—8O 01
o f) \0oO f o f o 0 0)°
i

(1.4) Definition. The cokernel of multiplication by on X is denotedX/f. Component
for component it is the quotier®” /f := X" /f X". The complexX/f)/g is, component
for component, equal t&"/(f, g)X"; we denote itX/(f, g), and defineX/(f1, ..., fr)
inductively. There is a natural morphism,

Kfl ..... fr(X)_>X/(f1,»fr)

defined inductively:K / (X) is the cone off: X — X, so there is an induced morphism
K/ (X) - X/f. If the morphism (1.4.1) is defined ferelements we define it for + 1
elements as a composition:

Kfo S (X) = KK Ir (X)) — KX/ (fr, s 1)) = X/ (fos f1s - s i)

An elementf € A is said to baegular on X, if multiplication by f on X is injective. The
sequencéfi, ..., f;) is said to be arK-regular sequenceaf f; is regular onX, and f> is
regular onX/f1, etc, thatis,f; 11 is regular onX/(f1, ..., fi) forO<i < r.

Proposition. If (f1,..., fr) Is an X-regular sequence, then the canonical morphism is a
quasi-isomorphisnk /v (X) — X/(f1. ..., f»). If (f1,..., f.) is anM-regular se-
guence, then the Koszul complex is a left resolutioMgf f1, . .., f),

0— K,(M) > ---K1(M) - Ko(M) > M/(f1,..., fr) = 0.

(1.5) Excercises.
1. Describe the matrigs in the Kozsul complex /1-/2:3.fa(A), cf. (1.1)
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2. The de Rham complex.

(2.1) Setup. Let M be a smooth-manifold C..-manifold or, simply, an open subskét C
R"). Denote byC? (M) the vector space gh-forms onM. So ap-form w has, locally, in
local coordinatesy, ..., x,, @ unique expansion as a sum,

w = Z f,‘l ,,,,, ,'pdxil/\---/\dx,'p,

1<ipg<<ip<r

.....

is a linear map, defined by additivity from the expansion #is\is:
d(fdxil AR /\dx,-p> = df /\dx,'1 VANEI /\dx,-p,

wheredf = 37_y 5L dx;.

Thede Rham compleaf M is the complex,
CRM): -+ > 0->C0WM) >C'M)—> - > C (M) —>0— - .

Acyclicity of the complex is essentially commutatioﬁ?—f/dx,-dxj = azf/dxjdx,-. The
cohomology is thele Rham cohomologlyé)R(M).

The degree-0 part, := C°(M), is the algebra of smooth functions #hand eaclt” (M)
is aC-module. Note that, locally, the top pdtt(M) is free of rank 1 as &-module.

The differential of a function is zero, if and only if the furan is locally constant. So, the
zeroth cohomology{é’R(M ) isthe vector space of locally the constant functions, ofetision
equal to the number of connected components. In partidhlarie Rham complex may be
co-augmented with the vector space of constant functiansKsf we consider real valued
functions onM). In other words there is a morphism of comple®&g8) — Cyr; its mapping
cone is theeduced de Rham complex

CorM): -5 0->R—COM)—CM)—> - >C" (M) >0 ---,

with C~1(M) = R. The reduced complex is exact if and only if the deRham corjg is
a resolution ofR. According to the Poincaré Lemma, this is case whkeis an open interval
inR” (r > 0); indeed, as is easily seen, then the reduced condgigid/) is contractible.

(2.2) Note. With some knowledge of sheaf theory you will realize thatdedRham complex
is really a complex of sheaves on the manifold,
Car 5 0ROl S50

b

whereR” is the sheaf of locally constant functions. The reduced derip an exact complex
of sheaves oM.
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3. The Euler characteristic.

(3.1) Setup. For simplicity, work with real vector spaces. A complgxs said to beperfect
or to have an indexf its cohomology is finite, that ist/? (X) is finite dimensional for alp
and non-zero only for finitely many. Theindexof a perfect compleX is the integer given
as the alternating sum,

X(X) =Y (=1 dim H'(X).

(3.2) The additivity properties of the index.
(1) If X is perfect, then so are its shifkqn), and

x(X(m) = (=" x(X).

(2) Consider an exact triangle,

If two of its vertices, X, X', andX”, are perfect, then so is the third, and

x(X) = x(X") + x(X").

(3) If X is a finite comples, that is, eadt? is finite dimensional and only finitely many
XP are nonzero, theK is perfect, and

X(X) =) (-1 dimx’.

(3.3) The Euler characteristic. If M is a compact manifold, then the de Rham complex
Cydr(M) is perfect, and
x (Car(M)) = xe(M),

wherexe(M) is the Euler—Poincaré index, defined from a triangulatiavl @s the alternating
sum,

xe(M) = #(0-simplices — #(1-simplice$ + #(2-simplice$ — #(3-simplice$ & - - - .

(3.4) Example. The circleS! is triangulated as the boundary of the triangle: 3 verticebs a
3edgesye(s1)=3-3=0.

The spheres? is triangulated as the boundary of a tetrahedron: 4 vertiesges, and 4
faces: xg(S%) =4— 6+ 4= 2.
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4. Oriented chains on a triangulated space.

(4.1) The affine simplices.Forp =0, 1, 2, ... consider thaffine p-simplexA? defined as
a subset oR?*1:

An:{(l‘o,...,fp)|l‘l‘ > 0, Zti:l}'

In particular,A? is a compact topological space (a metric space) with thetstrelinduced
from R+,
The vertices ofA? are thep + 1 points denoted simply as follows:

0=¢0,...,0,1=(,1,...,0), ..., p=(0,0,...,1).

As the notation indicates, the vertices®f will often be identified with the finite set gf + 1
integers p] :={0, 1, ..., p}.

Every map of setg: [p] — [¢] induces an affine map, or simplygp: A? — AY; the
image of a point € A” isthe points = ¢(t) € A? with j’th coordinates; defined as a sum,

s=e)., 5=t

i—>J

where the sum, as indicated, is overia# O, ..., p such thaip(i) = ;.

In particular, forp > 1, leto; = a,f_l: [p — 1] — [p] be the strictly increasing injection
avoidingk for k = 0,..., p. Thesep + 1 injections inducep + 1 affine embeddings
o AP~1 — AP of AP~1 as afaceof AP.

(4.2) Regular simplices of a topological spacel.et X be a topological space. Aggular)
p-simplexs in X is an equivalence class of embeddirgsA? — X; two embeddings
0,0’ AP — X are equivalent, it’ = o« with a permutatior of [ p]. Sos is represented
by (p + 1)! embeddings : A? — X; they have the same image ¥ denoted, and they
all map the set of vertices af? to the same set gb + 1 different points ofX, called the
set ofverticesof s; the set of vertices of will be denoted{s}. Each vertexx € {s} has an
opposite facedenoteds,: if s is represented by : A? — X andx = o (k), thens, is the
(p — D-simplex represented hyo,. The union of the faces, is theboundary ofs, denote
§, and its complement ifiis theinterior of s, denoted ,

. o - .
s:=U Sy, s =5 —3s.
X

A O-simplex inX is just a pointx of X; it has one vertex, it has one (empty) face and hence
empty boundary, and it is equal to its interior.

Note that the vertices of a-simplexs is an unordered set; in fact, a choice of an order
on the sef(s} of vertices,{s} = {xo,...,x,}, is the same as a choice of a representative
o: AP — X fors. Two representatives, o’: A? — X of s differ by a unique permutation
a of [p], that is,oc = o’a. We will define anorientation of X as an equivalence class of
pairs (o, ), whereo is a representative ofande is a sign, equal tet1. Two pairs(o, ¢)
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and(c’, ¢’) represent the same orientatiornsdf the unique permutatioa with o = o’a has
sign equal taz¢’. There are two possible orientations.plf> 0, an orientation may always
be given by a pair witle = 1, an so we may think of the two orientations as the division of
the representatives @finto two classes, each of which consist of embeddings dhiffdoy an
even permutation. Ip = 0, thens is simply a pointc of X, with the unique representative
x: 0~ x, and it has two orientationsx, 1) and(x, —1).

An orientation of gp-simplexs (for p > 1) induces an orientation of each of its faces as
follows:

Consider the face, opposite a vertex of s. Let the given orientation of be determined
by the pair(o, €), whereo: A? — X represents. Sayx = o(i). Then the face, is
represented by the embedding:= aa[’. We orients, by the pair(o;, (—1)'¢). To prove
that the orientation is independent of the choice, consitisecond paifo’, ¢’) representing
the given orientation. Thea = o'« for a permutationx of [p], ande = &' signa. If
j = a(i), theno'(j) = o(i) = x. Hences, is represented by]f = 0’9;. So we want
to prove that the pairés;, (—1)'¢) and(oj/, (—1)/¢) determine the same orientation f
Equivalently, ifeg is the unique permutation op[- 1] determined by the equatiofd; = 9;ao,
then we want to prove the equation sigh= ¢’ (—1)'*/ signa.

Check it!.

(4.3) Triangulations. Let X be atriangulation of X, that is, a collectionz of regular
simplices ofX satisfying the following conditions:

(1) X is the disjoint union
x=Js.

SEX
(2) If s isin X then every face of is in X.
(3) The map +— {s} is injective onX, that is, if two simplices o6 has the same set of
vertices, then they are equal.

Chose once and for all an orientation of every simplef X. There is no harm assuming
that O-simplices, the pointsof X, are given their positive orientation, determined(loyl).
Let £, denote the set gf-simplices of (s0X = XU X, U -- ). Define

Cgrient(z, X, k) = k@EP;

in other words,C, = Cg”e”t(z, X, k) is the freek-module generated by the-simplices
of ¥; its elements are formal-linear combination$ _ A,s of p-simplicess from . The
elements ofC, are callecbrientedp-chainson X (with respect tax).

Leto: C, — C,_1 (for p > 1) be thek-linear map defined on the generatersf C, as

the sum,
A(s) = Z +s,.
xe{s}

The sumis over the + 1 verticesy of s, ands, is the face of opposite ofc. The sign in front
of s, is ‘“+’ or * —" according to whether the orientation epinduced from the orientation of
s is equal to or opposite to the orientationsgfas an element af.
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It is easy to see that the sequence,
..._)Cpiycp_lﬂ...HCO—)O—) O—) ECIN

is a complex, theriented chain comple€ €%, X) of the triangulation, with homology
modulesHS""(%, X).

The complexC°e(s: | X) is essentially independent of the chosen orientatior’s.of
the ringk is a field, and the compleg®€"(x, X) is perfect, then its Euler—Poincaré index
is defined:

x(Z, X) = Zp(—l)l’ dim H,(Z, X).

If the triangulationX: is finite, then eaclt,, is of finite dimension, equal &, |, and so
X3, X) =3, (D715,

independent of.

(4.4) Stoke’s Theorem. Assume thatX in addition is a smooth manifold, and that the
triangulation is smooth, that is, the simplicesXfare represented by smooth embeddings
o: AP — X. Note thatA? is a manifold with boundary: a map: A? — X is smooth if it
is, locally onA”, the restriction of a smooth map defined on an open sub&tof. Then a
p-formw € CL’;R(X) may be integrated over a regularsimplexs € X,: The pull backs*w
is ap-form on A”. If we identify A? with the subset oR” obtained by discarding the 0’th
coordinate:

AP ={(1....tp) 1620, Y 6 <Y

thens*w is ap-form in the variables, ..., t,, and hence of the fornfidty A - - - A dt,. We
set

(w,s) = /w = fdry - --dty.
s AP

Extending by linearity fronp-simplicess € X, to arbitrary chains irCI?”e”t(Z, X), we
obtain a pairing (a bilinear form),

Clr(X) x CO"M(2, X) —> R,

or, equivalently, a linear map from the vector space-#brms to the dual of the vector space
of orientedp-chains, _
Clr(X) = (CI"*M(z, X))".

Itis a consequence of Stoke’s Theorem that the linear mapsafyingp, form a map of
complexes, _
Car(X) — (CO"M(Z, X))™.
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5. Combinatorial chains on a triangulated space.

(5.1) Combinatorial simplices. Let X be a topological space with a given triangulatidn
Then acombinatorial p-simplexof X (or better, of(X, X)), is a(p + 1)-tuple (xo, ..., xp)
of points of X such that{xo, ..., x,} is the set of vertices of some (regular) simpieof X,
necessarily uniquely determined by the pointslt is not assumed that the are different,
and sos may be ag-simplex for some; < p. If ¢ < p then the combinatorial simplex is
calleddegenerateNote that there are degenerate combinatgrgimplices of any dimension
p. Let Zgomb be the set of combinatorigl-simplices, and let,

COM(S, X, k) = kEZ,

Letd: C, — Cp—1 (for p > 1) be thek-linear map defined on the generatars, . . ., x,)
of C, as the sum,

p
O(x1,....xp) = Y (=D (x1..... H. ... xp),
i=0

where the hat indicates an omitted coordinate.
It is easy to see that the sequence,

_>Cp4aycp_14»4>C0_>O_>o_)

’

is a complex, theombinatorial chain compleg€°™b(s, X) of the triangulation, with ho-
mology moduleﬂgomb(z, X).

(5.2) Comparison. A linear maph: Cgomb(z, X) — Co"ents X)) is defined by the

following values on the generatotso, ..., x,) € Egomb. If (xo,...,x,) is degenerate,
h(xo,...,xp) = 0. Otherwise{ xo, ..., x,} is the set of vertices of a regularsimplex

s € X. There is a unique representative A? — X of s such thatx;, = o (i) for

i=0,...,p. Set

h(xo, ..., xp) ===

where the sign equalst’ if (o, 1) determines the given orientation of and equals—~’
otherwise.
Note that the functiotk (xo, ..., x,) is alternating in its domain of definition: far ;j
the function vanishes if; = x; and it changes sign i; andx; are interchanged.
Itis easy to see that the linear maps, from combinatoriahsta oriented chains, form a
map of complexes,
Ccomb(z’ X) — Corient(z, X)).
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6. Singular chains on a topological space.

(6.1) Singular simplices. Let X be a topological space. singular p-simplexon X is a
continuous map : A”? — X. The set of singulap-simplices is denoted ,(X), that is,

Ap(X) = Homeon(A?, X).

For each map: [¢q] — [p] there is a continuous map: A? — AP and hence an induced
map of seta\ ,(X) — A, (X)givenbyo — o¢. Inparticular, the mapg”_l: [p—1] — [p]
(fori =0,..., p)induce mapg +— aal.” fromA,_1(X)t0 A,_1(X). The(p — 1)-simplex
o; ‘= 00; is thei'th face ofo.

LetC, = C,"(X, k) be the free module generated by the singpksimplices,

C;ing(X, k) — k@Ap(X),

and letd: C, — C,—_1 (for p > 1) be thek-linear map given on the generaterof C, as
the sum,

p
30) =) (-Dio;.
i=0
It is easily seen that the following sequence is a complexsitingular chain complerf X:
N Cpiycp—la"'%coﬁ 00— ...
The homology of the complex is tlengular homologywf X with coefficients ink,
Hy"(X, k) == H,(CS"(X, k)).

(6.2). Assume that a triangulatios of X is given. Let(xo, ..., x,) be a combinatoriap-
simplex. The the sdftxo, .. ., x,} is the set of vertices of a unique reguiasimplexs in X.
Chose arepresentative A? — X of s. Then there is a unique surjective map| p] — [¢]
such thaty; = o(pi) fori = 0, ..., p. Moreover, the compositiong: A? — A1 — X,
which is a singulap-simplex inX, is independent of the choice of representativé&o there

is a well defined mamgomb — A'X) from the set of combinatorigi-simplices to the set of

singularp-simplices. It induces a linear magf°™(x, X, k) — CS"(X, k), and in fact a
map of complexes, _
CMd(s, X, k) — CSNY(X, k).
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7. Fundamental theorems of singular homology.

(7.1) The reduced singular chain complex.Let X be a topological space. The definition
of A” andA,(X) makes sense also when= —1: The affine simplexa 1 is the empty set
(defined as the empty subset®?), and there is exactly one-1)-simplex — X. Hence
%X, k) = k, and we may consider the augmented complex C S"9(X, k),

5 ..._)Cp—aycp_l—»...HCO—)C_l—)O—)...

Its homology, denotedis"%(X, k), is thereduced singular homologyf X.

Note thatC (X) and5(X) are covariant as functors af: A continuous mapf: X — Y
induces maps of sets,(X) — A,(Y), defined by — fo,and hence maps of free modules
C (X, k) — C (Y, k), formlng a map of complexeG(X k) — C(Y k).

(7.2) Fundamental theorems.
THEOREM I, THE EXTREMES. C(#) = k(—1), C(pt) =0

THEOREM II, THE HOMOTOPY AXIOM. A homotopy of mapgo = fi: X — Y, induces
a homotopy of chain maps( fo) >~ C(f1): C(X) — C(Y).

THEOREM III, THE AXIOM OF SMALL SIMPLICES. Assumethak = |J; o, U isanopen
covering ofX. LetC(U, X) be the subcomplex o (X) generated by singular simplices
o:. AP — X which areld{-small, that is, have their image containedjirfor someU < U.
Then the inclusiol€ U, X) — C(X) is a homotopy equivalence.

THEOREM IV, THE KUNNETH FORMULA. FoOr any two spacek, Y there is a homotopy
equivalenc& (X x Y) = C(X) ® C(Y).

(7.3) And their consequences.

A. THE EQUIVALENCE THEOREM. A homotopy equivalenc& = Y induces a homotopy
equivalence& (X) = C(Y).

B. THE MAYER—-VIETORIS THEOREM. For open subsetsi, U, C X there is an exact
triangle in the homotopy category,

5(U1 U Uo>)

N

C(U1NUy) C(U1) & C(Uy).

187



Expl 7.2 Examples; illustrations

C. THE CONE THEOREM. Let f: X — Y be a continuous map, and [g§ = Con(f)
denote the mapping cone ¢f see below. Then there is a homotopy equivalence,

C(Con(f)) = Con(C(f)),
In particular, there is an exact triangle in the homotopggaty,

C(Zy)

PN

Cxy—CD |, G,

D. THE SUSPENSION THEOREM. LetX (1) = SX denote the suspension ¥f see below.
Then there is a homotopy equivalence

C(X(1) = C(X)(D).

(7.4) Cone and suspensionLet f: X — Y beamap. Then thmapping conef f, denoted
Z = Con(f) is the topological space,

{po} U XxI UY

C = ,
o) =m0, D=fx

obtained from the disjoint union of a poipy, the productX x [0, 1], and the spac¥, by
identifying for all x the point(x, 0) with pg and the pointx, 1) with fx inY.

g @) —a%

Xx1 Con(f)

The mapping cone of the constant m¥p—> pt is the (doublejuspensionf X, denoted

SX or X(1),

SX =X
For pointed spaces the definitions are similar: The pointe cor simply the cone, of a

pointed map,
XxI UY

(x, 0)=(x0, 1), (x, D=fx’
andSX := (pointed) cone of constant map — pt.

Con(f) :=
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(7.5) Example. Forn > 0 there is an explicit identification of the pointed suspensif the
n-sphere,
st = st (7.5.1)

Indeed, an isomorphism is given af follows: LBt be the equatorial disk of”*+1, with
boundaryS”, let po = (1,0, ..., 0) be the base pointand= (0, ..., 0, 1) the North pole.
Letz, : D" — S’ betheinverse stereographic projection centered at thiéa $ole—n, from
the disk onto the Northern hemisphere; it is given, for pminin the equatorial hyperplane
orthogonal tor, by the formular, (x) = (A — 1)n + Ax, wherex = 2/(1 + |x|%). Then the
isomorphism (7.5.1) is given by the expression,

m+(uez), t=2s, for 0

<
(z,8) = { 1
m_(uz), t=2-—2s, for§ <

here i, is the multiplicationu,;z = tz + (1 — t) po around the centepg, andn_ is the
projection onto the Southern hemisphere.

Stereographic projection preserves spheres. In pantjcuteler the isomorphism the
spheres” x s C § §” is mapped to a small spherestitl. In fact, the imager u,(S") is
the intersection 0”1 and the hyperplane through orthogonal tan + (1 — 1) po.

A direct proof of the latter fact is a simple computation: Let

x:=uz=tz+ 1L —1t)po, and u=m,x = — Ln+ ix,
wherex = 2/(1 + |x|?). Then,

(u—po)-n=»xr-1,
(u—po)-po=rx-po—1=—rr(l—2z-po)+ (A —1).

Clearly,
2=+ Q-1 +2(1-1)z-po=1—2t(L—1)(1 -z po).
Setc := 1+ |x|2. Thenca = 2, ande(h — 1) = 1 — |x]? = 2¢(1 — t)(1 — z - po). Hence,

cw—po)-n=20(1-1)(1-z- po),
c(u—po)- po= —Zt(l—z-po) +2t(1—t)(1—z . po) = —2t2(1—z-po).

As a consequence,— po is orthogonal tan + (1 — t) pg, as asserted.[]
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8. Homology and cohomology of the spheres.

(8.1) Example. It may be proved for the@unctured plandé2 := R?\ {0} that de Rham

cohomolongdR(I'ez) is given byH” = Rfor p = 0,1 andHé’R = 0 for all otherp.
Equivalently, the reduced de Rham cohomology is giveitifjy = R(—1). More generally,
reduced de Rham cohomology of the punctured- 1)-space is given by the equation,

@) = R(—n) (8.1.1)

It follows that up to quasi-isomorphisrﬁdR(I@”“) = R(—n).

(8.2) Example. The affinen-simplex A" with its obvious triangulation haﬂg'”e”t =
HE™P = k andH,, = O for all otherp, that is,

HOMOM( AR k) = HOEM(AT k) — k(0). (8.2.1)

In fact, it is easy to see that the reduced compleX®&M(A”, k) and COeM( A" k) are
contractible.

Work with the oriented complexas = C°"e" and consider the boundar'y”rl of the
(n + 1)-simplex. Its triangulation is obtained from the triangida of A”*+1 by omitting the
top simplex, corresponding to the identity *1 — A1, Sothe two complexasS(A™tL, k)

and&(i”“, k) agree in degrees < n. Moreover, under the identificatiods, .1 (A" 1) =
k and C,(A"1) = C,(A™1), the (n + 1)’st boundary mag,,1: may be viewed as a
linear mapd : k — C, (A", k). Equivalently,d may be viewed as a map of complexes

0:k(n) —> 5(&’“, k), andC (A" *1, k)isthe mapping cone of. Asthe coneis contractible,
it follows thato defines a homotopy equivalence,

k(n) —=> Corent An+1 gy, (8.2.2)

A similar result may be proved for the combinatorial simpfé%(ie“t(&l“, k).

(8.3) Example. Then-sphereS” := {x € R"™1 | |x|| = 1} may be defined inductively as a
suspensions—! := g ands” := S(5"~1) for n > 0. Hence, by EXPL(7.2)l and (7.3)D, we
have _

CS"9(S™) ~ k(n). (8.3.1)

Note that, up to homotopy,
R+~ AL~ g7,

(8.4) Example. Real projectiven-spacelP” = IP"(R) may be defined as the quotient
IP" := S§"/ £ 1 of §” modulo the cyclic group €= +1 acting via the antipodal involution.
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The quotient mag” — IP" maps the equatoria”’—1 onto alP”~* C IP", and, clearly,
IP" is the mapping cone of the quotient m§ip 1 — [P"~1. Consequently, there is an exact
triangle of reduced chain complexes in the homotopy categor

asing(lpn—i—l’ k)

T

E:Sing(Sn k) asing(ﬂ)n : k)

Now, CSIN9(S™ . k) = k(n). It follows by induction orw that there is a chain complex of the
form

~

D' sk Bk 2 00

b

with the rightmosk in homological degree 1, and a homotopy equivalence,
5sing(ym, k) ~ ﬁgn,

whereD, = D>" is then'th chain truncation oD. For the non reduced complex there is
a similar homotopy equivalence,

CS"Y(IP" k) ~ Dy,

whereD is obtained fromD by replacing 0 byt in degree 0. It may by proved that the maps
d; for oddi vanish and for evenare multiplication by 2. S® has the following form,
D: ik %Yk 2 O L0 ...

b

with the rightmosk in degree 0. Note in particular that” (IP", k) = k whenn is odd and
H"(IP", k) = 2k whenn is even.
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9. Some comparison theorems.

(9.1). Let ¥ be a triangulation of a topological spa&e with eachs € X oriented. For
a combinatorial simplexxo, ..., x,) of (X, ¥), denote bys = ¢(xo, ..., x,) the regular
simplex inX with vertices{xo, .. ., x,}; the combinatorial simplex is degenerated & %,
withn < p. Letz: Cgomb—> C]g’”e”t be the linear map given on generators by the formula,

f(xo, ..., Xp) = et(xo, ..., Xp),

wheres is 0 if (xg, ..., x,) is degenerated and, in the non degenerated easer-1 or —1
according as the orientation ofxo, ..., x,) € X is equal to or opposite to the orientation
given by the orderingo, .. ., x,, of the vertices.

It is easily seen thatis a map of complexes,

F:CM X ¥, k) — COe(X | %, k): (9.1.1)

it is in fact a homotopy equivalence (The Principle of alsgimg degeneration).

(9.2). On the other hand, associate with the combinatgriaimplex(xo, ..., x,) in (X, X)
the singularp-simplex

T(x0,...,Xp) AP > X

defined as follows: Lek + 1 be the cardinality of the sdtx,...,x,}, and lets =
t(xo,...,Xxp) € X, be the regulan-simplex determined by the set of vertices Let
o: A" — X be arepresentative of determined by some ordering of thet+ 1 vertices in
s, say{yo, ..., yu} = {x1,...,xp,}. Then there is a corresponding surjectpn[p] — [n]
such thatr; = yg;, and the composition = o8: A? — A" — X isindependent of. Itis
easy to see thatthe map determinedXy . . ., x,) = 7(x1, ..., x,) isamap of complexes,

T:COMO X ¥ k) — CSNY(X, k). (9.2.1)

(9.3) Lemma. If X is a finite triangulation oKX, then the map of (9.2.1)is a homotopy
equivalence.

Proof. If X = A", with the natural triangulation, then via the augmentagjdroth complexes
are homotopy equivalent th(0). Indeed, the reduced singular complex is contractible,
because\” is contractible (isotopic to a point), and for the reducethbmatorial complex

of A" a contractiony is defined as follows: The-simplex A" hasn + 1 vertices (you
may identify them with the numbers 0, ..., n) and a combinatorial simplex is an arbitrary

sequencexo, ..., x,) (with p > —1) of these vertices. Fix a verteand define : Clﬁomb—>
Ccombb
p+1 y
y(x0, ..., xp) = (¥, X0, ..., Xp);

it is easy to check thaty 4+ yd = 1. Hence the reduced combinatorial comple€ 8™ is
contractible.
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So, the augmentations of the source and targetare homotopy equivalences. Since
respects the augmentations, it follows thas a homotopy equivalence.

In the general case, proceed by induction on the cardinafify. Choses € X, with
maximaln. Then the subspaceg, ;= 5, Xo := X — 5, andXg := X1 N X, are naturally
triangulated, and = X; U X». For the pairn(X1, X») there is an obvious Meyer—Vietoris
triangle for the combinatorial complex€§°™. Assume there is a similar sequence for the
singular complexe€'s"9. Thenrt is a morphism of triangles. By induction,s a homotopy
equivalence at two of the vertices,

C%M0( X1 N Xp) = CSM9(X;, N Xo), and
CO™(X1) & COM(X2) —> CII(X1) & CI(X2).
Hence, at the third vertex is a homotopy equivalence,
Ccomb(X) i Csing(X)’

To obtain the Meyer—Vietoris triangle for the (closed) pake use a metric oX defined as
follows: Clearly, forany simplex € X, there is awell-defined distance dist, y) defined for
pointsx, y € 5, independent of. So define digty, y) := dist;(x, y) if x, y both belong t&
forsomes € X, anddistx, y) := oo otherwise. Thenthe subdé$ := { x | dist(x, Xo) < ¢}
is open, and so are the subsEis:= X1 U UgandU> := X2 U Up. If ¢ is small (less than the
distance from the center &” to the boundary), then the inclusiolg — Up, X1 — Uy,
and X, — U, are homotopy equivalences. Hence the required Meyermigdriangle for
(X1, X2) is obtained from the triangle for the open pdik, U>), cf. EXPL(7.2)B. i

(9.4). Assume that is aC-triangulation of aC,-manifold (so for a simplex € X the
representatives: A” — X areC,-mappings). Then a-formw € C?(X) can be integrated
over ap-simplexs (oriented as usual); the result is the integral,

(w,s) = / .

Accordingly there is a pairing” (X) ®gr C[C,’”e“t(X, 32, R) — R, or, equivalently, afR-linear
map,
CP(X)— c’. (X,S,R), (9.4.1)

orient

whereC?.. . on the right side is the dual of the vector sp@‘e”t. By Stoke’s Theorem,

orien
the maps (9.4.1) define a map of complexes,

Cor(X) = CorentX. S.R). 9.4.2)

It is the contents of de Rham'’s theorem, for a finite triangotaX, that the map (9.4.2)
is a quasi-isomorphism. The dual of the homotopy equivae®c2.1) is a homotopy
equivalenceCg (X, R) —> Cen(X, 2, R); so there is an inverse homotopy equivalence
Corient(X, T, R) — Cgy(X, R). Whence, by de Rham’s Theorem, there is a quasi-isomor-
phism,
Car(X) = Cging(X, R). (9.4.3)
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10. Some limits.

(10.1). Let I be a partially ordered set. Let> X; be an/-system in the categoi§etssuch
that the morphisms of the system are inclusions of subsetdeTprecise, assume there is
given a set, and thati — A is an/-system in the categorf?(E) of subsets of (with
inclusions as morphisms). Clearly,

ligx; = J&.  lim&; =& inthe categonyP(E).

However, if the system is considered in the cateddeys then the equality limk; = (J A;
holds in general only if is filtering, and the equality limt; = () A; holds in general only
if 1 is connected.

Assume instead that— X is a system of quotients with projections, that is, assurae th
following: Let E be a fixed set, and leR(E) be the category of quotients &f: An object
of Q(FE) is a quotientE /R of E modulo an equivalence relatidgty and there is a morphism
E/R" — E/R”ifandonly if " € R”. Leti — X; = E/R; be anI-system inQ(E).
Clearly,

lim, E/R; = E/\U;Ri, lim. E/R; = E/(;Ri, inthe category’(E).
If the system is considered in the categ8sts then the equality linE/R; = lim E/J R

holds in general. In contrast, the liBYR; = ljm E/ (] R; is requires strong conditions on
the system.
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11. The derived functors of the limit functor.

(11.1) Setup.Let I be a (small) index category, aRtan abelian category with exakf,’s.
Then the limit is a functor,
lim: Al A
I
it associates with ad-systemx’: I — 2 the limit ljm, x;. We will describe in (11.5)

below a resolvent complex for the limit functor. Its constran is a standard construction in
simplicial conomology. Parts of that theory is sketchedlih.?) and (11.4).

(11.2). Denote by|I| the set of objects of, viewed as a discrete category. Then, corre-
sponding to the inclusiofV| — I, there is a forgetful restriction functor: 2/ — 2!
it associates with ard-systemX’: I — 2 the family {X;} of objects (with no transition
morphisms).

The forgetful functon. has a right adjoinp:

Al 2,
0

It is defined as follows: Far e I we let

V)i =[] ;s

i—j

the index set for the product is the set of morphisms — ; in I from the given objeat, it

is also denoted/I. The morphisms in thé-systemop)’ are obtained by simple projections:
A morphismy:i — kin I induces a map setg/ — i/I (defined byx — «ay), from the
index set used for the produ@)’); to the index set used f@p)’);. Accordingly, there is a
morphism induced by:

yi(pd)i = ]_[ Vi = (oD = ]_[ Y, givenby ppy =pr,, foraik— j.

i—j k—j

It is easy to see that) is an-system, and that is a functor. A direct syste’ in 2/ of
the formX = p) with an-family ) will be called atrivial or co-inducedsystem. Itis easy
to determine the limit of a trivial system:

im(pY); = [ (11.2.1)
iel iel

Do it!
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(11.3). For the composition of functogs:.: A/ — A/l — A there is a natural “adjunction”
morphism,
€: X — pAX, (11.3.1)

(the unit of the adjunction) from the systemto the trivial systenpAX. The morphisne
is, at an index, the morphism,

e« X — [ (11.3.1)

=]
whose projection pye; atanindex: i — j ofthe productis equal to the transition morphism
¢«: X; — X;. Theidentity 1= 1; of i is among the indices, andps; is the identity ofX;.
So py, is a retraction fog;. In particular,e; is a monomorphism for every Therefore, the
morphism (11.3.1) is a monomorphism of systems.
In particular, everyl -systemX in 2l admits a monomorphism into a triviaisystem.

(11.4) The standard complex.Let 7 := pA be the compositiol! — A/l — A7, Then,
with the compositions of functors,
n+1
a'4Vi=nmmw -0,

there is an associated coaugmented “standard complexi'zkit.x in degreep:

X 0> x-S0y 5 oMy 5 7@y o 0 (11.4.1)
It may be described explicitely as follows: In degpee

(7] X); = 1_[ Xo-
i—jp—> = —>jo

The index set is the set of all composapkstrings(¢o, . . ., ¢,) from the given index:

. Yp . $p—-1 (2
i p = o

The differentiad? : z[P1x — z[P+1x in the complex is determined by its projections onto

the factors of the target. Corresponding to the index” - Jp+1 R Jjo the

projection is given by the expression,

p+1
pr(po ..... Op+1 d = ¢o pr(pl ..... ©p+1 + Z(_l)v pr(po ..... Ov—1@v,-- s Ppil
v=1
The indices on the projections in the sum are the stringsrodderom the given string by
replacing to consecutive morphisms by their composition.

It is a general fact thathe standard complgd.1.4.1)is contractible wherk’ is a trivial
systemthatis, if ¥ = p) for some family) .

As everyl -system admits a monomorphism into a triviasystem, and the functar, and
hence all the functors!”! are exact, we conclude that the standard complex (11.4fibede
a resolution of the identity dll’. In fact, for any additive functof: 2/ — B from 2/ to
an abelian categors such that the functorgn is exact, it follows that the coaugmented
complexT 7 x defines a resolvent complex for the funcjor T x. In particular, ther? is
(uniformly) derivable and the trivial-systems ar@-acyclic.

198



The derived functors of the limit functor Expl 11.3

(11.5) Proposition. A resolvent complex for the limit functdym, : Al — 2 is given by the
following coaugmented complex of functdié defined on system¥: I — £,

fx: 0-lma < mox O mly & m2x s (11.5.1)
1
where
M =limrlPly = 1 X

Jp— Jp-1—>+— Jo

and the differentiad : TI? — T17*+1 js given by the projections,

.........................

v=1

Proof. The complex is obtained by applying the limit functor |imo the complex (11.4.1).
Each functorl1? is exact, sincé@l has exacf [,’s. It was noted in (11.3) that evedysystem
admits a monomorphism into a trividlsystem. Moreover, ift is a trivial system, then the
complex (11.5.1) is exact, since it is obtained from the @wtible complex (11.4.1). Thus
the conditions for a resolvent complex of functors have besified. a

(11.6). It follows from this result that the functo<LIimzl1 — 2 is uniformly derivable. The

p’the derived functor is denote@fﬁ? or HP(I; ); its value Jim Py = HP(I, X) is the
p’th cohomology of the categoywith coefficients in the syster'. Itis, by (11.5), equal
to the cohomology of the complex in (11.5.1) without coaugtagon,

im'” X = HP(1, X) := HP(T1X). (11.6.1)

It is a consequence of the result that triviaystems are acyclic for the limit functqr lim
Note that any/-systemX’ has acanonical embeddingto a trivial system, namely the
canonical embedding — ) := pAX described in (11.5.2).

(11.7) Example. For special index categories there may be other exact iegatemplexes.

Consider for instance the categary= (0 = 1), with two morphisms in addition to the
two identities. An/-systemX is a pair of morphismg’, f”: Xp = X3, and its limit is the
coequalizer,

H f/ n
lim (Xo=2r A1) = Ker(f’, f").
The following coaugmented complex,

=1

O—>Ker(f’,f")—>X0 X1—>0— ...,
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is a an exact resolving complex fqr [imIndeed, the functorg’ — Ap andX’ — X1 are
exact functor®l! — 2 and evaluation at a trivial systep)) is the exact complex,

! _ pr’
0> Vox V1= Yoxix Py 50>,

where pf and pf’ are the projections on the second and third factor. Hencehéoderived

functors,
/ Ker(f’, f) if p=0,
R? Ker(Xo% Xy =1 Cok(f’, f" if p=1,
0 otherwise

(11.8) Example. As a second example, consider the categorr 1’ — 0 < 1”. Then an
I-systemX is a diagram,
X//

f//i
x e xp,
the limit is the fibered product’ x x, X”. Itis easy to see that the following coaugmented

complex,
f/ pr/ _f// pr//

O—)X/XXOX//%X/XX” ~Xg—>0— .-+,

defines a resolvent complex for the limit. So, for this indategory/,
HOU, X) = X xx, X', HYI, X) = Xo/(Im £/ +1m f7),

andH? =0forp > 1.

(11.9) Remark. The cohomology to the categodysketched here, with coefficients in an
I-systemX, is one out of four parallel theories: For amversel-systemZzZ: 1 — 4,
the cohomology is defined by replacigy by the direct systemiPZ: 1°P — %, that is,
HP(I, Z) := HP(I°,°PZ),

In addition, a direct system¥’: I — 2 may be viewed as a direct systéf’°P: 1°P —
2(°P, with values in the dual catego®°P; the p’th cohomology of the latter system, as an
object in%, is called thep’th homology of the categor¥ with coefficients in the system
X, and denotedd, (1, X). There is a similar definition of homology with coefficientsan
inverse system.

(11.10) Exercises.

1. Let f: X — Y be a morphism of -systems inZ. Assume for every that f;: X; — )
is a monomorphism. Prove th#tis a monomorphism in the categoty. What about the
converse?

2. Let Q@ = {Q,} be a family (indexed by the objects 6f of injective objects oRl. Prove
that the family is an injective object in the abelian catggdl’| of families. Prove that the
trivial 7-systempQ is an injective object in the catego®y/ of I-systems.

200



The spectral sequences of Hom(B,lim) Expl 12.1

12. The spectral sequences of Hom(B,lim).
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13. The derived functors of the limit functor over N.

(13.1) Setup. Let A be an abelian category with exddt,’s. View the setN with its usual
order as a category. Then an inveRssystemX in 2l is a system of morphisms,

B s B xS g (13.1.1)

Equivalently, we will in this section view with the order--- > 3 > 2 > 1, and consider
(13.1.1) as aiN-system irt(.
A trivial N-system, defined from a family, for n € N, has the form’ = p) with

V= []Vi=[[Y=Y1x " x
n—j jsn

So, inductively Xy = )h andX,, = X,_1 x ),. Equivalently, at syster®’ is trivial if every
transition morphisn,, — X;,_1 is a split epimorphism.

(13.2) Observation. The following augmented complex of functdi®, T11: AN — A de-
fines an exact resolvent complex fgn

X)) : = 0= limx - x4y -0 -, (13.2.1)
N

wherell°X = A =[] &, andd: TI°X — TI'X is given by itsi'th projection,

pr,d = ¢, pr,, ., — pr,, forn > j.

Proof. Indeed I1° andI1* are clearly exact functors, and lint is the kernel of the differential
d. Assume thaft = p) is trivial. Then

impy=[]%, and My=my=[]_ ¥,
N n z

where the product is over all pai(g, j) with n > j. The differentiald is given by its
projections:

prn,j d= prn—{-l,j - prn,j’
corresponding to the index, j). So it remains to prove thatis an epimorphism. In fact,
it is easy to prove that is a split epic with a section: [Tt — T1° defined by its projections,

r -s:Z r, ..
pn,] n>k>jpk’j

I
It is a consequence of the result that the derived functotggf  are determined as
follows: im© x, = lim x, = Kerd, lim'" x, = Cokd, and Jinf” x, = 0 for p > 1.
In particular, an aiN-system@ is ljm-acyclic if and only if the morphisnd = d(Q) in
(13.2.1) is an epimorphism.
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(13.3) Application. Assume the conditions ¢13.1) Consider amN-systemX’ in 2A*, that
is, anN-system of complexes,

B xR, S g (13.3.1)

Assume that in each degrpgheN-system - - — X§ — x5 — X7 is lim-acyclic. Then
there is for every an exact sequence it

0— lim YHP1(A,) - HP(im X,) — lim H? (X,) — 0. (13.3.2)

n n n
Proof. Consider the sequence of complexes,

0= limX, > [ “>[[%—>0-> . (13.3.3)
n n n

Limits of complexes are obtained degree by degree. Hencetingence (13.3.3) is in degree
p the sequence corresponding to thesystemn — X/. By assumption, the sequence
(13.3.3) is exact in each degree. Therefore it is an exacteseg of complexes. Consider
the corresponding long exact conomology sequence. Themoalbgy of a product is the
product of cohomology sinc# has exacf [’s. So the long exact sequence has this form

[TH7 @) - []HP M) - HP(im X)) — [[HP (%) S [T HP (X

The short exact sequence (13.3.2) is a consequence. a

Corollary. If the systen(13.3.1)is |im-acyclic in each degree and if each complexis
exact, then the limifm X, is an exact complex.

(13.4). Under the hypothesis in (13.1), we may define the functor MonhfbifamiliesX =
{X P41} to families,
(Totx)? = [ [x7~/.
JEZ
With the usual definition of the differential we may view Tat @ functor(** — 2(*, from
bicomplexes to complexes.

Corollary. If a bicomplexX € 21~ has exact rows, then the total complet X is exact.

Proof. We may assume tha&& € ~>1. Consider for each > 1 the truncated bicomplex
X*S", Then there is ai¥-system of bicomplexes,

RN X.,<n+l N Xo,gl’l > e > Xo,gl’
and anN-system of complexes,

oo = Tot XS Totx»s" — ... — Totx*<t,
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The limit is easily computed: In degree degpegheN-system is the following:

n > (Totx>s"? =[] x?~7/,
n>j

and hence equal to the trivitl-system determined by the famikP—/-J for j € N. So the
limit is the product]‘[j XP~J.J;in fact, it is easy to see that

lim Tot X~ <" = Tot X.
n

Now, the bicomplexX <" has at most non-vanishing rows, and they are exact by hypothesis.
HenceX*<" e 23*, and, by The Row Theorem, the total complex Xots" is exact.
Moreover, we noticed above that thesystem of complexes in each degree is a tridal
system, and hencg ligracyclic. Therefore, the assertion follows from the Camlin (13.3).

I
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14. Mittag-Leffler systems.

(14.1) Setup.Let;Mod be the category of modules over the commutative kirfgr instance
(with k£ = Z) the categonAb of abelian groups. Consider &system in,Mod,
3 92

T X8 X2 X1

For simplicity we will write ¢ for the transition mag,+1 — x» whenever the source is
obvious from the context.
Recall that the system is [jm-acyclic if and only if the following map is surjective:

d: [Txn— [[xn- givenby pr,d =gpr,.—pr,.

In coordinates the mag is described as follows:

(x1, X2, X3, . ..) > (@x2 — X1, X3 — X2, PX4 — X3, ... ).
Sod is surjective if and only if for any sequen¢e, az, as, ...) with a,, € x,, the following
system of equations has a solution, x2, x3, ...):

pX2 — X1 =41, @X3—X2=4az, @X4—X3=das,
(14.2). The solvability is obvious if all the transition maps x,+1 — x. are surjective. A
more general condition is contained in the following defamit
Definition. The systemr — y, is called aMittag-Leffler systenf for everyn the following
descending sequence is stationary:

Xn 2 0(n+1) 2 0°Otmr2) 2 -

Lemma. A Mittag-Leffler system -- — x3 — x2 — xa islim-acyclic.

Proof. Case 1: Assume that every transition morphism is surjecth® noted above, the
solvability is trivial in this case.

Case 2: Assume for everythat the compositiop”: X, , — &, is zero wherp > 0.
Then a solution to the equations are given by the finite sums,

Xp = an + @ap+1 + ¢20n+2 + e
The general case: Form, for everythe intersection,
Xn =) ¢"Gnsp) S X
p
Clearly, they, form a subsystem of the systegn So there is an exact sequenc&lesystems,
0— x'— x— x/x' — 0.

Use the Mittag-Leffler conditions oA’ to see thaty’ falls under case 1, and, again by the
Mittag-Leffler conditions, thag /x’ falls under case 2. Therefore, from the exact sequence

. (1 . (1 . (1
limi? x — lim{’ x — limi x/x'.

(l)x:O. a

it follows that limg
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(14.3) Corollary. If, in a short exact sequence b¥-systems inMod,
O X—->)Y—>Z->0,
the systeni’ is a Mittag-Leffler system, then the following sequence @agx
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15. Cohomology of groups.

(15.1) Setup. Let G be a group, and views as a category (also denot€d) with one
object, and with the elements 6fas the endomorphisms; composition of endomorphisms is
multiplication in the group. In particular, in the categd@ryevery morphisms is invertible,
and the assignment— s 1 identifiesG and the dual categorg®P.

Let ¢ be an arbitrary category. ThenGasystemX in € is a functorX: G — ¢; itisis
also called aG-object in€ (strictly speaking, & -object ought to be given as a contravariant
functor, but the two notions are equivalent via the iderdifimn of G andG°P). A G-object
in € is specified by an objecf of ¢ (the image of the single object in the categatyand an
additional monoid mag; — Ends(X). As all morphisms inG are invertible, the monoid
map is a group homomorphism; it is called the associegpresentatiorof G,

G — Autg(X) usually denoted +— sy.
Let X be aG-object of&. We shall use the following notations for the limit and thdéirmodt,
lim; X =X°=T1%, and lim, X =X/G=T¢X.

(Don’t confuse the notatioix ¢ with the product of identical copies of indexed by the
elements ofG; in connection withG-objects, the product will play a role, and it will be
denoted [ X. )

A common source for a give@-objectX is given by an objeci of €, and a morphism
a: A — X satisfying the compatibility conditionsiya = a for all s € G. If the limit X¢
exists, then the canonical projection (there is only engj® — X isinfactamonomorphism
withsxye = e forall s € G. If ¢ has equalizers and intersections of subobjects, Xfeis the
intersection of the equalizers of all paitky, sx) fors € G. If € has[[;’s and equalizers,
thenX ¢ is the equalizer of the pair of morphisms,

ao
x-x [1x
seG
given by pr 8% = 1x, and pg 8t = sx.

(15.2). Fix an abelian categort with exact[[;'s. Let A be aG-object of2(. The p'th
cohomologyof G with coefficients inA, denotedd” (G, A) is the the value aA of the p’'th
derived functor lim,:

H?(G, A) := lim P A.
G
It may be defined as the cohomology of the standard complaciased to the limit functor

over an arbitrary index category. For the categGrythe coaugmented standard complex has
the following form:

I: 0-1%A 1% 4 ma 4m2a ...,
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Expl 15.2 Examples; illustrations

whereIT?A = [], ) A (the product is over alip + 1)-sets of elements of;) and
d: T1? — PP*lis given by the projections,

p
— —_1)V _1rt1
prSl ----- Sp+1 d= S1 prSZ ----- Sp+1 + Z( l) prslv---vswsnu+lasp+l +( 1) prsl
v=1

..... sp°

Note that a trivialG-object is determined from an objectof 2 It is the G-object

pY =[]V

seG

where the transition morphism: pY — pY corresponding to € G is obtained by permu-
tation of the coordinates of the product;, px = pr,,. The trivial G-objects ard" ¢ -acyclic.

(15.3) Example. Assume tha®l = ;Mod is the category of modules over the commutative
ring. LetkG be the group algebra @ overk. Then, clearly, the category pMod® of G-
objects may be identified with the categegMod of left kG-modules. Viewk as a constant
G-object. Then it is easy to identify,

AS = Homyg (k, A),
and consequently we may identify the derived functors,
HP(G, A) = Extl;(k, A).
Note thatl1” (A) is the product of identical copies dfover the index set of alky, . . ., 5,);
as such it may be identified with tikemodule of all functiongsy, ..., s,) = f(s1,...,5p)

with values inA. In low degrees, the differential is given as follows:

(doa)(s) =sa—a, §E nl = A,
drf(s,0) =sf(0) = f(st)+ f(s), [feTh,
d?f(s,t,u) =sf(t,u) — f(st,u) + f(s,tu) — f(s,1), f eT>
In particular, the degree-1 cycles are the mggs) for which d1f = 0; they are called

crossed homomorphisn® — A, and the degree-1 boundaries are phimcipal crossed
homomorpismsof the forms +— sa — a fora € A.
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16. Cohomology of some special groups and monoids.

(16.0) Exercise.Read the examples on the cohomology of a gréupa standard resolution
assuming only that; is a monoid. Did you find any reservations?

(16.1) Setup. Let G be a monoid and e be an abelian category with exdcf;’s. A
standard complex defines a resolvent complex for the linmittor ' = lim;: A6 — A,
defined on the catego®® of co-G-objects.

For special groups or monoids there may be special congtngodf a coaugmented re-
solvent complex foi ¢

MA: 0-T6A 1% —>nia— ...,

where eachll’ is a functorA — TII‘A, defined on cas-objects of2(. In each of the
examples below we construct such a complex where &Hcls exact and such that the
coaugmented complex is contractible when evaluated owialt@-object. Then it results
from the general theory that the cohomoladg¥ (ITA) of the compleX1A is the cohomology

im% A = H?(G, A).
(16.2) Example. Let G be the free (multiplicative) monoid with a single generafo(in
additive notationG is the monoidNg of nonnegative integers). ThenGobjectA is an

objectA of 2 with a given endomorphisni = f4: A — A. The following coaugmented

complex:

fiAd: 05TUA—->a %A 500. ..,

is a resolvent complex. Indeed, the functdt® = I1! are exact, given by — A (and
forget the endomorphisnfi). A coinduced object has the formB = [],-, B, where the

endomorphismf = f,p is determined by prf = pr,,,. The complexﬁ(pB) is the
following:

M(pB): 0—>B <> ]_[B+,,,, [[B—-0— .
n=0 n=0

split by the indicated morphisms defined by= pry and pr, o = Zj<n pr,. Do check it!
As a consequence, for this mondaiqg

HOG, A) =T% =Ker(A '=% 4),  HYG, A) = Cok(a =% A) = A/G,

andH? =0forp > 1.

(16.3) Example.Let G be the free group with a single generat@m additive notation( is

the groupZ of integers). Then &-objectA is an objectA of 2l with a given automorphism

e =es. A — A. The the following coaugmented complex,
MA:0—>T%A A5 A0,
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is a resolvent complex. Indeed, the functbi$= IT! are exact, given byt — A (and forget
the automorphisne). A coinduced object has the formB = [, B (where the product
is overn € Z), where the endomorphism= e, is determined by pre = pr,,,. The
complexI1(pB) is the following:

fipB): 0B <> HB+,,,, nB—>0—>"'»

split by the indicated morphisms definedby= pry and pf, o = 20§j<n pr, forn > 0and
pr,o = — Zn<j<0 forn < 0. Do check it! As a consequence, for this graip

H(G, A) =TCA =Ker(A % A), HYG, A) =Cok(A 1 A)=4/G,

andH? =0forp > 1.

(16.4) Example. Let G be a free (noncommutative) group with generatgréor i € I,
denote by the neutral element @ (the empty word). Then &-objectA is an objectd € A
with a given family of automorphisms = ¢; 4 fori € 1. Consider the complex,

0>T%% A 4%J[a->0-> -,

iel

whered is determined by its projections: ;af = e; o — 14 fori € 1. Assume thatd = pB
is the trivial G-object determined by an obje#t of 2. ThenA = [[,.; B, andG acts
by permutation of the coordinates. We want to prove that tmpiex is contractible when
evaluated om B, so we want to define homotopiest:

O%B# nBél—[nB%O,

weG iel weG

The morphisnv is the projection on the index(the unit of the grougs), that is,o = pr,,.
The morphisnt is determined by its projections pit, and they are defined inductively on
the length of the wordv. For the empty word prr = 0, and

Pro,y T =P, T+ Pl prei_lw T=pr,t— pri’ei_lw
(16.5) Example. Let G be the free abelian (multiplicative) monoid with bagis ..., f;
(the additive version of; is the monoidYj, of r-sets(ny, ..., n,) of nonnegative integers).
Then aG-object is an objecl of 21 with a given family of commuting endomorphisnfs
The trivial G-objectp B determined by an objea is the producB = [],, . B, over
Np, the endomorphisnf;: pB — pB is determined by its projections,

ny fl = prnl ..... ni+1,...,n, * (1651)
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.....

.....

.....

Note that the Koszul cochain compl&xX (X) = K*(f1, ..., fr; X) is defined in this general
setup for any compleX of G-objects. For th&-objectA, viewed as a complex in degree 0,
the morphismk®(A) — K1(A) is the morphisni: A — A®"; hencel't(A) = HO(f, A).

Lemma. The following coaugmented compléxe reduced Koszul complex)
Ki(A): 0—-TfA— K°A)— - > K'(A) > 0— -, (16.5.2)

defines a resolvent complex for the funckgr

Hint. In degree the functork’ is given byKi(A) = A®G):itis clearly exact. So it remains
to prove that theeduced Koszul complg®6.5.1) is exact when evaluated at a coinduced
objectpB. Note thatl’s (o B) = B, as it follows from the description (16.5.1).

Exactness is proved by induction en It » = 1, the coinduced object has the form
p1B = [],>0 B, and the reduced Koszul complex has the following form:

-~ . l f
KpiB): 0->B <> [[B~<> [[B—>0—" .

n>0 n>0

where ppt = 1 and pj,« = 0 forrn > 0. Itis split by the indicated morphisms, defined by
T =prgand ppo = 0and pj, o = pr,_4 forn > 0. Do check it!

Now, forr > 1, the monoidG is the produciG = G’ x G; whereG’ is the submonoid
generated by, ..., f,—1andG; is generated by, ; both submonoids are free. Accordingly,
a co-G-object may be viewed as a @;z-object in the category of c6”-objects,2¢ =
(AS")G1, and the functop is a compositiop = p1p”:

pr AL qG P (GO — G
The Koszul cochain complex may be defined by a similar reoarskt X = Ky X =
K¢ Ky, X. Now, let B be an object of!, and seiB; := p’B; thenpB = p1B1. The following
two morphisms of complexes are homotopy equivalences,

B — Kt/(p'B) = Ki/(B1) — Ky Ky, (p1B1) = Ki (pB),

the first by the induction hypothesis, the second becauselitained by applying to the
morphismB; — Ky, (p1B1) which is a homotopy equivalence by the case 1. a
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Corollary. For the free abelian monofd with generatordsi, ..., f,, the cohomology with
coefficients in a cas -objectA is equal to the Koszul cohomology with respect to the seqeienc
f-—-1..., f—1,
HP(G,A) = Hf_; . 4(A).
(16.6) Example.Let G = Z" be the free rank-abelian group, with multiplicative generators
e1,...,e-. Asin (16.5), the group cohomology is given by the Koszulaoblogy,
HP(G,A)=Hl_, , _1(A).
(16.7) Example. If A is a coG-object in%l, then the group homomorphisé — Aut(A)
extends to a ring homomorphisAG — End(A), denoted. — A4, from the group ring of
G to the endomorphism ring of.

Assume that is a finite group. Then theorm N is the elementV = ) _,u € ZG.
So the norm defines an endomorphidim= N4: A — A. Again, sinceG is finite, there is a
morphismD = Dy: [[,cq A — AdefinedbyD =) _;(sa — 14) pr,.

Clearly, sinceN (s — 1) = (s — 1) N inthe group algebra, it follows thatD: [[[A — A
andeN: A — [], A are zero. So the imag€A := Im N, of the norm is a subobject of
I'CA, and the imag@ A := Im D, is contained in the kernglA := Ker N4 of the norm.

Lemma. If A is co-G-induced,A = p B, then the following two zero sequences are split by
the morphisms defined in the proof:

A A TTA 2454,
seG seG

Proof. With A = p B the first sequence is the following, split by the indicated'phdsms:
HB«” l_[B«” l_“_[B

hereN ande satisfy the equations pN = ), pr,, and pg pr,e = pr,, —pr,. The mor-
phismst ando are determined by the projections, pr= pr; and prt = 0 whenr # 1
and pr o = prq pr,. Itis easy to verify the equatioNt + o¢ = 1.

The second sequence is the dual of the first; so the resulhésécond second is a
consequence of the first. a

(16.8) Example.Let G = C, be the finite cyclic group of ordef with a generatoe. (So the
additive version of5 is the grou/d7.) Then the following coaugmented complex defines
a resolvent complex far¢:

e—1
e

0>T04A A5 AN Qg AN
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As a consequence, for > 0,
H?~YG,A) = yA/DA,  H?(G,A) =TC%A/NA.

(16.9) Exercises.

1. Prove for afinite grou and aG-objectA that thep’th cohomologyH? (G, A) for p > 0
is killed by the order ofG. [Hint: Consider for the standard compl€kA the morphisms
oP*1: 1Pt — 117 determined by the projections,

prsl,...,sp Gp+l = (_1)p+l Z prsl,...,sp,s :
seG
Prove thabd + do = |G|. Is it unfair not to specify the range f?]
2. (1) LetG be the group of order 2. Give an example of a commutative gnotlpa G-action
such thati” (G, A) # 0 for everyp > 0.
Let G be the monoid of order 2 generated by/awith f2 = f. Prove for any cas-object
AthatH? (G, A) = 0 for all p. [Hint: prove thatl"® is exact.]

17. Thge Lyndon spectral sequence.

18. The spectral sequence of a Galois covering.

(18.1) Setup. Consider for a topological spacethe set of singulap-simplices inX,

Ap(X) = Hompep(AP, X)  p> -1
Let 2 be an abelian category with]’s, and A an object in. We write Csing(X, A) for
the productd®»X). Then there is a positive compleX = Csing(X, A) with differentials
defined by formulas analogous to those defining the chain Ea@®"9(X, Z). With an
obvious coaugmentation from~1 = A there is a similareduced singular cochain complex
Csing(X, A).

Alternatively the differentials between the objectsfaf,g(X, A), and other related mor-
phisms, may be defined by the following process of of transigdsmear maps between the
modules in the chain complezs"9(X, Z): For any setl the projections pr. A’ — A for
i € I form a family of morphisms in the set HaqiA’, A), thatis,i ~ pr; is a map of sets
from I to Homy (A, A). So it extends to a homomorphism of abelian groups,

781 — Homy(A', A);

naturally, the image of en elemente Z®’ will be denoted pr: A” — 1. If ¢ is the finite
linear combinatior = ) _; ¢;i, then py. is the sum morphism pr= ), _; ¢; pr; in the group
Homgy(A!, A). With this notation there is for every linear mapZ®’ — Z®/ an associated
transposed morphism

o' A7 — A", defined by pre" = pr,; .
It is easy to see that transposing is functorial:
((pw)tr — tr(ptr

The differentials in the cochain compl&king(X, A) may by obtained by transposing the
differentials ofCS'"9(X, 7).
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Expl 18.2 Examples; illustrations

(18.2) Example. Other linear maps may be transposed. For instance: Fot-sphere
(n > 0) there is a homotopy equivalen€&"9(X, Z) = 7Z(0) & Z(n). Consequently, for the
general cochain complex there is a homotopy equivalence

Csing(X, A) = A(0) ® A(—n).

(18.3) Setup. Amap f: X — Y (of topological spaces) is@vering projectionf ¥ may

be covered by open subsétssuch that the restricted mafy : f 21U — U is isomorphic to
a projectionU x J — U with a discrete sef (equivalently, if f~1U is a disjoint union of
open setd/, each being mapped homeomorphically otitoThe covering igrivial, if f is

isomorphic to a projectiolf x J — Y.

It is a standard fact that every covering of the unit squarg][Q [0, 1] is trivial. Itis a
consequence that every covering of a 1-connected (i.&.cpanected and simply connected)
spacely trivial. It follows that a covering has the followindting property. for every pair
of based mapp, ¢:

(X, x)
v

T
(Yo, y0) 5~ (Y. ).

wherep is a covering andy is 1-connected there is a unique n@p, yo) — (X, x) making
the diagram commutative.

Consider a topological spaceé with a properly discontinuousction of a groupG, in
other words, every point € X has on open neighborhoad such thaty/ N sU = ¢ for all
elements # 1in G. It follows easily that the quotient map,

X = X/G,
is a covering projection.
Clearly, G acts on each set ,(X) of singularp-simplices. By the lifting property, the
map induced by — X/G is surjective:

Ap(X) = Ap(X/G),

LetT, € A,(X) be a subset mapped bijectively omig (X /G). Assume thap > 0 so that
AP # . Then, by uniqueness of the lifting,, (X) is the disjoint union of ‘translates’ df,,,

Ap(X) = \/ 1(T)).

teG

The action ofG on the set , (X) induces an action a on the producti#»X). Moreover,
it is easy to see that the differentials in the complex conemith the action of5; hence the
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cochain complexCsing may be viewed as a complex of objects fratfi. Moreover, by the
description above,

AN =TT A"
teG
hence eacld > is atrivial G-object, induced by the objedt’» = A2»X/6) |n particular,
there is an isomorphism,
[ Csing(X, A) = Csing(X/G, A). (18.3.1)

As the objects ofCsing(X, A) are co-induced;-objects, and hence acyclic forC, the left
side of (18.3.1) is the hyper derived Bf evaluated at the complesing(X, A):
RTCCsing(X, A) = Csing(X/ G, A). (18.3.2)
A 2-spectral sequence falls out:
HP(G,HY(X,A) = H"(X/G, A). (18.3.3)
19. Some special Galois coverings.

(19.1) Setup. Let A be an object in an abelian categdlly Assume that the group
acts properly discontinuously on a topological spAceThen there is an isomorphism of
complexes,

RT9Csing(X, A) = T'%Ceing(X, A) = Csing(X/ G, A); (19.1.1)

the first equality because the compl€xng(X, A) on the left side is consists of co-induced
G-objects which are acyclic fof®. The functorRT'® respects quasi-isomorphisms and
exact triangles. Hence, from the mapping cone,

6‘Jsing(X» A)

RN

A(0) Csing(X» A),

and the isomorphism (19.1.1), there is an induced exacigfiea

RFG55|ng(X, A)
(19.1.2)
RTCA(0) = Csing(X/G, A).

(19.2) Example.The groupG = Z acts as translations on the sp&oef reals. The quotientis
the 1-sphereR/Z = S_l. The spac® is contractible, and so there is a homotopy equivalence
of chain complexe€>"9R, Z) ~ Z(0). Hence there is an induce equivalence of cochain
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complexeLsing(R, A) ~ A(0). Itis easily seen to b&-invariant, whenA is viewed as a
constaniG-object. Consequently, by (19.1.1),

Csing(R/Z, A) = RT'C A(0).

So the cohomology o is the cohomology?*(G, A) which, with the constant action of
G = Z on A, is the following:

Hgog(Sh, A) = Hgng(S*, A) = A, HZE (S*, A) =0forp > 1.

(19.3) Example. The groupG = 7Z" acts onr-spaceR”. The quotient is a product of
1-spheresR’ /7" = (S1)". HenceHsﬁng((Sl)’, A) = HP(G, A) (WhereA is the constant
G-object); the latter conomology is theth Koszul cohomology ofA corresponding to the

sequencé = 0. Hence,
smg((Sl) )= A(p)'

(19.4) Example.The cyclicgroupG = +1 operates of” viathe antipodal map — —x;the
guotients” /i isthe real projective-spaceP” = IP" (R). Thereisanatural homotopy equiv-
alenceZ(r) — Csing(s7, 7) and hence a homotopy equivalen¢e—r) — Cs.ng(X A).
The equivalence isot G-invariant. In fact, it is easy to see that the induced actibthe
element—-1 € G on Hgmg(S’, A) = A is multiplication by(—1)"+1.

Let us writeA* for A with this G-action (ifr is odd, it is the constant action 6f on A,
and wherr is even, the elementl € G acts as multiplication by-1 on A). Then there
is a quasi-isomorphism of compIexes@fobjects@sing(X, A) —=> AT (—r). So the exact

triangle (19.1.2) takes the following form,

RTCG AE(—r)
ﬂ \ (19.4.1)
RTC A(0) Csing(IP", A).

The pth cohomology of the top vertex 87" (G, A*), and it vanishes whep < r. So
the long exact conomology sequence of the triangle yielms@phisms,

A whenp = 0;
(IP",A) = HP(G,A) = { »2A when O< p < r, podd
A/2A whenO< p <r, peven

smg

Without knowledge of the morphisms in the triangle, the €gaquence does not determine
the cohomologws’?ng(ﬂf”, A) for p > r. A triangulation of/IP” may be obtained from a

G-invariant triangulation of”; it is a consequence thaisfing(IP’, A) = 0for p > r. Given

this fact, the long exact sequence reduces to isomorpHém (G, AT) = HP+1(G, A)
for p > r and an exact sequence:

0— H'(G, A) — Hjny(IP", A) - H%(G, A*) > H'T(G, A) > 0.
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In turn, depending on the parity of the exact sequence is the following:

0—2A— HL (IP",A) > A— A/2A — 0 (r odd),

sing

- - (19.4.2)
0— A/2A — Hsing(P ,A) > 2A —> 2A — 0. (r even.

The exact sequence determines the cohomology in imporésatse likeA = Z, A = R,
or A = Fp. Itis natural to expect from (19.4.2) in general tifagng(ﬂﬂ, A) = A when
r is odd, andHg,((IP", A) = A/2A whenr is even. In fact, there is an isomorphism
Hs’?ng(lP’, A) = HP(C<")forall p, whereC<" is ther’th cochain truncation of the following
positive complex (with the firstt in degree 0):

C: 0-A4-%A4-240% 424 % 4 ...
20. Local systems; homotopy groups.

(20.1) Setup. Fix a topological spac& and a decent catego#; Assume in particular the
¢ has small limits, and denote by 0 the initial objectofA ¢-valuedlocal systenon X is a
functor,

G:P(X)— ¢,

where P(X), the fundamental groupoidf X, is the following category: The objects of
P = P(X) are the points o, the morphisms i? froma € X to b € X are homotopy
classes of paths fromto b, and composition ifP is concatenation of paths. The category
P = P(X) isindeed a groupoid: every morphism is an isomorphism.

Fix a pointbh in X. The group Aub(b) (equal to Eng (b)) is thefundamental group
m = m1(X, b) of X atb. View the groupr as a category with one object. Then the inclusion
is a functor,

b:m— P, (20.1.1)

from the fundamental group to the fundamental grougdie= P(X). The corresponding
restriction functor,
b*:¢P - ¢7, (20.1.2)

associates to a local syst&hthe cosr-objectG(b). By the Kan-construction, the restriction
functor has a right adjoint functay, : ¢* — ¢”. It associates with a ce-objectA the local
system given as a limit,

(opA) (@) = lim 4, (20.1.3)

a/m

where the index categowry/r is the right fiber at: of the inclusiont — P: Its objects are
the paths: @« — b, and there is only one morphism froma — b ton:a — b, which is
the loopn&—1. Consequently,

A if a, b belong to the same path component,

() (@) = { 0 otherwise

an explicit isomorphism in the first case being given by a chaoif a path clasg — b.
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Hence., whenX is path connected: For amye X the functor§ — §(b) is an equivalence
between local systems dhand cos (X, b)-objects.

If a local systen® has values in an abelian category wjits we may form the complex
C (B, &) with cohomologyH?” (3, 8). If b € X (andn := 7 (X, b)), we have the restriction,

C(B, 8) — C(m, &(b)),
and, for a car -objectA the right adjunction,
C(B. ppA) — C(7, A).

As noted above these two maps of complexes are homotopyateioes wherX is path
connected. In particular, inthe path connected case, timwgologyH ? (3, &) isisomorphic
to the group cohomolog¥ ? (m (X, b), &(b)).

(20.2). Special local systems are the homotopy groups:Stidie then-sphere
S"={xeR" | xZ=1),

as a pointed topological space (pointed by the north pcte (0, ..., 0, 1). Letn, (X, b) be
the set of homotopy classes of maps (of pointed topologmates)y : (S, p) — (X, b).
The class int, (X, b) represented by is denoted ¢]. Clearly, mo(X, b) is the set of path
components oK.

Assume that > 1. Then there is a well defined compositiondg( X, b) determined as
follows: Denote bys” , S; andsS’; the subsets of” determined, respectively, by the relations
x1 < 0,x1 =0, andx; > 0. By squeezing the equatsj to a north pole we get a map,

%: 8" —> §"v S",
4trucm

For mapse, ¥: (S", p) — (X, b) we obtain a mape, ¥): $" v 8 — X and the
composition in,, (X, b) is determined by the formula,

[o] «[v¥] :=[¢* ¥].
Itis a standard fact that the composition is well defined jaadjroup law om, (X, b), abelian
if n > 2. [Note that the obvious identificatiory (X, b) = 7 (X, b) is an anti-isomorphism
with respect to the group structures as defined here.]
For a morphisng : a — b in the path categorjg and an element € 7,,(X, b) there is an
elementt,z € m,(X, a) determined similarly the the obvious map — S" v I squeezing
the upper hemisphere o The mapg, is a group ismomorhism,

Ei (X, b) —> mn(X, a),
and the formation ofr,, (X, b) is an inverse local system ofi, denotedr, (X), with values
in Setswhenn = 0, in Gr whenn = 1, and inAb whenn > 2.
Note that the isomorphisam (X, a) — m1(X, b) corresponding to a morhisgt a — b

is given by the formula,
- E(w) =& Lowok.

We will need a few properties of the,.
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Fact
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

35a.
35h.
35c.
35d.
35e.

1. The Homotopy addition Lemma. 20.3
Singular cohomology with coefficients.

The Hurewicz spectral sequence.
Homotopy axioms for singular cohomology.
Barycentric subdivision.
Cubical cohomology.
The Leray—Serre spectral sequence, version A.
The Leray—Serre spectral sequence, version B.
Geometric realization.
Base change, bundles, etc. for singular cohomology.
Cohomology of presheaves.
Cech cohomology of presheaves.
Homotopy axioms for Cech cohomology.
Alexander—Spanier cohomology.
Paracompact spaces and fine presheaves.
Duality on locally compact spaces.

Verdier duality.

The dualizing complex.

Bivariant conomology.

Computations.

Manifolds.
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35f. Vector bundles.
35g. Algebraic cycles.
35h. Algebraic cocycles.

35i. Complete intersections.
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Constructions Misc 1.1

Acyclic complexes

1. Constructions.

(1.1) Definition. Recall thatiff: X — Y is a chain map, then theoneof f is the complex
Con f with objectsX (1) @ Y and differential(_fa g)) The cone off fits into a triangle,

Conf
(1,)%5“ ‘\(({)
X Iy,

where the notatio@ ~» X indicates indicates a chain map— X (1).

Dually, define theco-coneof f as the comple>C°:onf with objectsX & Y(—1) and
differential (]? —Oa)- The co-cone fits into a similar diagram. Note the simple eation
between the cone and the co-cone:

Con—f = Con f(=1). (1.1.1)

(1.2) Lemma. Consider chain mapg: X — Y andg: Y — Z. Form the con€on f of f
and the co-con€ong of g. Consider the resulting diagram,

X Conf

S
fi Y &

| / y« |
LY Y
Cong Z

Then there is a unique correspondence between the follaWwieg sets: The liftings of to
the co-conff:ong, the extensions of to the cone off, and the homotopies frogif to 0.
More precisely, ifv: X (1) — Z is a family of maps, then the following conditions brare
equivalent:

(i) The map({;) is a chain magX — Cong.
(i) The map(h, g) is a chain ma&on f — Z.
(i) The maph is a homotopyg f = hd + dh.
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Misc 1.2 Acyclic complexes

Moreover, if a lifting f of f corresponds to an extensi@rof g under the correspondance
above (assuming necessarily thdtis homotopic td), then the con€ of f is equal to the
co-cone ofg.

Proof. The proof is a simple computation. Note tiahasX (1) @ Y & Z(—1) as objects,

and the following differential
-3 0 O
( f 8 0 )
h g —0

(1.3) Remark. The maps of Lemma (1.2) appear as edges in the following edtah

S
T\l

The octahedron has eight faces. Four of the faces are “triarigthe other faces are commu-
tative triangels. The square involvirigong, Y, C, and Conf is commutative. The square

involving Conf, X, Z, andéong is commutative up to the homotopy defined (b%)

(1.4) Lemma. Let R be a full triangulated subcategory of complexes araiclass of com-
plexes such that every compl&xin K has a righi-resolution. Then, for every chain map
f: X — Y in R there is a factorization,

P (1.4.1)

such thalX — Z is a quasi-isomorphism aritl — Y is a semi split epic with kernel iB.

Proof. Form the cone Conf of f. Letg: Conf — I be an arbitrary quasi-isomorphism.
Consider the compositiog: Y — Conf — I. By constructiong is an extension of.
Denote byZ = éong the co-cone ofy. Then, by Lemma (1.2), there is a lifting of

f corresponding t@. Hence we have obtained a diagram (1.4.1). The rhap a quasi-
isomorphism because its cone is equal to the co-coge ©he mapZ — Y is the projection
from the co-cone&Z of g: Y — I. Hence the maZ — Y is a semi split epic with kernel
equal tol (—1). Thus the assertion of the Lemma follows, because by assamptan be
chosen such thdt(—1) belongs td. a
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Constructions Misc 1.3

(1.5) Construction. Let X be a complex. Recall that the truncated quotient complgX
(with a lower index) is the complex

Tan: "'HOHZnHXn_lHXn_zg»"'

whereZ, is thenth cocycle object, that is, the cokernel of the differenkgl.1 — X, (as
allways,X, = X™"). The induced mapl, X — H,(t<,X) is anisomorphismwhep < n;
the homologyH,, (t<,X) equals O forp > n. The truncated quotients fit into an inverse
system

e T X~ T X~ e X

havingX as inverse limit.

Let J be a triangular class of complexes bounded below such tleay dsounded be-
low complexX has a rightJ-resolution. Then it follows from Lemma (1.4) that there is a
commutative diagram of inverse systems

0« ToX ~— o+ «— Ty X ~—— T2 X <~ -
0 < Ig ~ e I, < ) SR P —

where the vertical maps are quasi-isomorphisms and the ofdgdtom row are semi split
surjections of objects df. Indeed, assume that tlig’s are found forp < n. To define the
I,+1 at then 4 1'th level, apply Lemma (1.3) to the compositiog, 1 X — 1, X — I,.

Consider the inverse limit lim}, and the corresponding map of complexXes— Iim 7,.
Question.Under what conditions is the map — Ijm 1, a quasi-isomorhism? Clearly, the
homology ofX is equal to the inverse limit of the homology of thes, H? X = lim H? I,.
Fix a degreep. Note that we have a commutative diagram

HPX "~ lim HP (v,)

| 5

HPT —— lim HP (1)

It follows that the mapH/” X — HP” [ is injective and that/?I — |im H” (1,) is surjective.
In particular, the majX — I is a quasi-isomorphism if and only iff for ai the canonical
map

HP(lim 1,,) — lim H? (1)

is an isomorphim.

It follows that the question has an affirmative answer if theerse limit Jimis exact.
Assume more generally that the direct prodg is exact. Then it is well known that for
any inverse system ovél of complexes and semi split epics there is an exact sequence

0—lim® HP~Y(1,) — HP(lim I,) — lim H”(1,) — 0. (1.5.1)

In the case at hand, thgé”~1(1,)’s are essentially constant, and hence LhélPimanishes.
Hence the answer is affirmative when the category has ¢}g.
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Misc 1.4 Acyclic complexes

(1.6) Lemma. Consider overthe categorsb) of Z-modules an inverse system of complexes,

0471047...4711147 n+147...’

where the maps are semi split epics. Then the canonical nsapjective:
H(im 1,) — lim H°(1,). (1.6.1)

Denote byK, the kernel of the surjectioh, — I,,_1. Assume thatH®(K,) = 0 forn > 0.
Then the canonical map is an isomorphism. If, in additiéh(K,) = 0 forn > 0, then

H°(jm 1,) = H°(1,) forn > O.

Proof. The last assertion is a consequence of the preceding assestnce, under the addi-
tional assumptions, the inverse syst&ff(7,) is essentially constant.

The two first assertions of the Lemma is contained in the st of (1.5). In fact, the
asserted surjectivity follows from the exact sequence.L).8Morover, it follows from the
vanishing of the7%(K,,)’s that the map#f ~1(1,) — H~1(1,_1) are surjective when > 0.
Therefore, as is well known, thglﬁlr)n in the exact sequence (1.5.1) vanishes, and hence the
asserted bijectivity is a consequence.

Here is a direct proof of the first two assertions: By hypohethere is a chain map
fu: I,(=1) - K,11 and an identification of,, 1 with the cone off,,,1. Hencel, ;1 =
I, & K, 1 with the differential as in (1.1).

To prove the asserted surjectivity, represent an elemethieonight hand side of (1.6.1) as a
sequence of cycles (of degree @), c1, . .. ), such thatthe image of ;1 in I,, ishomologous
toc,. Itis asserted that there is a seque@kgds, . . .) such thati, is homologous te,, and
the image otl, 1 in I, is equal tad,,. The elementd,, are constructed inductively. Assume
thatdo, ..., d, = d have been found. The element.; has the forn(,i), and the elements
homologous t@, 1 have the form

(/i> " <_fa g) (/i:> - <k +Cf_c,a: ak,)- (1.6.2)

By assumption, the image of 1, that isc, is homologous t@. Hence the exists an element
c'in I, of degree-1 such that — d = d¢’. It follows that an element on the right hand side
of (1.6.2) has the forn(u,ﬁ/), as asserted.

To prove the asserted injectivity, consider an elementeénkérnel of (1.6.1). Represent
the element as a cycle(of degree 0)(ko, k1, ...). Then the finite columi, with entries

ko, ..., k, represents the image #°(1,). By assumption, the cycle, is a boundary, that
is, it has the fornr,, = dd,,, whered,, is an element of degreel in I,,, given by a sequence
lo, ..., 1,. Itis asserted that an infinite sequerigds, ... can be found. The sequence is

defined inductively. The element. 1 is equal to(clj). Letc, = dd,. By assumption, the
elementc, 1 is a boundaryg,+1 = dd,+1, Wwhered, 1 has the forn()l‘). It is asserted that
d,+1 dan be chosen of the for(f@”). The assertion is easily verified. a
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Constructions Misc 1.5

(1.7) Corollary. Given an inververse system of semi split epics:
O« Ip<« <1, <.

Assume that everl, is homotopy injective. Then the inverse linhit= lim I,, is a homotopy
injective complex.

Proof. Recall that a complek is homotopy injective if, for every acyclic complékwe have
that Hot(X, I) = 0, or equivalently, if the functoHom (—, I') takes acyclic complexes to
acyclic complexes.

To prove the Lemma, leK,, be the kernel of the split epif, — I,_1. Then, each
K, is homotopy injective. LeX be any complex. Then thHom (X, I,) form an inverse
system of split epics, anflom (X, K,) is the kernel of theV’th map of the system. The
p’th cohomology of the complek om (X, Y) is Hot(X[—p], Y). Assume thak is acyclic.
Then the cohomology aoffom (X, K,) vanishes in all degrees and for all Therefore, by
the Lemma, HatX, I) is equal to HotX, I,) for n > 0, and hence HoX, I) is equal to
0. i

(1.8) Examples. (i) Every right complex of injectives is homotopy injectiv&he proof is
easy and well known.

(i) Assume that the underlying abelean category has finjective dimension, that is,
assume for somé that every object has an injective resolution of length astdo Then
every complex of injective objects is homotopy injective fact, if Q is any complex of
injectives andX is an arbitrary complex, then

Hot(X, Q) = Homp (X, 0). (1.8.1)

To prove the assertion, we need that any com@eadmits a quasi isomorphism into a
comples of injectives. The latter result follows from thelma below.

Clearly, it suffices to establish the isomorphism (1.8.18t Ws first note that any acyclic
complexQ of injectives is homotopy trivial. Indeed, for thwecycle objectz” of O we have
an infinite left resolution,

> Q"2 0" s 7, 0.

Since the resolution has length at least equal, tib follows thatZ,, is injective. Therefore,
the inclusion ofZ,, in Q,, is split. Hence the acyclic comple® is homotopy trivial.
Now, the arrows in the group on the right side of (1.8.1) apgesented by diagrams,

:
N
X 0,

wheres is a quasi-isomorphism. The morphisrmay be followed by a quasi-isomorphism
into a complex of injectives. Hence we may assume thats a complex of injectives.
It suffices to prove that the induced map, H6t Q) — Hot(X, Q') is an isomorphism.
Equivalently, if Q” is the cone of, it suffices to prove that HoX, Q") = 0. However,Q”

is a complex of injectives, and acyclic sincis a quasi-isomorphism. Hen¢¥’ is homotopy
trivial as was observed above. Therefore, (XotQ”) = 0.

227



Misc 1.6 Acyclic complexes

(1.9) Note. The result used in (1.8)(ii) that an acyclic complex of itijees is homotopy
trivial does require some additional hypothesis. Condigieinstance the ringe = Z/4 and

the infinite complexP with P, = R and multiplication by 2 as differentials. Thehis an

acyclic comples of projectives. Obviousi,is not homptopy trivial.

(1.10) Lemma. LetsQ be an additive class of objects such that every object hasibeading
into an object of). Then every compleX has an embedding into a complex of objects from
. Moreover, every positive complex has a quasi-isomorphirgma positive complex of
objects from. Finally, if Q has finite right dimension, then every complex has a quasi-
isomorphism into af complex of objects 1.

Proof. Chose a family of embeddingg, X < P into a family P of objects ofQ. Consider
P as a complex with zero differential, and form the cgnef the identity 1:P — P. Thus
0 has objects (1) @ P, and differential(> J). Clearly, (1}8) is a chain magX — Q. ltisan
embedding, because its second projection is the choselyfahembeddings/: X — P.
To prove the second statement,Xebe a positive complex. Chose as embedding> Q

into a complexQ of objects fromQ, and truncate? by definingQ? := 0 for p < 0. Hence
an embedding: X — Q into a positive complex is obtained. Embedd similarly thieszoel
of f, and continue to obtain an exact sequence of positive co@ple

0O-—>X——>0° >0 —~.... (1.10.1)

View the complex ofQ?’s as a first quadrant bicomplex. Then the exact sequencesdefin
quasi-isomorphim into the total complex of this bicomplex.

To prove the last statement, note that a resolution sinolét £0.1) can be formed for an
arbitrary complexX. If 9 has finite dimension, the resolution may be chosen finite.celen
the same argument as above applies. a

(1.11) Lemma. LetN be thick sub-category, ard< 9t a subclass of injective objects such
that every objech in 9t embeds into an object 6f Then every positive complexX with
cohomology irdlt admits a quasi-isomorphisi — I into a positive complex of objects
from73J.

Proof. Let X be a positive complex with cohomology . The positive complex and the
quasi-isomorphistX — I will be constructed inductively. It suffices to prove thddaing:
Given a complex of length of objects ofJ,

I. '~'4*04*104V~'~4>In—»04»---

and a chain mag : X — I whose cone Corf has cohomology{l’(éonf) =0forp < n,
then/ can be extended with one extra objéét?® in degreen + 1 into a complex’ and f
can be extended to a chain mgpX — I whose cone has cohomologi” (Con f) = 0 for
p<n+1.

To prove the assertion, embedd il cohomologyH” (Con f) into an object/ of J. If
Z" is then’th cycle object of Cory, there is an exact sequence

Conf* 1 27" .
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SinceJ is injective, the max” — J can be extended to a map Cgth — J. By construc-
tion, the latter map defines defines a chain maon f — J(—n), such thag induces an
injection of cohomology in degree Since Conf has zero cohomology in degree< n, it
follows that the co-cone @f has zero cohomology in degree< n. Let g be the restriction
of 3 to I, and denote by the co-cone 0f. By Lemma (1.1), the extensicgmfg corresponds
to a lifting f: X — I of f, and the cohomology of the cone pfequals the cohomology of
the co-cone of; hence the cone of has cohomology equal to 0 in degrge< n. Thus f
has the required properties. a

(1.12) Lemma. Consider a compleX of O-modules on a scheme. Assume tkidias quasi-
coherent cohomology. Chose aq1n5) a quasi-isomorphism from the truncated quotients
into bounded below complexes of injectives. Then the caogonlim I, of (1.5) yields a
quasi-isomorphinX — lim 1I,.

Proof. It has to be shown that the canonical map (in degree O Hﬂ()m I,) — lim HO(I,)
is an isomorphism. Note that the inverse system on the ragid lside is essentially constant:
Whenn > 0, H(I,) = H%(X). Hence it has to be proved that the canonical map

H(im 1,) - H°(1,) (1.12.1)

is an isomorphism when > 0. The two sides of (1.12.1) are cohomology groups of
complexes of sheaves. Hence they are equal to the sheaffificatf the cohomology of the
underlying complexes of presheaves. The map of presheafmalogy is the map

H(im 1,(U)) — H°(I,(U)) (1.12.2)

defined for all open subset$ of X. Hence it suffices to prove that the latter map is an
isomorphism over every affine opéh(whenn > ng, independent of/). The latter assertion
follows from Lemma (1.6). Indeed, assume thiais affine. The complex of modulgs, (U)

is the complex of sections ovéf in an injective resolutiork,, of H"(X)(—n). Therefore,
sinceH, (X) is quasi-coherent and is affine, the only cohomology &, (U) is in degree
—n. In particular, H°(K, (U)) = 0. Thus the conditions for applying Lemma (1.6) are
satisfied. It follows from Lemma (1.6) that (1.12.2) is annsaphism. a
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2. Injective complexes.

(2.1) Setup.Given a triangulated categofy and a multiplicative systefiin K. Recall that
an objecy in K is calledS-injectiveif Hom(x, g) = 0 for any objeck which isS-equivalent
to 0. Itfollows from the long exact sequencerbm that if g is S-injective then, for any map
s . x — yof S, the induced mapiom(y, g) — Hom(x, g) is an isomorphism. Similarly,
if two vertices of an exact triangle afeinjective, then so is the third.

In addition, recall that

Extg(x,y) := Homp(x, y[n]) = Homp(x[-n], y),

whereD := K S~1is the localized category.

(2.2) Definition. A complexg which as an object in the homotopy category €0tis
injective with respect to the multiplicative system of gui@emorphisms is calledomotopy
injective

(2.3) Lemma. Any right complexg of injectives is homotopy injective.

Proof. Let x be an acyclic complex and lgt: x — ¢g be a chain map. We have to prove that
f is homotopy trivial, that is, we have to show that there exastamily of maps: x[1] — ¢
such that, for alk,

Jn = On—1Sn—1 + SpOn. (2.3.1)

The mapss, are constructed inductively. Singeis a right complex, the equations (2.3.1)
hold withs,, := 0 forn < 0. Assume that morphismsg are found forn < p such that
(2.3.1) holds. To construe}.1, consider the morphispf’ := f,4+1—9,s,. As (2.3.1) holds
forn = p, we have that

f/ap = fp+18p - apspap = fp—i—lap - ap(fp - ap—lsp—l)'

The right side vanishes because= 0 andfd = df. Hencef’d, = 0. It follows, sincex

is acyclic, thatf’: x?*1 — ¢P*1 extends to a morphism defined on the+ 2)'th boundary
object ofx. The latter morphism extends, singé&*! is injective, to a morphism defined
onx?”*2. Thusf’ extends to a mag,1 : x”*2 — g,11. From f’ = s5,:13,+1 and the
definition of f’, it follows that (2.3.1) holds for = p + 1. a

(2.4) Lemma. Consider an inverse system of split surjective epimorphlishtomplexes,
O« qgop<«gr <.

Assume tha®l has infinite products. If eaafy, is homotopy injective, then the inverse limit
g = lim g, is homotopy injective.

Proof. See [Derl]. a
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(2.5) Lemma. Fix a complex:. LetK be a triangular subcategory biot() such ifx — z
is a quasi-isomorphim aned belongs toK , then there exists a quasi-isomorphism> x’
with x” in K. Assume that the functéwom (a, —) is derivable onk. Then,

R"hom(a, x) = Ext"(a, x). (2.4.1)

In particular,
R%hom(a, x) = Homp(a, x), (2.4.2)

whereD = D).

Proof. Sincehom(a, —) is derivable onK, there is a triangular subclags of K such that
(1) any complex of K admits a quasi-isomorphism into a compéeaf Q and (2) ifg is an
acyclic complex inQ, thenhom(a, g) is acyclic.

Clearly, it suffices to prove the special case (2.4.2). Meeedoy (1), it suffices to verify
(2.4.2) whent = ¢ belongs toQ. As Rhom(x, q) = hom(x, q), the left hand side of (2.4.2)
is equal taH®hom (a, ¢) = Hot(a, ¢). Thus it suffices to prove, farin Q, that the canonical
map is an isomorphism,

Hot(a, q) — Homp(a, q).

By definition, Homp(a, q) is the direct limit of Hota, ¢’) over the index category whose

objects are pairsa — ¢’ < g whereq — ¢’ is a quasi-isomorphism. By the hypothesis on
K, we may restrict to pairs with’ in K, and by (1) we may even restrict to pairs within

Q. However, by (2), the direct system is constant on the istticategory; hence the direct
limit is equalt to Hota, ¢), as asserted. a

(2.6) Example. Let T be a left exact functor defined @ Assume that is derivable, that
is, assume that there is an additive subclassf 2 such that (1) any object & admits an
embedding into an object a? and (2) if Q' is a subobject of2 and Q” and Q belongs to
0, thenQ” := Q’/Q belongs taQ andT Q — T Q" is an epimorphism. Then, as is well
known, the functorT is derivable onHor™ (). Assume that the derived funct®T is of
finite dimension, that is, assume that there is an intéggerch that for any object of 2, we
have thatR"T (A) = 0 forn > d. Then the functof is derivable on all of HaX). In fact,
consider the class of objecf$ such thatR” T (Q) = 0 for alln > 0. It contains the clas®
and, clearly, it has the properties (1) and (2). So we mayoepl with the class of objects
such thatR" T (Q) = 0 forn > 0. ThenQ has the following addtional property: (3) given a
exact sequence,

O—>A—>Q0—> Q1—>---—> 0? > B — 0.

If all the Q" belongs taQ, thenB belongs taQ.

Now it follows easily from (1) and (3) that any complex has aténmight resolution of
length at mos# with complexes of objects af. It follows that any complex admits a quasi-
isomorphism into a complex of objects frofd. Moreover, ifg is an acyclic complex of
objects from, then the complefq is acyclic. Indeed, from (3) it follows that the cocycle
objects ofg are inQ. As T is short exact omQ by (2), it follows thatT¢ is acyclic.
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