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Mobius transformations

1. Mobius transformations.

(1.1) Setup. The general linear group GL2(C) consists of all 2 x 2 matrices with complex
entries and non-zero determinant,

a b
o= [C d] where ad — be # 0. (1.1.1)

The special linear group SL2(C) is the subgroup formed by matrices (1.1.1) for which the
determinant, det o« = ad — bc, isequal to 1. For amatrix « of the form (1.1.1) and apoint z
of the Riemann Sphere (the extended complex plane C = C U {o0}), we define the product,

az+b
= . 1.1.2
= (112

The transformation z — « - z of the Riemann sphere is called the Mdbius transformation
associated to the matrix «. The denominator of the fraction (1.1.2) will play an important
role; we define, as afunction of the matrix o and the complex number z,

J(o,z) ' =cz+d. (1.1.3

Denote by C? the 2-dimensional vector space of columns, and by (C%)* the subset of
non-zero columns. Then there is a surjective map (C2)* — C defined by

71
— z1/z2.
22

The non-zero columnsthat are mapped to agiven point z of C are called the representatives of
z. Clearly, the representatives of agiven point form the non-zero columnsin a 1-dimensional
vector subspace of C2.

Three matrices deserve a special notation:

s IS -

Yy

Notethat s = ru.
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(1.2) Example. The trandation z + z + b and the multiplication z + az for a # 0 are
M Obius transformations, associated to the matrices,

[0 1) [5 1]

The point oo isfixed. On the other hand, if d is given complex number, then d is mapped to
oo under the M 6bius transformation associated to the matrix,

01
|1 4]
(1.3) Proposition. (1) Two matrices o and B define the same Mdbius transformation, if and

only if they are proportional.
(2) The following equations hold for the product defined in (1.1.2):

a-B-)=(@p)-z, 1-z=z

(3) Given in C two sets of 3 different points, (x, v, w) and (x/, v/, w’). Then there is a
M@ébius transformation z — « - z under which (u, v, w) — (1, v/, w’), and the matrix « is
unique up to multiplication by a non-zero scalar. In particular, the Mdbius transformation
Z > « -z isunique.

(4) If a column Z represents the point z, then the column «Z represents the image point
o - Z.

Proof. Clearly (4) holds, and (2) isan immediate consequence. In (1), obvioudly, if the matri-
cesa and B are proportional, then they define the same M6bius transformation. Conversely,
it followsfrom (3) that if two matrices define the same M obius transformation, then they are
proportional.

To prove(3), consider aset of 3 columns (i, v, w) representing 3 different points (u, v, w)
in C. Say that the set of representativesis balanced, if

W= ii + 7. (13.2)

When arepresentative w of w isgiven, thereisaunique choice of representatives of u and v,
such that the resulting set of representatives is balanced. Indeed, the vectors representing a
given point form the non-zero vectors in a 1-dimensional vector subspace of C2. Therefore,
since C2 is a 2-dimensional vector space, the decomposition (1.3.1) is the unique decompo-
sition of the vector w into a sum of two vectors lying in two given different 1-dimensional
subspaces of C2. It followsin particular that a balanced set of representativesis unique up to
multiplication by a non-zero scalar.

Choose two balanced sets of representatives, (ii, 9, w) for (u, v, w), and (u’, v/, w’) for
@', v, w). If (u, v, w)ismappedto (u’, v’, w') under aMobius transformation z — « - z,
then, by (4), (au, av, aw) isaset of representativesfor (u/, v/, w’), and it isabalanced set,

6
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because (i, v, w) isbal ancgd. :I'hgrefore, by uniguenessof balanced sets, theset (au, av, aw)
is proportional to the set (1/, v/, w’). Hence we obtain the matrix relation,

alit, 9, W) ~ W', v/, w). (1.3.2)
In particular, extracting the equations of the first two columns, we obtain that
a~ W, )@, 0"t (1.3.3)

Conversely, if o isdefined by equality in (1.3.3), then equality holdsin (1.3.2), since, on both
sides, the third column is the sum of the first and the second. Therefore, by (4), the M6bius
transformation associated to @ maps (u, v, w) — (', v, w’).

Thus (3) has been proved, and the proof is complete. I

(1.4) Definition. Usually wewriteaz for theproduct o - z. It followsfrom Proposition (1.3)(2)
that the product («, z) — «z defines an action of the group GL 2(C) on the Riemann sphere
C. Clearly, the Mobius transformations are analytic automorphisms. Hence the associated
representation is a homomorphism of groups,

GL2(C) — Auty(C).

It iswell known that the homomorphism is surjective, that is, every analytic automorphism
of the Riemann sphere isa Madbius transformation. It follows from Proposition (1.3)(1) that
the kernel of the homomorphism is the subgroup C* of non-zero scalar matrices. For any
subgroup G of GL>(C), we denote by PG the quotient of G modulo the subgroup of scalar
matrices contained in G, or equivaently, PG is the image of G in the group of Mdbius
transformations. The subgroup G iscalled inhomogeneous if it contains no non-trivial scalar
matrix, that is, if G = PG.

Note that PGL »(C) isthe group of all Mdbiustransformations. The group PSL2(C) isthe
guotient,

PSL2(C) = SL2(C)/ £ 1.

Every matrix in GL2(C) is proportional to amatrix in SL2(C), asit follows by dividing by
a sguare root of the determinant. Hence PSL2(C) = PGL2(C), and every Mdbius transfor-
mation is associated to amatrix in SL2(C). A subgroup G of SL2(C) ishomogeneous if and
only if it contains the matrix —1.

(1.5) Example. To determine the M6bius transformation under which (oo, 0, i) is mapped
to (1, —1, 0), consider these two sets of balanced representatives for the two sets of points:

o7 a) [1 7 2]

It follows from (1.3)(3) that the M 6bius transformation is associated to the matrix,

et

Hencethetransformationisthemapz — (z—i)/(z+i). ItiscaledtheCayley transformation.
To obtain amatrix in SL2(C), divide the matrix by the square root of its determinant 2i, that
is, dividethe matrix by 1 + .
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(1.6) Corollary. Any Mdbius transformation preserves the cross ratio,

u—w Ju—=z

df (u, v, w, z) := (1.6.2)

v—w/ v—2z"

In particular, a Mobius transformation preserves angles, it maps a circle to a circle and the
interior of an oriented circle to the interior of the image circle.

Proof. The crossratio of four different pointsin C isthe complex number defined by (1.6.1).
It iseasy to extend the definition to the case when one of thefour pointsisequal to co. Clearly,
for any set of four columns (i, v, w, Z) representing (u, v, w, z), we have the equation,

det(iz, w) sdet(u, 2)

det (D, w)/ det(s,z)’ (162)

df (u, v, w, z) =

The first assertion of the Corollary is the equation df (¢u, v, aw, az) = df (u, v, w, z) for
any Mabius transformation z — «az. By (1.3)(4), the first assertion follows from (1.6.2),
since det(au, av) = det o det(u, v).

To prove the remaining assertions, fix a point v in C and, in C, apoint u # v. For any
point w in C different from u and v, consider the circle C,, through u, v, and w, oriented by
the order uvw. Let t,, be the oriented tangent in the point v to thecircle C,,,. If z isafourth
point, and ¢, isdefined similarly from the circle C, then the following equation holdsfor the
anglefrom ¢, to z:

[(ty, t;) = argdf (u, v, w, z). (1.6.3)

To prove Equation (1.6.3), consider first the case when u = oco. Then ¢, and ¢, are the two
oriented straight lines from v to w and z, and the left hand side is the angle between them.
On the other side, the cross ratio reduces to the ratio (v — z)/(v — w). Hence the argument
of the cross ratio is equal to the left hand side. Assume next that u # oo, and consider the
oriented (straight) liner = ud from u to v. It is the common chord to the two circles C,,
and C,. It followsfrom elementary plane geometry properties of thecircle C,,, that theangle
from wv to wi isequal to the angle from 1,, to 7,

L(ty, 1) = L(wD, wi).

Moreover, the angle on theright hand sideisequal to theargument of (u — w)/(v — w). Now,
the equation (1.6.3) follows from the additivity Z(z,, t) + £(t, t;) = L(ty, t;).

Asaconsequence of (1.6.3), thecrossratio df (u, v, w, z) belongstoR . if and only if z is
onthe arc vu of thecircle Cy,, it belongsto R_ if and only if z isonthearc uv of thecircle,
it belongs to the upper half plane if and only if z is an inner point of the circle C,,, and it
belongsto the lower half planeif and only if z is exterior to the circle.

Therefore, as a M 6bius transformation preserves the crossratio, it followsthat circles and
interiors of circles are preserved, and it follows from (1.6.3) that angles between circles are
preserved. I



Automorphic functions [Mob] 5
26. februar 1995

(1.7) Remark. In the proof of (1.6) we obtained information on the argument of the cross
ratio df (u, v, w, z) by writing the crossratio as a quotient of two fractions,

u—w u-—=z

, . (1.7.1)

vV—w V—2Z2
Similarly, we can obtain information on the modulus of the crossratio. Assumefor simplicity
that the three points u, v, and w are not on a straight line (in particular, they are different
from co), and consider the (ordinary) triangle defined by them. Denote by W the angle at w
and by U,, and V,, theangles at u and v. The two lengths |# — w| and |v — w| are sides of
the triangle, and hence the quotient |u — w|/|v — w| isequal to the quotient SinV,,/ SinU,,.
Hence, as the sum of the three angles is equal to =, we obtain for the modulus of the first
fraction (1.7.1) the equation,

— snV, .
‘u Y= 2 = cosW +cotU, sinW. (1.7.2)

v—wl snUy,
Thusthe modulus of the crossratio df (u, v, w, z) isthe quotient of the expression (1.7.2) and
the expression obtained similarly replacing w by z.

Fix u and v and an oriented circle C through u and v. Consider the expression (1.7.2) as
afunction d¢ (w) defined for points w different from « and v on the circle C. Theangle W
is constant, say equal to 6, on the arc from v to «, and on the arc from u to v the angle W
isequal to r — 6. Consider points on the arc from v to u. Then, as w runs from v to u, the
angle U,, increases from 0 to = — 6, and consequently, the function d¢ (w) decreases from
+o0 10 0.

Consider, for 4 different points (u, v, w, z) on C, the crossratio df (u, v, w, z). It follows
from the proof of Corollary (1.6), that the crossratioisreal and positiveif and only if w and z
bel ong to the same of the two arcs determined by « and v. In particular, when w and z belong
to the same arc, then the crossratio isequal to itsmodulus, and hence equal to d ¢ (w)/dc (z).
Asaconsequence, when z isonthearc from v to u containing w, the crossratio df (u, v, w, z)
increases from 0 to 1 as z runs from v to w, and it increases from 1 to +oo as z runsfrom w
tou.

It is easy to prove that the latter assertion holds also when the circleis astraight line.

(1.8) Definition. An open disk in C will simply be called adisk. Thus a disk is either an
open half planein C, or the interior of a usua circlein C, or the exterior (including oo) of
ausual circle. The boundary 9% of adisk ® isacircle, always oriented counter clockwise
around the disk. If © isadisk, we denote by SL (D) the stabilizer of © in SL»(C), that is,
the subgroup of SL2(C) consisting of matrices « for which «® = ©.

Throughout, we denote by $) the upper half plane: Jz > 0, and by & the open unit disk:
z| < 1. The boundary (in C) of $ isthe extended red line R, and the boundary of ¢ isthe
unit circle: |z| = 1.

(1.9) Corollary. Given two triples (9, w, u) and (9, w’, u’), each consisting of a disk, a
point in the disk, and a point on the boundary of the disk. Then there is a unique Mobius
transformation mapping the first triple to the second.

9
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Proof. The point w isin® and the point « ison the boundary 9. Clearly, thereisaunique
circle C orthogonal to 9®, and passing through w and u. The circles C and 99 intersect
in two points, one of which isu. Denote by v the second point of intersection. Define C’
and v" similarly from the second triple. Clearly, for aM&bius transformation asrequired, the
boundary of © ismapped to the boundary of ©’. Hencethecircle C ismappedtothecircle C’,
and consequently, v is mapped to v’. Thus, by Proposition (1.3), the Mdbius transformation
is the unique transformation under which

(u,v,w) — W, v,w). (1)

Conversely, under the transformation determined by (1), the circle C is mapped to the circle
C’. Hence the boundary of ©, which is orthogonal to C, is mapped to the boundary of ©’,
and hence © is mapped to ©’. Thus the M&bius transformation determined by (1) has the
required properties. I

(1.10) Example. Clearly, the Cayley transformation of (1.5) is the unique Mobius transfor-
mation mapping (9, i, co) onto (&, 0, 1).

(1.11) Remark. Let o beamatrix of GL2(C). Thetransformation z +— «z, wherez denotes
the complex conjugate of z, is called the anti-transformation associated to «. Note that
an anti-transformations is not a Mdbius transformation. However, the composition of anti-
transformations, associated to matrices « and 8, is a Mébius transformation, associated to
the product o 8.

Clearly, under an anti-transformation, the cross ratio of four points is changed into the
complex conjugate. As a consequence, an anti-transformation preserves circles, but angles
between circles are reversed. The interior of an oriented circle is mapped to the exterior of
the image circle (when the image circle is given the image orientation).

(1.12) Example. Complex conjugation is the anti-transformation associated to the identity
matrix. Under complex conjugation, the unit disk € is mapped to itself, but the orientation
of the boundary is reversed.

(1.13) Exercise. Proveforz € $ando € SL»(R) that J(0z) = |J (0, 2)|23z.

10
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2. Fixed points.

(2.1) Definition. Let o beamatrix in GL2(C), and consider the associated M 6bius transfor-
mation z — «z. Clearly, apoint z of C is afixed point of the transformation, if and only
if the representatives of z in (C?)* are eigenvectors of «. Therefore we get the following
classification of transformations:

Case 1. Thematrix o hasone eigenval ue and the corresponding eigenspaceis of dimension
2. Inthis case, the matrix « isascaar matrix,

A0
[0 2]
The associated transformation is the identity, and every pointin C is fixed.
Case 2. The matrix o has exactly one eigenvalue X, and the eigenspace is of dimension

1. In this case, the transformation has exactly one fixed point. The transformation (and the
matrix) is called parabolic. The matrix is similar to a matrix of the form,

A D
[0 2]
where b # 0.

Case 3. Thematrix o hastwo different eigenvalues 1.1 and A, (necessarily both with aone
dimensional eigenspace). In this case, the transformation has two fixed points. The matrix «
issimilar to amatrix for the form,

5 ]
0 Axl

Of particular geometric interest is the quotient 1.1 /X2 of the two eigenvalues (changed to its
inverse when the two eigenvalues are interchanged). The matrix « is called hyperbolic, if
the quotient is real and positive, and elliptic, if the quotient is of modulus 1. It is called
loxodromic if it is neither elliptic nor hyperboalic.

Note that the quotient of the two eigenvalues of a matrix « isequal to 1, if and only the
matrix is either a scalar or a parabolic matrix.

(2.2) Example. Obviously, under the action of SL(C) on C, the isotropy group of the point
oo isthe subgroup formed by the following matrices:

a b
[o a—l]' (2.2.1)
Clearly, among the matricesin (2.2.1) the parabolic matrices are the following:

#[o 1]

their associated transformations are trandlations z +— z + b for b # 0.

11
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Consider the matrices in (2.2.1) that fix in addition the point 0. Of these matrices, the
hyperbolic matrices are the following:
r O
+ [ 0 r1 ]’

where r € R, — {1}; their associated transformations are multiplications z — r?z. The
elliptic matrices are the following:
AN 0
[ 0 e_ie]’

where# € R — Zx; their associated transformations are rotations z — ¢%9z.
Aninvariant closely related to the geometric properties of Mobius transformations is the
following, defined for any matrix « € GL>(C):

1 tr(a?
he) == 2 ;(e(txa) '

By Proposition (1.3)(1), theinvariant h(«) depends on the associated M 6bius transformation
z — az only. Moreover, the invariant is unchanged if « is replaced by a conjugate cao —1L.
Expressed by the eigenvalues in (2.1), we have that h(a) = %(Al/kz + A2/X11). Thusthe
quotient A1/A2 and itsinverse A»/A1 are the two roots of the quadratic polynomial,

22— 2h(a@)r + 1.

In particular, if « is not a scalar matrix, then « is parabolic, if and only if h(e) = 1, @ is
hyperbolic if and only if h(«) isrea and intheinterval 1 < h < +o0, and « isdliptic, if
and only if h(«) isreal andintheinterval -1 < h < 1.

(2.3) Lemma. (1) The stabilizer SL($)) of the upper half plane $ is the subgroup SL 2(R)
consisting of matrices,

[‘C’ Z] where a. b, c.d € R and ad — be = 1.

The isotropy group SL (9)) o Of the point oo on the boundary of $ is the subgroup consisting
of matrices,

a b *
[0 a_l] fora € R*, b e R. (2.3.1)
In particular, the isotropy group SL ()~ is hon-compact and non-commutative. The follo-
wing relation holds,
a bl hifa b 171 11 @®h
[o a_l][O 1][0 a_l] _[o 1 ] (2:32)

12
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Moreover, the subset of SL ($)), consisting of matrices that are either parabolic or £1is a
subgroup, isomorphic to {1} x R.
(2) The stabilizer SL (&) of the unit disk € is the subgroup SU 1 1(C) consisting of matrices,

a b 2 2
[5 a] fora, b € Cand |a|? — |b|? = 1.
The isotropy group SL(€)g of the point O in & is the subgroup consisting of matrices,
a 0O
[0 a] fora e C, Ja| = 1. (2.3.3)

In particular, the isotropy group is compact and commutative (and isomorphic to the unit
circle U1(C)).

Proof. (1) Let o be a matrix in SL($)). The Mdbius transformation z — «z maps the disk
$ onto itself and, consequently, it maps the boundary R onto itself. Therefore, by Section
1, the Mdbius transformation is associated to a matrix «’ with real entries. Since o’ has real
entries, the imaginary part of o’ - i is equal to a positive scalar times the determinant of «'.
It follows that the determinant is positive, and dividing the matrix by a square root of the
determinant, we may assumethat o’ has determinant 1. As« and «’ define the same Mdbius
transformation, it follows that « = +a’. Hence o belongs to SL2(R). Conversdly, it is
obviousthat any matrix in SL>(R) belongsto SL($)).

The remaining assertions of (1) and the similar assertions of (2) are |left as an exercise. [

(2.4) Exercise. (1) Prove that the subgroup SL (£); of matricesin SL($)) having i as fixed
point is the subgroup SO2(R) of matrices,
[ ab b] fora,b € Randa? + b% = 1.
— a
Prove that the subgroup SL ($))1,—1 of matricesin SL($)) having 1 and —1 asfixed pointsis
the subgroup SO1 1(R) of matrices,

[a b] fora,b e Randa® — b° = 1.
b a

(2.5) Corollary. Consider a disk © in C. No matrix in SL (D) is loxodromic. Let o # +1
be a matrix in SL(®). If o is parabolic, then the fixed point of o belongs to the boundary
9. If o is elliptic, then o has one fixed point in © and the other fixed point belongs to the
complement of the closure of ©. Finally, if o is hyperbolic, then the two fixed points of o
belongs to the boundary of ©.

Proof. After conjugation, we may assume that the disk is the upper half plane $. Then, by
Proposition (2.3), the matrix o has rea entries. Hence, the eigenvalues of o are either real
or apair of complex conjugate numbers. Clearly, in the first case there are real eigenvectors
and, consequently, either o is parabolic with a fixed point in R or o is hyperbolic with
two fixed pointsin R. In the second case, if a column is an eigenvector corresponding to
one eigenvalue, then the conjugate column is an eigenvector corresponding to the complex
conjugate eigenvalue. Hence, in the second case, o has one fixed point in the upper half plane
$ and the complex conjugate fixed point in the lower half plane.

Thus the assertions hold. I

13
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(2.6) Note. By Corollary (1.9), for any two disks® and ®©’ there is a M 6bius transformation
z > az defining an isomorphism,
D -9,

of ®" onto ©. In addition, for a given pair of pointsu € ® andu’ € ®’ (or u € 90 and
u' € 99'), we may choose o such that au’ = u.

Under the isomorphism o, pointsz € © correspond to pointsz¢® := o~z in®’, functions
f defined on © correspond to functions f* := fa on ®’, and automorphisms o of ©
correspond to automorphisms 0% = o loa on ®’. The latter correspondence extends
to matrices. matrices o in SL(®) correspond to matrices 0® = o« low in SL(®’). The
correspondence is called conjugation. In particular,

SL(®") = SL(D)“,

isthe conjugate subgroup of SL(®). Clearly, the property of being afixed point is preserved
under conjugation, and for the isotropy groups we obtain the equation,

SL(®")y =SL(D),/,

whenu’ = u®.

Usualy, of the two disksin (1.8), we take (&, 0) as the model of adisk © and a point
u € ®, and wetake (9, oo) asthe model of adisk © and apoint u € 09.

A property of pointsu € © U 92 will often be defined by first defining the property for
0 € ¢ and oo € 9% and then in general by choosing an isomorphism o from (9, u) to one of
the standard models. In these cases, the property will be said to be defined by conjugation.
In each case, the definition has to be justified by proving that the property is independent of
the choice of conjugation o.

(2.7) Definition. Let © be a disk, and let G be a subgroup of SL(®). By definition, a
G-elliptic point isapoint u in ® which is fixed under some nontrivial (necessarily elliptic)
matrix in G, and a G-parabolic point is a point u of the boundary 9 which is fixed under
some parabolic matrixin G. A point of © whichisnot G-€lliptic may be called a G-ordinary
point.

As a subgroup of SL(®), the group G acts on © and on the boundary 0®. Clearly, a
point u of ® is G-ellipticif and only if the isotropy group G, isnon-trivial (that is, contains
amatrix different from £1), and a point u of 0% is G-parabolic, if and only if the isotropy
group G, contains a parabolic matrix.

Note that the properties are preserved under conjugation. If ' = o®,then G’ := «Ga ™!
isasubgroup of SL(®’), and for pointsu and u” := au, whereu isin® or 90, we have that
G, = aG,a~t. Moreover, the point u is G-parabolic or G-€lliptic respectively, if and only
if u” is G’-parabolic or G’-élliptic.

14
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3. Non-Euclidean plane geometry.

(3.1) Lemma. Let C be an ordinary circle in C, with its center on the positive real axis
and such that C is orthogonal to the unit circle around 0. Let r < r’ be the two points of
intersection of C and the real axis. Let [ be a straight line through O intersecting the circle
C in two points z and z” with iz < Rz’. Denote by A the angle between [ and the real axis
and denote by B the angle between [ and the tangent in z to the circle C. Then,

-1 -1_
COSA = |Z|17+|Z| sSnB = u (3.1.1)
r—-—+r -

Proof. Let zg denote the midpoint of the chord zz’. Then zo = (' + z)/2. In particular,
ro = (r' + r)/2 is the center of the circle C. Clearly, the straight line from rg to zg is
orthogonal to the line /. Moreover, the angle at ro between the lines roz and rozg isequal to
B. Hence we have the equations,

COSA = @, snp =102 (3.1.2)
ro ro—r

Asis well known, the product of distances, |z||z’|, is independent of [. By hypothesis, if
is the tangent to the circle C, then z = 7’ ison the unit circle, and hence |z||z'| = 1. Hence
|z||z'| = 1for an arbitrary line! intersecting thecircle. In particular, rr’ = 1. Therefore, the
equations (3.1.2) imply the equations (3.1.1) I

(3.2) Setup. Consider for therest of thissectionadisk ©. By definition, aline in ® is(the part
in® of) acircle orthogonal to the boundary of ©. The circlewill intersect the boundary of ©
in two points, called the limit points of theline. By Corollary (1.6), a Mo6bius transformation
a: D — D' mapslinesof D tolinesof ®’. Asaconsequence, assertions about points, lines,
and limit pointsin © hold in general, if they hold for one of the two standard disks, $ and
¢. For instance, in the unit disk &, the lines through the point O are the diameters of the unit
circle. Hence, for every point z # 0 in ¢ there isaunique line of € passing through 0 and
z. Asaconsequence, for any two different points z and w in ®, there is a unique line of ©
passing through z and w. Similarly, for any point w in ® and any line ! not passing through
w, there isaunique point z on [ such that the line through w and z is orthogonal to /.

(3.3) Definition. Consider thelinein® passing through two different points w and z of ©.
The line has two limit points «, v on the boundary of ©; we may choose the notation such
that the open arc wzu of the lineis contained in ©. It follows from Remark (1.7) that the
crossratio df (u, v, w, z) isreal and greater than 1. The number,

disty (w, z) :=logdf (u, v, w, 2),

which is positive, is called the non-euclidean distance between w and z. Notethat if w = z,
then the cross ratio on the right hand side is equal to 1 for any pair of different points « and
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v on the boundary of ©. Accordingly, as might be expected, the distance is defined to be O
whenw = z.

The non-euclidean distanceisametricin ®, that is, the triangleinequality holdsfor any 3
pointsw, x, z in®. Thisfact, and the fundamental trigonometric formulas of non-euclidean
plane geometry will be proved in the following.

Note that any Mobius transformation «: ©® — 9’ is an isometry with respect to the
distances of ©® and ®’. In particular, the matricesin SL (D) define isometries of the disk .

(3.4) Remark. If an oriented line! is given in © then there is a signed distance dist; (w, z)
defined for points w and z on/ asfollows: Let u and v be the limit points of /, chosen such
that the arc from v to u isthe part of / in®. Then dist;(w, z) := logdf (u, v, w, z). Clearly,
for any 5 different pointsin C we have the equation,

df (u, v, w, z) = df (u, v, w, x) df (u, v, x, 2).
Hence, for 3 points w, x, z on aline/, we have the additivity for the signed distance,
dist;(w, z) = dist;(w, x) + dist;(x, 2).

In particular, dist;(w, z) = — dist;(z, w).
(3.5) Example. Intheunit disk &, thedistancefromOtoapoint z in € isgiven by theformula,

1+ |z
1—|z|°

Indeed, the two sides of the formulaare unchanged under arotation around 0. Hence we may
assume that the point z isreal and 0 < z < 1. Then the line through 0 and z isthe real axis,
and the limit pointsareu = 1 and v = —1. The formulais now obvious.

(3.6) Remark. It follows from the formula (3.5.1) for the unit disk & that a non-euclidean
circle (also called a geodesic circle) with center O, that is, the set of pointsin €& of afixed
(non-euclidean) distanceto O, isan ordinary circle. Moreover, thelinein & from the center O
toapoint on ageodesic circle around O isorthogonal to thecircle. Similarly, an open geodesic
disk around O, that is, a set of pointsin ¢ whose distance from O is strictly less than a given
positive number, isan ordinary disk contained in &, and the system of geodesic disks around
0 form abasis for the system of neighborhoods of 0. As a consequence, for any point w in
an arbitrary disk ®, the geodesic circlesin ® around w are (ordinary) circles, and the line
in® from w to a point on ageodesic circle around w is orthogonal to the circle. Similarly,
geodesic disks in ® are ordinary disks contained in ®, and the system of geodesic disks
around w isabasisfor the system of neighborhoods of w. In other words, the non-euclidean
distance induces a topology in ®© equal to the ordinary topology of ® as a subspace of C.

dist(0, z) = log (35.1)

(3.7) Example. Consider the upper haf plane $), and two points z and w in §. Then the
distance from w to z is given by the formula,

2
coshdist(w, z) = 1+ 22

(3.7.2)

2373w

16



Automorphic functions [Mob] 13
26. februar 1995

Indeed, assume first that the two points have different real part. Then thelinein $ from w
to z isacircle orthogonal to the real axis. The circle intersects the real axis in two points,
labeled u, v inthe usual order, see (3.3). Let r betheradiusof thecircle, and o itscenter. Let
0., betheangle vuw and 6, the angle vuz. Then, clearly,
tan6,, = =wl g tano, = b=z
lu —w lu —z|

Asthe crossratio df (u, v, w, z) is positive red, it is equal to tan6,/tan6,,. Therefore, the
left hand side of (3.7.1), is equal to the expression,

1<tan92 tan9w>

3.7.2
2\tang,, tano, ( )

On the other side, the angles vow and voz are, respectively, 20,, and 20,. Hence, the angle
woz isequal to 2(6, — 6,,). Therefore,

, Sw . 3z . %lz—wl
sn20,, = —, sin20,=—, sin@; —0,) = =———.
r r r

From these equationsit follows that the right hand side of (3.7.1) is equal to the expression,

2s5in%(0, — Oy)

- - . 3.7.3
sin26,, Sin26, ( )

By elementary trigonometric formulas, the expressions (3.7.2) and (3.7.3) are equal. Hence
(3.7.1) holds.

The equation (3.7.1) is easily seen to hold when z and w have the same real part. Hence
the equation holdsin general.

(3.8) Exercise. Consider the non-euclidean distancein ). Prove for two points w and z with
the same real part that
dist(w, z) = |10g(3z/3Iw)|. (3.8.1)

Prove for h positive and real that

. h W\
dlst(z,z+h):2Iog<2%Z+ (2“92) +1>. (38.2)

Note in particular that the distance converges to zero for Iz — oo.

(3.9) Setup. Consider in® atriangle A, B, C, thatis, A, B and C are three different points
of ©, in general assumed to be not on the same line of ©. Denote by a, b, and ¢ the sides of
thetriangle, that is, a isthelinethrough B and C, b isthe line through A and C, and c isthe
line through A and B. It is customary to denote by the same symbols a so the lengths of the
sides of thetriangle, that is, a isthe distance disto (B, C) etc. Similarly, A will also denote
the (unoriented) angle at A, that is, the angle between the lines b and ¢, etc.
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(3.10) Proposition. Assume in the setup of (3.9) that the angle at C is a right angle. Then
the following formulas hold:

tanh b i sinh
COSA = , ShA = — a , cosh ¢ = cosha coshb. (3.10.1))
tanhc sinh¢

Proof. To prove the first formula, we may after conjugation assume that © is the unit disk
¢ and A isthe point 0. Moreover, after arotation around O we may assume that C is areal
point » withO < r < 1. Thenthelinea isan ordinary circle with center on the positive rea
axis and orthogonal to the unit circle, and B isapoint z onthelinea. The distances b and ¢
from O to C and from O to B are, by Example (3.5), givenby expb = (1 +r)/(1 — r) and
expec = (1+ |z|)/(A — |z|). Therefore, the first formula of (3.10.1) follows from the first
formulaof (3.1.1).

Similarly, the second formula, in the symmetricformsin B = sinh b/ sinh ¢, followsfrom
the second formulaof (3.1.1). Finally, thethird formulaof (3.10.1) followsfrom thefirst two
by using therelation cos? A + sin? A = 1. 0

(3.11) Proposition. In the setup of (3.9), we have for an arbitrary triangle ABC in © the
cosine relation:
cosh¢ = cosha coshb — sinha sinhb cosC,

and the sine relations: . . .
SnA _ SinB . snC

sinha sinhh  sinhc’

Proof. Denote by H the point onthe sidea such that thelinefrom A to H isorthogonal to a.
Then the triangles ACH and ABH have aright angle at H and they have as common side
theline h from A to H. Denote by x theside CH of ACH and by y theside BH of ABH.

By the third formula of (3.10.1), applied to ACH and ABH, we obtain that coshh =
coshb/ coshx = coshc/ cosh y. Hence,

coshy
coshx

coshc¢ = coshb Q)
Assume that the point H on a liesbetween B and C (the two alternative cases are |eft to the
reader). Then y = a — x by (3.4). Hence, by the addition formulafor the hyperbolic cosine,
we obtain from (1) that,

cosha coshx — sinha sinh .
coshc = a c);sh a xcoshb=coshacoshb—smhacoshbtanhx. 2
X

Moreover, by the first equation of (3.10.1), we have that tanhx = tanhb cosC. Hence the
equation (2) implies the cosine relation.

To prove the sine relation, note that the second formula of (3.10.1) implies the equations
sinC sinhb = sinhh = sin B sinh¢. Hence the second sine relation holds, and by symmetry
they al hold. i
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(3.12) Remark. The triangle inequality for the non-euclidean distance follows from the
cosine relation. Indeed, the right hand side of therelation isat most equal to cosha coshb +
sinha sinhb = cosh(a + b), and consequently ¢ < a + b. Moreover, equality holds if and
only if theangle C isequal to , that is, if and only if C belongsto the line segment from A
to B.

(3.13) Setup. Inthegeometriclanguage, theelliptic transformations of © arecalled rotations,
the hyperbolic transformations are called translations, and the parabolic transformations are
called limit rotations. A trandlation hastwo limit point as fixed points; the line between them
is called the axis.

We will study these maps in more detail in the following. In addition we will need the
reflections: Let/ bealinein®. Choose a Mobius transformation z — «z mapping the unit
disk & onto the given disk © and mapping the real axis of € to the givenlinel of ©. Then
the reflection in [ is the transformation

pri=a()’at

where ()¢ denotes complex conjugation. Note that the resulting transformation of © is
independent of the choice of «. A different choice of o would be of the form o where § is
amatrix in SL(¢) leaving invariant the real axis. Thus g hasreal entries, and consequently
B commutes with complex conjugation ( )°.

(3.14) Lemma. (1) Let z — oz be a rotation in © with fixed point w. Then every line ¢
through w is mapped to a line through w, and the angle from ¢ to o'¢ is a constant, given by
the formula,

cos/(t,ot) = h(o).

Moreover, if r and ¢ are oriented lines through a given point w, then there is a unique rotation
around w that maps ¢ to ¢’. (2) Let z — oz be a translation in © with axis [. Then every
point z in  is mapped to a point in /, and the distance from z to o z is a constant, given by the
formula,

coshdist(z, 0z) = h(o).

Moreover, if z and z” are given points on a line /, then there is a unique translation with axis
[ that maps z to 7.

Proof. (1) After conjugation, we may assume that © isthe unit disk € andthat w = 0. Then
o isamatrix,
e? 0
7= [ 0 e ]’
and the associated Mébius transformation is the ordinary rotation z — ¢%?z. Hence the

first and the last assertions of (1) hold, and the angle from 7 to o't is equal to 20. Moreover,
h(o) = itr(c?) = cos(29), and hence the formula of (1) holds.
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(2) After conjugation, we may assume that © isthe upper half plane § and that the axis!
istheimaginary axis. Then o isamatrix,

7= [6 rgl]’

and the associated M 6biustransformation isthe multiplication z — r2z. Henceapoint iy on
thelinel ismapped to the point %y on!, and thedistancefrom iy toir2y is, by (3.8.1), equal
to [log(r?y/y)| = |logr?|. Hence the first and the last assertions of (2) hold. Moreover,
h(o) = 3tr(o?) = (r2 +r2)/2, and hence the formula of (2) holds. 0

(3.15) Definition. For a point P in ®, denote by §p the half turn around P, that is, the
non-euclidean rotation with angle = around P. For aline!l in ®, denote by p; the reflection
in ! (Note that p; is not a Mobius transformation, it is an anti-analytic automorphism of C).
Moreover, for two different points P and Q, denote by 7o p the translation along the line
through P and Q that maps P to Q. Finaly, for two different oriented lines I and m that
intersect at apoint P, denote by §,,; the rotation around P that maps! to m.

(3.16) Lemma. (1) If P and Q are different points of ®, then the we have the equation,
15p = 808p. (3.16.1)

(2) If I and m are different oriented lines that intersect at a point P in ©, then we have the
equation,
2 _
8,51 = PmpPi- (3.16.2)

(3) If m and [ are two different lines with no point of intersection in © or in 9, then we have
the equation,

5p = Pmpl, (3.16.3)

where P and Q are the unique points of / and m such that the line through P and Q is
orthogonal to / and m.

Proof. (1) Let/ betheoriented linefrom P to Q and let u and v beitslimit points. Clearly u
and v areinterchanged by any of the half turnssp and 6. Therefore u and v are fixed points
for the composition 6 o6 p. Hence the compositionis atranslation with axis/. Obviously the
square rQZ p isatrandationwith axis/. Hence, to prove Equation (3.16.1), it suffices to show
that there is one point at which the two sides of the equation takes the same value. Let R be
the point on the line! for which the point Q isthe midpoint of the line segment P R. Clearly,
the point Q ismappedto R by thetrandation g p, and P ismappedto R by thehalf turnso.
It follows that the point P is mapped to R by any of the two sides of the equation (3.16.1).
Therefore, the equation holds.

(2) The composition p,, p; of anti-transformations is a Mdbius transformation, and it has
obviously thepoint P asfixed point. Hencethecompositionisarotationaround P. Obviously,
under the composition, the line [ is mapped to the line !’ = p,,[ through P for which the
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angle from [ to m isequal to the angle from m to I’. Clearly, thelatter lineis also the image
of 1 under the composition 3;51- Therefore, equation (3.16.2) holds.

(3) Asin (2), the composition p,, o; isaMobiustransformation. Let n be the line through
P and Q, and let u and v be its limit points. Asn is orthogona to the lines ! and m, the
limit pointsu and v are interchanged by any of the reflections p,, and p;. Hence u and v are
fixed points of the composition p,, o;. Therefore, the compositionisatranslation with axisn.
Moreover, the point P is, by any of the two sides of equation (3.16.3), mapped to the point R
on n for which Q isthe midpoint of the line segment P R. Therefore, the equation holds. [

(3.17) Corollary. In the setup of (3.9), the following equations hold:

Tt ti =1, (3.17.2)

828282 =1. (3.17.2)

In addition, consider the line & through A orthogonal to a, let H be the point of intersection
of h and a, and let a’ be the line through A orthogonal to . Then,
T2 =82382. (3.17.3)
Proof. Note that, depending on a choice of orientations of the sides @ and ¢, there are two
rotationsd,.. If oneisby theangled, then the other is by the angle# — . Hence the square
8,2. iswell defined.
Obvioudly, the first formula follows from (3.16.1) since the half turns are involutions.
Similarly, the second formulafollowsfrom (3.16.2), and the third from (3.16.2) and (3.16.3).
i

(3.18) Lemma. Consider two matrices o and 7 in SL(®©). Assume that 7 is a translation in
®, and assume that o is either a rotation around a point on the axis of t or a translation
along an axis orthogonal to the axis of . Then,

2tr(ot) = tr(o)tr(r). (3.18.1)
Proof. By conjugation we may assume that ® is the upper haf plane $, that the axisof 7 is
theimaginary axisiR, and that either o isarotation around the point i or atranslation along

the line through i orthogonal to the imaginary axis.
Now t and o belong to SL>(R). The matrix 7 fixes 0 and oco; henceit is of the form,

[?) 2] wheread = 1.

The matrix of o iseither arotation or atrandation. Accordingly, by (2.4), it is of one of the

following two forms, , b
[—Cb c] or [ZC) c]’

where ¢? 4+ b = 1 or ¢ — b% = 1. Clearly, in both cases the left hand side of (3.18.1) is
equal to 2c(a + d) and hence equal to the right hand side. I
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(3.19) Proposition. In the setup of (3.9), assume for the triangle ABC that the angle C is a
right angle. Then,

coshc = coshacoshb, cosB =coshbsSnA. (3.19.1)

Proof. Clearly, the two equations are equivalent to the equations of (3.10.1). To give an
alternative proof, note that the first equation of (3.17) implies the following:

2 __2_2
TaB = TAaCcTcB-

Moreover, as the angle a C is a right angle, Lemma (3.18) applies with o = TAZC and
T := 7/%. Asaconsequence, we obtain the equation,

2tr(t %) = tr(z 2)tr(r ).

Dividing by 4 we obtain an equation for the invariants h(o) which, by Lemma (3.14)(2) is
the first asserted equation (3.19.1).

To prove the second equation, consider the last equation in (3.17). Astheangleat C isa
right angle, we have that H = C. Thuswe obtain the equation,

Sci’TAZC = 5c§t'
Again Lemma (3.18) applies, and we obtain the equation,
2tr(8.2) = tr(8 2)tr(t,%).

Divide by 4 to obtain an equation for the invariants h(o'). By construction of a’, the angle
fromctoa’ isequal tor/2 — A. Hence, by Lemma (3.14)(1) and (2), the equation obtained
is the second equation of (3.19.1). I

(3.20) Exercise. Consider two lines/ and !’ of ®, with limit pointsu, v and u’, v'. Assume
that the four points u, v, u’, v’ on the boundary of © are different. In addition, assume that
v and v’ belong to the same of the two arcs in which the boundary 9 is divided by u, u’'.
Prove that the crossratio df (u, v, u’, V) isnegative, if and only if thelines/ and /" intersect.
If the crossratio is negative, then the angle 6 between thelines! and I’ is determined by the
formula,

tan®(0/2) = — df (u, v, u’, V).

If thecrossratioispositive, then the (non-euclidean) distance6 betweenthelinesisdetermined
by the formula,
tanh?(6/2) = df (u, v, u’, V).
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4. Proper actions.

(4.1) Proposition. Let G := SL(®D) be the stabilizer of a disk © in C. Then the action of G
on ® is proper, that is, the map («, w) — (xw, w) is a proper map,

Gx®—>DxD. (4.1.1)

Proof. Recall that a continuous map between locally compact (Hausdorff) spacesisa proper
map if the preimage of any compact subset of the target is a compact subset of the source.
The map (4.1.1) is an obvious composition of two maps,

GX®—>PGXxD—>DxD. Q)

Of the two maps, thefirst isproper, because G — PG isthe homomorphism with kernel +1.
Thusis suffices to show that the second map is proper.
Fix apoint u on the boundary 9. Then thereisamap,

PG x® — 3D x®D x23,
defined by

(a, w) = (au, cxw, w).

Itisbijectiveby Corollary (1.9), and obviously continuous. Itisinfact ahomeomorphism, that
is, theinverse map iscontinuous. Inother words, if weconsider for (1", w’, w) € 9D xD xD
the unique Mobius transformation z > az under which (D, w, u) ismapped to (D, w’, u'),
then the M dbius transformation depends continuously on (u/, w’, w). Thelatter fact iseasily
proved using the explicit determination of the Mdbius transformation given in Section 1.

Clearly, when the source of the second map in (1) is replaced by the homeomorphic space
990 x D x 9, then the map is simply the projection,

D XD XD —>DXxD.

Hence the map is proper, because 9 is compact.
Thus the Proposition has been proved. i

(4.2) Corollary. Let K3 and K2 be compact subsets of the disk ©. Then the following subset
of G := SL(®) is compact:
{o | K1 NaKso # B).

Proof. The product set K1 x K2 isacompact subset of © x ©. Hence its preimage under
themap in (4.1) isacompact subset of G x ®. Clearly, the preimage is the following set:

{(a,2) |z € K1 and z € Kp).

Hencethelatter setiscompact. Consequently, itsimagein G under theprojectionG x® — G
isacompact subset of G. The latter image isthe set in question. Hence it is compact. I
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(4.3) Corollary. For any point z € ©, the map « — «z is a proper map,
G—> 9.

In particular, the isotropy group G, is a compact subgroup of G.

Proof. The first assertion of the Corollary is the special case of (4.2) obtained by taking K1
arbitrary compact and K> = {z}. The second assertion is a conseguence, since the isotropy
group is the preimage of the compact set {z} under themap G — 2. I

(4.4) Note. In Section 2 we proved that the isotropy group G isin fact conjugated to the
compact group SO2(R), and in particular, the isotropy group isisomorphic to the unit circle
U1(C). Note also that we proved in Section 2 that the isotropy group SL (®),, of apoint u on
the boundary 9 is non-compact. In particular, the action of SL(®) on the closure of ® is
not proper.

(4.5) Exercise. Several topological facts were used in the proof of Proposition (4.1). The
Riemann sphere C isthe one point compactification of C. Hence the disk © as an open subset
of C islocally compact. The surjection of (1.1), (C2)* — C, is continuous and open. Asa
consequence, C is equal to the quotient (C2)* /C*.

Thegroup SL»(C) islocally compact: itisaclosed subset of the space C* of 2 x 2 matrices.
It is atopological group. The group SL(®) is a closed subgroup, since it is conjugated to
SL($) = SLa(R).

The group PSL (®) has two topologies: the quotient topology induced by the surjection
SL(®) — PSL(®) and the subset topol ogy induced by theinclusion PSL (D) <> Autcont (D)
(where the automorphism group is given the compact—open topology). The two topologies
areequal, and PSL (D) isalocally compact topological group.

Prove these topological facts. In addition, prove (or find a reference for) the following
general facts: If K iscompact and X islocally compact, then the projection K x X — X is
proper. If K isacompact subgroup of alocally compact group G, then the canonical map
G — G/K isproper.
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Discrete subgroups

1. Isotropy groups and their generators.

(1.1) Setup. Fix adisk © and a discrete subgroup I of SL(®). Recall that a subset I" of a
topological space is said to be discrete in the given topological space, if it is a closed subset
and the induced topology is discrete. Equivalently, when the topological space is locally
compact, the condition is that the intersection of I and any compact subset is finite. In
particular, a subgroup I" of SL»(C) isdiscrete, if and only if, for every positive real number
R, thereis only a finite number of matricesin I" for which all four entries have modulus at
most equal to R.

Recall that apoint u iscalled I'-parabolic if it isafixed point of some parabolic matrix in
I". The set of I'-parabolic pointsis denoted ar®. It isasubset of the boundary 9. A point
isT-ellipticif it belongsto © and isfixed under some non-trivial (necessarily elliptic) matrix
of I'. A T'-ordinary point isapoint of © which isnot I"-elliptic.

(1.2) Lemma. (1) Assume that I" is a discrete subgroup of SL(&). Then the isotropy group
I["g of the point O in € is a finite cyclic group generated by the matrix,

. eZni/N 0
don/N = [ 0 e—Zni/N]’

where N = |I'o| is the order of the isotropy group. In particular, the point O is I"-elliptic,
if and only if [Tg] > 2. The group I' is homogeneous, if and only if N is even. The group
PI'g of associated Mébius transformations is cyclic, generated by the rotation z > ¢27/4z,
where d = |PIg|.

(2) Assume that T" is a discrete subgroup of SL($)). Assume that the point co on the
boundary of ) is I"'-parabolic. Then the isotropy group I' ¢ is infinite, and all its matrices
different from +1 are parabolic. The isotropy group it is either cyclic or dicyclic (that is,
isomorphic to {1} x Z). The group I' is homogeneous, if and only if the isotropy group I' oo
is dicyclic. In the dicyclic case, the isotropy group consists of all matrices of the form £z}
(for a unique i > 0) where ¢, is the matrix,

3]

In the cyclic case, I'«, consists either of all powers ¢;' [the ‘regular’ case] or of all powers
(—t,)" [the “irregular’ case] (for a unique 2 > 0). In all cases, the group PI" o, of associated
Mobius transformations is the infinite cyclic group generated by the translation z — z + A.
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Proof. Assertion (1) follows immediately from Lemma (M6b.2.3)(2) since I'g is a discrete
subgroup of SL (&), and SL (€)q isisomorphic to the unit circle U1(C).

Toprove Assertion (2), notethat thematricesof I' o areof theform (Mo6b.2.3.1). Therefore,
since the point oo is assumed to be I'-parabolic, there exists a matrix of the form +£¢;, inT.
Moreover, since I' is discrete, we can choose in ' a matrix =z, with 2 > 0 minimal.
Then, again using that I" is discrete, it follows from the relation (M6b.2.3.2) that no matrix
(M6b.2.3.1) with a # £1 can belong to I' . Thus all matrices different from +£1inT', are
parabolic. Again, since T isdiscreteand 2 isminimal, it followsthat all matrices of ", are,
up to multiplication by +1, powers of ¢,. The remaining assertions of (2) follow easily. 0

(1.3) Definition. In (1), the generator z — ¢?7!/4z of PI'g is the M&bius transformation
associated to the following matrix:

_mi/d
wi= % ] (13.)
The matrix yo belongs to I'g. Indeed, assume first that N iseven. Then —1 € I'p and
d = N/2. Asyp = —doi/n, it follows that yo € T'g. Assume next that N is odd. Then
d=N.Asy = dz(gjf,)/z, it follows again that yo € Io.

The matrix yq is called the canonical generator at the point 0. It generates the group I'g
if Nisoddorif N =0 (mod 4). If N =2 (mod 4), then yo generates an inhomogeneous
subgroup of index 2 in I'p.

case, and the matriX y~ := t;, inthe other cases, will be called the canonical generator at
the point co. The transformation associated to the canonical generatorismap z — z + h, and
h istheminimal possible step length of the transformationsin PI" . The canonical generator
Yoo generates a cyclic inhomogeneous subgroup of '« that is mapped isomorphically onto
Pl'.

(1.4) Definition. For agenera disk © and apoint u in® U ar® we obtain, by conjugation,
assertions corresponding to those of Lemma (1.2).

If uisin®, chooseaconjugationw: ® — ¢ suchthat eu = 0. Then I" isconjugateto the
discrete subgroup o' ~1 of SL (&), and « is conjugate to 0. Hence the isotropy group I',, is
conjugate to the isotropy group (eI~ 1)q. It follows from (1.2)(1) that I',, is afinite cyclic
group, and hence its quotient PI",, is afinite cyclic group. The quotient PT",, is non-trivial if
and only if u isT-éliptic. In any case, the order ¢, := |PI',| is called the order of « with
respect to I'. The isotropy groups for the pointsin the orbit I'u are conjugate. In particular,
all pointsin the orbit I'u have the same order. Moreover, if u isT-élliptic, then all pointsin
the orbit I"'u are I'-€élliptic. In this case, the orbit is said to be a I"-elliptic orbit.

If uisinor®, choose a conjugation «: ® — $ such that au = oo. It follows similarly
that theisotropy group I, isinfinite cyclic or dicyclic, and that its quotient PI",, isan infinite
cyclic group. Moreover, all non-trivial matricesin I", are parabolic. Clearly, al pointsin the
orbit I'u are I'-parabolic. The orbit is said to be a I'-parabolic orbit or to beacusp for I".

Foru € ®Uar®, definethecanonical generator of I a u asthefollowing matrix y,, € T':
If uisin®, choose a conjugation «: (D, u) — (&, 0). Then I' is conjugate to the discrete
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subgroupaT'a~1 of SL (&), andu isconjugateto 0. Define y,, asthe conjugate of the canonical
generator yp in (1.3). Similarly, if u isin 9r®, choose a conjugation «: (D, u) — (£, 00),
and define y,, asthe conjugate of Y.

In both cases, it hasto be verified that the matrix obtained is independent of the choice of
a. However, two different choices «; and a2 differ by amatrix o = o, L that stabilizes
the image disk and the image point «qu = a2u. We may assume that « has determinant 1.
Thusishasto be proved, inthetwo cases (D, u) = (€, 0) and (D, u) = (5, co) respectively,
that if « € SL(®),, then, for the canonical generators considered in (1.3), conjugation by «
maps the canonical generator of («I'a~1), onto the canonical generator of T',,.

The latter assertion is obvious for (&, 0), since the isotropy SL(€¢)¢ is commutative and
hence conjugation by « isinfact theidentity. For (£, co), theassertionfollowsfrom Equation
(M06h.2.3.2) describing conjugation of a canonical generator under amatrix in SL($)) co-

In the parabolic case, the cusp represented by « issaid to bearegular cusp if the canonical
generator y, isconjugateto ¢, and to bean irregular cusp if y, isconjugateto —z;,. Note that
the width % of #;, isnot canonical. A different choice of conjugation changes ¢, to t,2;,, see
(M6b.2.3.2).

(1.5) Example. The Cayley transformation z + (z —i)/(z + i) of (M0b.1.5) is associated

to the matrix,
oy 1 [1 —i]
141 i I

The Cayley transformation maps (£), i) onto (&, 0). Consequently, under conjugation by «,
thestabilizer group SL (¢) = SU1 1(C) ismapped onto the stabilizer group SL($H) = SL2(R),
and the isotropy group SL(&)p = U1(C) is mapped onto the isotropy group SL($); =
SO2(R). Under the conjugation, the following matrices correspond:

[ei9 0 ]and[cose sine]
0 et —sing cosh I’

Consider the discrete subgroup I' := SL2(Z) of SL($)). It ishomogeneous. Clearly, the
point co is I'-parabolic, and the canonical generator at oo isthe matrix,

z::[é 1] (15.1)

Thepointi = ¢%*i/4jséelliptic: theisotropy group I'; isof order 4 and the canonical generator
at i isthe matrix of order 4,
s:=[0 _1] (15.2)

1 0

Indeed, the isotropy group I'; consists of the matrices with integer entries in SO2(R), and
clearly, the latter matrices are the four matrices +1, +s. It followsfrom the correspondence
abovethat —s is conjugate to the matrix d», /4. Hence s isthe canonical generator.
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The point p = ¢?*/3 is eliptic: the isotropy group T',, is of order 6 and the canonical
generator at p isthe matrix of order 3,

u:F%:[T'Eq. (15.3)

Indeed, since p? + p + 1 = 0, it is easy to describe the isotropy group SL($),. It follows
easily that the isotropy group I', consists of the following 6 matrices £1, +u, +u2. The
matrix u is of order 3. Hence I',, is generated by the two matrices —u and —u? of order 6.
The M6bius transformation associated to +-u is the rotation by the angle 2,7 /3 since the half
ray from p to oo ismapped to the half ray from p to —1. Hence —u is conjugate to the matrix
d2z /6, and u isthe canonical generator.

(1.6) Proposition. Assume that I is the discrete subgroup SL2(Z) of SL($). Let F be the
closed subset of $) defined by the inequalities,

F:lz] =1 —}<§ﬁz<}.
- 2= 72
Denote by Fy the subset obtained from F by omitting from the boundary the points z where
either Mz = 1/2or |z] = 1, Nz > 0. Then the set Fp is a complete set of representatives
for the set of orbits /I". Moreover, the points i and p are the only I"-elliptic points in
Fp. Finally, there is only one cusp, namely the orbit I"'oo consisting of oo and the rational
numbers.

Proof. In addition to the subsets F and Fo, denote by G the vertical strip of $) defined by the
inequalities: —3 < Mz < 5. We proceed in aseries of steps.
Step 1. For any point z of $) thereisonly afinite number of matriceso in T,

o=[¢ 4 @

S(oz) >3z, oz€C. 2

such that

Indeed, for afixed pair of integers (c, d), consider the matrices (1). They correspond to the
integer solutions (a, b) of the equation ad — bc = 1. Hence, for the fixed pair of prime
integers (c, d), there are matrices o of the form (1), and if og is any such matrix, then the
matrices of the form (1) are exactly the matrices t*og for k € Z. The matrix ¢ defines the
trandation rz = z + 1 and the vertical strip G is of width 1. Therefore, when (¢, d) isfixed,
there is only one matrix o of the form (1) such that oz € G. Now, for any matrix (1) in
SL»(R), we havethat J(oz) = (3z)/|cz + d|?. Hence the inequality in (2) is equivalent to
the following:

lez+d)? < 1. (3

The latter inequality has only a finite number of integer solutions (c, d). Therefore, the
assertion of Step 1 holds.
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Step 2. If |z| < 1, then J(sz) > Jz. Thisisjust asimple observation.

Step 3. Any point z in $) isT"-equivalent to apoint in Fp. Indeed, for any point z thereisa
unique point z1 in G of theform t*z. If |z1| < 1, consider z2 := (sz1)1. Define, inductively,
Zn+1 = (szp)1 @8 long as |z,| < 1. By construction, the points z; belong to G, and they
are I'-equivalent to z. By Step 2 we have that Jz1 < Jz2 < - --. Therefore, by Step 1, the
sequence z1, 72, . . . isfinite. It stops with apoint z,, in G such that |z,,| > 1. If |z,| > 1,
then z,, belongsto Fy. If |z,| = 1, then ether z,, or sz, belongsto Fy. Hence, in all cases,
the point z isT"-equivalent to a point of Fo.

Step 4. By Step 3, the set Fp containsacompl ete set of representativesfor )/ I'. Therefore,
to show that Fo is a complete set of representatives and that i and p are the only I'-élliptic
pointsin Fo, it suffices to prove the following assertion: Let o # +£1 beamatrix in I, and
let w and w’ be points of Fp. Then the equation cw = w’ impliesthat

(s) either w’ = w =i ando = s,

(u) orw =w=pando = +u, +u?.
To prove the assertion, we may assumethat Jw’ > Jw. Then1 > |cw + d|2. Hencethefirst
of the following four inequalities holds:

1> Awl?+cd(w+wW) +d? > ?+cd(w+W) +d? > ® — |cd| +d? > (|| — |d])?. (4)

The second inequality holds because |w| > 1. The third holds because |fw| < % and the
last istrivial. Moreover, the last inequality is strict if cd # O.

Since ¢ and d are integers, the two last expressions in (4) are non-negative integers.
Moreover ¢ and d are prime. Hence the inequalities leave the three possibilities. ¢ =
0,|d|=10r|cl=1d=0,0r|c| = |d = 1.

Assumefirst that ¢ = 0, |[d| = 1. Replacing o by —o we may assumethat d = 1. Then
the matrix o is of the form,

o — [1 b]
0 1r

and w’ = ow = w + b. Asw’ and w belong to Fp by hypothesis, it follows that b = 0,
contradicting that o # +1. Thusthefirst possibility is excluded.
Assume next that |c| = 1, d = 0. We may assumethat ¢ = 1. Then the matrix o isof the

form, .
=1 %)

andw’ = ow = sw+a. Clearly, in(4) thesecond inequality isan equality, and consequently
|lw| = 1. Asw’ and w belongto Fg by hypothesis, itfollowsthat eithera = Oandw = w’ =i,
ora=—landw' = w = p. Inthefirst case, o = s and hence (s) holds, in the second case,
o = u and hence (u) holds.

Finally, assume that |c| = |d] = 1. We may assumethatd = 1and ¢ = +1. Then
the fourth inequality in (4) is strict. Consequently, the first three inequalities are equalities.
Now, the second inequality is strict unless |w| = 1 and the third inequality is strict unless
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Nw = —% and cd = 1. Therefore, it followsthat w = p andthat c = d = 1, that is, o has

the form W a1
“:[1 1 ]

Thenw' = ow = (-1)/(w+ 1) +a = p+a. Asw’ isin Fp by hypothesis, it follows
that a = 0. Thusw’ = w = p and 0 = —u?. Hence (U) holds. Thus the proof of Step 4 is
completed.

Step 5. To provethefinal assertion of the Proposition, note that the point oo isT"-parabolic.
Clearly, the orbit I'oo is equal to Q := Q U {oo}. Conversely, let u € R be a I'-parabolic
point. Then u isafixed point of a non-trivial matrix ¢ in I" with eigenvalue +1. Therefore
J(y,u) = 1. Henceu € Q, because J (o, u) hastheform cu +d, withc, d € Zand ¢ # 0.

Thus all assertion of the Proposition have been proved. I

(1.7) Remark. Thegroup I' = SL»(Z) isthe modular group. It is generated by the matrices
s and ¢. Indeed, let 'y be the subgroup generated by s and ¢, and fix a point w in the interior
of Fy. Let y be amatrix of I'. It follows from the proof of (1.6) applied to z := yw that
thereisamatrix y1 in I'1 such that 1y w belongsto Fo. Asw and y1y w both belong to Fj,
it followsthat y1y = 1. Hence y = +y; * belongsto I'y.

(1.8) Lemma. Let A be a subgroup of finite index in I". Then every I"-orbit splits into at most
the number |I":A| of A-orbits. Moreover, every A-elliptic point is I"-elliptic, and a point is
A-parabolic if and only if it is I"-parabolic. Finally, the canonical generator of A at a point
u is up to a sign equal to yf“, where d,, is the index, d,, ;= |PI',:PA,|.

Proof. Setd := |I":Al, and et y; beasystem of representativesfor theright cosetsmodulo A.
Consider apoint u of ® U 99. Thentheorbit I'u istheunion, Tu = A(yiu) U---U A(yqu)
of the number d of A-orbits. Of these, at most d are different. Hence thefirst assertion holds.

Clearly, a A-€lliptic (resp. A-parabolic) point u isT"-€lliptic (resp. I'-parabolic). To prove
that the converse holds for aI'-parabolic point «, note that the isotropy group A, is of finite
index (at mostd) inT",,. Hence A, isinfinite, because I',, isinfinite. Moreover, al nontrivial
matricesin I',, are parabolic. Therefore A, contains a parabolic matrix.

The final assertion is|eft to the reader. I
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2. Properly discontinuous actions.

(2.1) Setup. Consider, asin Section 1, adisk ® and adiscrete subgroup I" of SL (D).

(2.2) Lemma. Let K3 and K2 be compact subsets of the disk ©. Then there is only a finite
number of elements y in T" for which the following condition holds:

KiNyKy # 0.

Proof. The set of elements ¢ for which the condition holds is the intersection of T and the
subset of SL(®) described in (M6b.4.2). Asthe latter set is compact, and T is discrete, the
intersection isfinite. I

(2.3) Remark. An action of a group on a localy compact space is said to be properly
discontinuous if it has the property of Lemma (2.2).

(2.4) Corollary. For every point u of ®, the stabilizer ", is a finite group and the orbit I'u
is discrete in ©.

Proof. For every compact subset K of ©, theconditionyu € K holdsfor only afinite number
of elements y inT". In particular, the intersection I'u N K isfinite. Therefore the orbit I'u
isdiscretein ®. Thefirst assertion of the Corollary was proved in Section 1; alternatively, it
followsfrom (2.2) by taking K1 = K2 := {u}. i

(2.5) Corollary. For any two points « and «” in ®, there are neighborhoods U of u and U’
of u’, such that for any matrix y in T, if yU N U’ # &, then yu = u’. In particular, every
point u of © has a neighborhood U such that for any matrix y in T, if yU N U # @, then
yely,.

Proof. Choose open neighborhoods V of u and V' of ' whose closures relative to © are
compact. Obviously, the condition,

yvnv #£g, «y

holds for the matrices y in I for which yu = u’. By Proposition (2.2), applied to the
closuresof V and V', the condition (1) can hold only for afinite number of elementsof I'. In
particular, there is only afinite number of elements 1, ..., yy in " such that (1) holds and
viu #u'. Foreachi =1, ..., N, the point y;u is different from «’. Accordingly, there are
open neighborhoods U; of u and U/ of u’ such that y;U; N U] = . Now, clearly, the two
open sets,

U:=VnUiN---NUy, U :=V'NnUN---NUY,

have the required properties.
When u’ = u, the asserted special caseis obtained by replacing U by U N U’. I
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(2.6) Corollary. The set of I"-elliptic points is a discrete subset of .

Proof. Otherwise there would be a point « in ® which is an accumulation point of the set
of T'-elliptic points. Then every neighborhood U of u contains an infinity of I'-elliptic
points u;. For each u; thereisan elliptic transformation y; in I" with u; as fixed point. The
transformationsy; aredifferent, because every elliptic transformation hasonly onefixed point
in®. In particular, thereis an infinite number of elements y; in " for which y,U N U # @.
Thus we have obtained a contradiction to the assertion in (2.5). i

(2.7) Lemma. Consider the group G = SL2(R) acting on the upper half plane §. Let
Il: G — R be the map defined by
[ 2]

c d

Let A be a discrete subgroup of G. Assume that the point co is A-parabolic. Then the image
[1(A) is discrete in R.

Proof. Since the point oo is A-parabolic, thereisin A amatrix of the form,

T = [é i] whereh > 0.

We have to prove, for any given positive real number R, that the intersection //(A) and
[—R, R] isfinite.
For 0 < ¢ < 1, denote by K. the set of al matrices § in G for which the following
inequalities hold:
e <JBi) <1, 0<NGi)<h. (1)

Theset K. isacompact subset of G. Indeed, theinequalitiesabove, for thereal andimaginary
parts of complex numbers, describe acompact rectanglein §, and the set K. isthe preimage
of the rectangle under themap § — 4i. Asthemap s — §i isproper by Corollary (M6b.4.3),
the preimage is compact.

Theintersection ANK, isfinite, because A isdiscretein G and K, iscompact. Therefore,
to prove that the intersection [/(A) N [—R, R] isfinite, it suffices to prove that when ¢ is
chosen sufficiently small, then the intersection //(A) N [—R, R] is contained in the image
II(ANK.). We prove that the latter inclusion holds when ¢ < 1/(R2 + 1+ hR)z).

Let c beavalueintheintersectionl/(A) N[—R, R]. If ¢ = 0, then ¢ = [I(1), and clearly
the identity matrix 1 belongsto ANK, for any e. Assumethat ¢ # 0. Then0 < |c|] < R and
there existsin A amatrix,

a b
6= [c d]’ @)
whose lower |eft entry isthe givenvalue c. If § isreplaced by 7, the ¢ isunchanged and the
d isreplaced by d + hc. Therefore, by replacing § by aproduct 67" for asuitable n, we may
assumein (2)thatl < d < 1+ h|c|. Then,
1<c?+d? <1 (3)
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Indeed, thefirst inequality holdsbecause 1 < d, and the second holds by the choice of ¢ since
d <1+ hc|.

Asthe matrix § has determinant 1, theimaginary part J(8i) isequal to 1/(c2+d?). Hence
the first two inequalities of (1) hold by (3). When § is replaced by ¢4, then the ¢ and the d
are unchanged, but the value i isreplaced by §i + i. Therefore, by replacing § by «™§ for
a suitable m, we may assume that the last two inequalities of (1) hold. Hence § belongs to
A N K, and, consequently, ¢ belongsto [/(ANK,).

Thus the required inclusion has been proved. I

(2.8) Definition. Let u be apoint on the boundary d D. Then, by definition, a fundamental
neighborhood of u isthe union of the point « and an open disk (strictly) contained in © and
tangent to 0® at the point . The boundary of the disk, excluding the point «, iscalled ahoro
cycle.

Clearly, the topology on © isthe trace of atopology on the closed disk,

DU D,

in which aneighborhood of apoint u of 3% isasubset of © U 9 containing afundamental
neighborhood of u. By convenience, a fundamenta neighborhood of a point « in ® isa
geodesic disk around u, that is, an open ball centered at u with respect to the non-euclidean
distance on ®©.

Clearly, aMobiustransformation z — «z mapsafundamental neighborhood U of apoint
u of ® U 99 onto a fundamental neighborhood of the image point au in «® U da®. In
particular, any matrix in SL (©) defines atopologica automorphism of © U 09.

Clearly, the subset 9 of I'-parabolic pointsisinvariant under the action of I'. Hence "
acts on the topological space ® U 9r®D. We denote by D/ T the corresponding orbit space,
with its quotient topology. Note that © /T contains the quotient ®/ T as an open subspace.
In addition, it contains one point for each orbit of ['-parabolic points. A point in ®/T is
called parabolic, elliptic, or ordinary respectively, if it correspondsto an orbit of I"-parabolic
points, an orbit of I'-elliptic points, or an orbit of I"-ordinary points.

(2.9) Example. In the topology of the closed disk $ U R, the fundamental neighborhoods
of the point oo on the boundary are the subsets containing co and ahalf plane H : Iz > R
for some positive real number R. The horo cycles around oo are the horizontal straight lines
containedin §).

(2.10) Lemma. Let K be a compact subset of ©. Then, for every I"-parabolic point «, there
exists a neighborhood U of u such that for all matrices y € T,

yUNK =0.

Proof. After aconjugation, we may assumethat © isthe upper half plane $ and that u = oco.
From Lemma (2.7), it follows in particular that the exists a positive real number r with the
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property that if y isamatrix inI" and |/I(y)| < r,thenll(y) = 0. As K isacompact subset
of 9, itiscontained in ahorizontal strip,

KC{zeH|rn<Jz<ry) (1)

Now choose R suchthat R > rp and R > 1/(r1r?). Let U bethe corresponding fundamental
neighborhood, $Hr : Iz > R, of co. We haveto provefor any point z of U and any matrix y

inT, ,
V:[Z d]’
that yz ¢ K.

Now, since R > rp, the half plane U is digoint from the strip in (1), and in particular
digointfrom K. Assumefirstthat |c| < r. Thenc = 1I(y) = 0, and hencethetransformation
7z + yzisof theformz — z 4+ h. Consequently, if z € U, then yz € U, and it follows that
vz ¢ K. Assumenext that |c| > r. Then,

1 1
Jz < Jz < .
lcz +d|? (|c|Sz)2 r23z

S(yz) =

If z € U, then the right hand side is less than 1/(r2R), and hence, by the choice of R, the
right hand sideislessthan r1. Consequently, yz ¢ K. I

(2.11) Lemma. Consider an orbit B = I"'wo, Where wq is a pointof ®. If U is a fundamental
neighborhood of a point « in ®©, then U contains only a finite number of points in B. If U is
a fundamental neighborhood of a point in ar®, then of the horo cycles contained in U, only
a finite number contain points of B.

Proof. Theorbit B isdiscreteby (2.4). Hencetheassertionfor apointu € 2 follows, because
afundamental neighborhood U has compact closure.

Assume that u is I'-parabolic, and let U be any fundamental neighborhood u. After
conjugation, we may assume that (9, u) = (9, co). Then U isahalf plane Hr : Iz > R,
and the horo cycles are the straight horizontal lines. By (2.10) applied with K = {wq}, the
half plane $Hg for R >> 0 contains no points of B. Consider the canonical generator ., of
Iw. Itisatrandation z — z + k. Thenevery pointin B N $), ismapped by asuitable power
of v~ intherectangle of $:

O<Nz<h, r<3J3z<R.

The rectangle is compact. Hence, by (2.4), it contains only a finite number of points of B.
Thus every point of B N U isone of the horo cyclesthrough these finitely many points. [0

(2.12) Theorem. For any two points u1 and u» in ® U ar®, there are neighborhoods Uj
of uy and U of up, such that for any matrix y in ", if yU1 N Uz # @, then yuy = up. In
particular, every point u of © U ar® has a neighborhood U such that for any matrix y in T,
ifyUNU # ¢, theny e T,,.
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Proof. If u; and u2 belong to ©, the assertion is the content of Corollary (2.5). If uq1 isT-
parabolicand u, € ©, the assertion followsfrom Lemma (2.10) by taking as U, any compact
neighborhood of u5.

Assumethat «1 and up are I'-parabolic. After aconjugation, we may assumethat © isthe
upper half plane $ and that u, = oco. Let 415, be the canonical generator of I',. Choosein
$ any straight horizontal line L, and on L any horizontal line segment K of length at least
equal to 4. Then K is acompact subset of §, and so Lemma (2.10) applieswith u = u1.
Accordingly, there is afundamental neighborhood U1 of u; suchthat yUy N K = @ for al y
in I". Choose as neighborhood U; of up = oo any fundamental neighborhood $Hr : Iz > R
lying abovetheline L, that is, such that R is at |east equal to the imaginary part of pointson
L.

We clamthat if yUy N Uz # @, then yu1 = oo. Indeed, theimage yu1 isapoint on the
boundary of $. Assumethat yu; # oo. Then yuj isapoint on thereal axis, and yU1 isa
(usual) disk in $ tangent to the real axis. By assumption, the disk containsapoint in U, that
is, apoint with imaginary part greater than R. Therefore, thedisk y U1 containsapoint on the
line L. A suitable power ;' will movethe latter pointintotheset K. Thust;yU1 N K # 9,
contradicting the property of Us.

Thus the Theorem has been proved. I

(2.13) Corollary. The quotient ©/ T is a Hausdorff space. Moreover, it is locally compact.
In fact, for any pointu in® U ar®, if U is a sufficiently small fundamental neighborhood of u,
then every point different from « in U is ordinary and the image of U in ® /T is topologically
isomorphic to an open disk: {g € C: |g| < &}. In particular, the sets of I"-parabolic points

and I"-elliptic points are discrete in ©/T.

Proof. It follows from Theorem (2.12) that the topology on the quotient space ® /T is Haus-
dorff. Indeed, let u1 and u2 represent two given different points of the quotient space. Then
u1 and up are not I'-equivalent. Therefore, by (2.12) there are open neighborhoods U1 of u1
and Uz of up suchthat yUy N U2 = @ foral y inT". Consequently, theimages of U1 and Uz
in the quotient are disjoint. Asthe quotient map is an open map, the two images are digoint
neighborhoods of the two given points.

Consider next a given point in the quotient space, represented by a point u. By (2.12), for
asufficiently small fundamental neighborhood U of u, the following condition holds:

yUNU #0) — y eTy. Q)

Except possibly for «, al the points of U are in ®, and hence not parabolic. Moreover, no
point w different fromu in U can beéelliptic. Indeed, if w in U isdlliptic, say w = yw where
y # %1, thenit followsfrom (1) that also u isafixed point of y, and then w = u because an
elliptic Mobius transformation has its other fixed point in the disc exterior to ©. Hence al
points different from u in U are ordinary.

Asthe quotient map is an open map, theimage of U in®/ T isan open neighborhood of
the given point, and topology on the image as a subset is equal to the quotient topology on
theimage. It followsfrom (1) that two pointsin U are equivalent under I if and only if they
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are equivalent under I',. Moreover, since U is afundamental neighborhood of u, it is stable
under I',,. Therefore, theimage of U in®/ T isisomorphic to the quotient U/ T,,.

Assumefirstthat u isT"-parabolic. After conjugation wemay assumethat (D, u) is($), 00).
Then U, as afundamental neighborhood of oo, isahalf plane Iz > R. Moreover, the group
PI' istheinfinite cyclic group generated by z — z + 4. Consider the exponential,

q(Z) = eZm’z/h.

It defines a continuous map ¢ from $) to the pointed unit disk {w : 0 < |w| < 1}, and the
induced equivalencerelation on $) is precisely the equivalence relation defined by the action
of I'o ON $. Moreover, the map ¢ defines a continuous open map from U onto an open disk
{w : |w| < &}. Therefore ¢ induces atopological isomorphism,

U/Too — {w: |w| < &}.

Assumenextthat u isapointin®. After conjugation, wemay assumethat (©, u) = (&, 0).
Then U, as afundamental neighborhood of O in the unit disk, is an ordinary disk: |z] < e.
Moreover, the group PI'g is a finite cyclic group of order d, generated by themap z — ¢z
for some d-th root of unity ¢. Consider the d’th power map,

q(z) = 7%

It defines a continuous map ¢ from & onto itself, and the induced equivalence relation on ¢
is precisely the equivalence relation defined by the action of I'g on &. Moreover, the map ¢
defines a continuous open map from the disk U ontoitself. Therefore ¢ inducesatopological
isomorphism,

U/To—{w: |w| < &}.

Hence we have proved in both cases that the image of U in ©/T isisomorphic to an open
disk as asserted.
Hence all assertions of the Corollary have been proved. I

(2.14) Corollary. If the quotient ©/I" is compact, then the numbers of I"-parabolic points
and T"-elliptic points in ®/T" are finite. If the quotient ©/T" is compact, then there are no
["-parabolic points.

Proof. Clearly, the first assertion follows from Corollary (2.13). The quotient D/ T" is an
open subset of ©/T', and it isdense by (2.13). Therefore, the second assertion holds. I
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3. Finite normal fundamental domains.

(3.1) Setup. Fix adisk® and adiscrete subgroup I" of SL(®). A subset F of © iscalled a
fundamental domain for the action of I" on ® if the following three conditions are satisfied:

(1) Thetransformsy F for y inT" cover ©.
(2) Theset F istheclosurein® of itssubset U of interior points.
(3) Forany y # +1inT, thetransform y U isdigoint from U.

It follows from (2) that a fundamental domain F is a closed subset of © and that any
neighborhood of apoint in the boundary F — U contains pointsfrom U and points from the
complement of F. Itfollowsfrom (1) that F containsasystem of representativesfor the orbit
space ©/T. It followsfrom (3) that if an orbit has a representative in the interior U, then it
has no other representativesin F. However, some orbits might have several representatives
belonging to the boundary F — U. The orbit space®/ I" isequal to the quotient of F modulo
the identification of I"-equivalent points on the boundary.

Wewill show in the next section that any discrete subgroup I" of SL (©) hasafundamental
domain. Inthissectionwefix afundamental domain F, and we consider additional conditions
on F. At aminimum we assume the following condition:

(4) The boundary F — U isthe union of afinite number of line segments.

(3.2) Definition. The line segments forming the boundary of F will be called the boundary
segments. Note that aboundary segment can beinfinite: one or both of its end points may be
limit points, that is, they may belong to the boundary 9. If two of the boundary segments
lie on the same line and have pointsin common, we may replace the two by their union, and
conversely, any boundary segment can be divided into two by an interior point. Thuswe may
assume that if two of the boundary segments meet, then they meet at a common end point.
The end points of the boundary segments are called the vertices of F. The finite vertices,
that is, the verticesin ®©, belong to F, the infinite vertices are limit pointsof F. Aninfinite
vertex which is isolated among the limit points of F issaid to be acusp of F. The domain
F iscalled afinite domain if all of itsinfinite vertices are cusps. Equivaently, F isfiniteif it
has only afinite number of limit points.

(3.3) Observation. Takeany point v of F', and asufficiently small fundamental neighborhood
V of v. If visaninterior point of F, then V iscontained in U. If visaboundary point of F,
and not a vertex, then there is a boundary segment through v such that F N V is one of the
two sectorsinto which V isdivided by the line determined by the boundary segment. Finally,
if visavertex, then F NV consists of one or more angular sectors of V, each bounded two
half rays through v. In the latter case, the sum of the angles of the angular sectorsis called
theangle of F at v. Inthetwo former cases, the angle at v is, respectively, 27 and .

Take similarly alimit point v of F and a sufficiently small fundamental neighborhood V
of v. If v isnot avertex, then (except for v) al point of V arecontained in U. If v isacusp,
then F NV isaunion of finitely many cuspidal sectors each bounded by two half raysthrough
v. Findly, if v isavertex and not a cusp, then F N V consists of a finite number (possibly
none) of cuspidal sectors and one or two sectors bounded by a single half ray through v.
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It followsfrom Condition (3) that if apoint of F isT-elliptic, thenit lies on the boundary
of F. Moreover, if the order of the point isat least 3, thenit iseven avertex of F. Similarly,
if alimit point of F isT'-parabolic, thenitisacusp of F.

(3.4) Definition. A line segment L in ® is called aside of F if it is the intersection of a
boundary segment of F and a boundary segment of y F for somey # +1inT. The points
of L are then common boundary pointsof F and y F, and each end point of L is avertex of
either F or y F. In particular, an end point of asideis I"-equivalent to avertex of F. Clearly,
the transformation y is unique. The inverse y ~1 is called the boundary transformation
corresponding to the side L, and it isdenoted ;. . It mapsthe side L onto aside y; L of F.

By Condition (3), the intersection F N y F is contained in the boundary of F and in the
boundary of y F. Each of the two boundaries is a finite union of boundary segments. It
follows that the intersection is a union of a finite number of points and a finite number of
sidesof F.

(3.5) Example. Consider the subset FF = F(1) of § introduced in Proposition (1.6). It
follows from the Proposition that F is afinite fundamental domain for the action of SL 2(Z)
on $. The boundary of F is the union of 3 line segments, namely the segment from oo
to p, the segment from p to p + 1, and the segment from p + 1 to co. The finite vertices
are p and p + 1, and oo is the infinite vertex. The angles F at p and p 4+ 1 are equa to
27 /6. Moreover, the vertex oo isacusp of F. Clearly, the three boundary segmentsare sides
of F. The corresponding boundary transformationsaret: z +— z + 1, s:z — —1/z, and
Lz -1

(3.6) Proposition. For any point w of © there is only a finite number of transforms y F such
that w € y F. In particular, in F there is only a finite number of points that are I"-equivalent
to w. Moreover, F has only a finite number of sides.

Proof. Assumethat w belongsto then transforms y1 F, ..., y,, F, and consider the union,
nFU---Uy,F. (3.6.1)

Each transform y; F is, in a sufficiently small fundamental neighborhood of w, a union of
angular sectors, and the angle of y; F at w isequal to theangle of F at yl._lw. Theinteriors
of different transformsare digoint. Hence, in a sufficiently small fundamental neighborhood
of w, theunion (3.6.1) isaunion of angular sectors. The angle of the unionisat most 2 and
it isequal to the sum of the angles of F at the points yi_lw. The latter angles are bounded
away from O, sincetheangleisat |east equal to w except possibly at the finitely many vertices
of F. Therefore, thereisan upper limit for the number n. Thusthere is only afinite number
of transforms y; F' containing w.

If v e FisT'-equivaent to w, say w = yv, then y F' isamong the y; F', and hence the
transformation y is equal to one of the y;. In particular, v isone of the finitely many points
yi_lw. Hence, only afinite number of points of F are equivalent to w.

Anend point v of aside of F isT-equivalent to avertex of F. If v isalimit point of F,
then v isaninfinitevertex of F. If visin F, then v isT"-equivalent to afinite vertex of F and
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so, by what was just proved, there is only afinite number of possibilitiesfor v. Hence there
isonly afinite number of end points of sides. Thus the number of sidesof F isfinite. I

(3.7) Observation. Consider the union (3.6.1) with » maximal, that is, the y; ' are all the
transforms containing w. Then, clearly, the union is a neighborhood of w if and only if the
sum of the angles of F' at the points yj_lw isequal to 2r.

(3.8) Note. It followsfrom Proposition (3.6) that I'-equivalence on F isfinite, that is, every
point v of F isI"-equivalent to only a finite number of pointsin F. If visin U, thenv is
I-equivalent only toitself. If v isarelativeinterior point of aside L of F, then v isequivalent
to y, v and to no other point different from v.

It follows also that F contains only a finite number of I'-elliptic points v. Indeed, if v
isT"-elliptic of order at least 3, then v is one of the finitely many vertices. So assume that
v is '-eliptic of order 2, and not a vertex, that is, assume that v is relative interior on a
boundary segment B. The non-trivial transformation y with v as fixed point is arotation by
7 around u. Therefore B has aline segment in common with y F. It followsthat v belongs
toasideof F andthat y isthe corresponding boundary transformation. Thereisonly afinite
number of sides. In particular, only afinite number of points can be fixed point of aboundary
transformation. Hence there is only afinite number of possibilitiesfor v.

(3.9) Proposition. The following conditions on the domain F are equivalent:

(5i) Any compact subset K of © meets only a finite number of transforms y F.
(5ii) For any point w of ©, the union,

nFU---UyyF, (39.1)

where the union is over the finitely many transforms y; F' containing w, is a neigh-
borhood of w.
(5iii) The boundary of F is the union of the sides of F.

Proof. (i) = (ii): Let W be afundamental neighborhood of w. The transforms y F' cover
. In particular, they cover W. Asthe closure of W is compact, it follows from (i) that W
is contained in a finite union of transforms y; F. Each transform is a closed subset of ©.
Therefore, if we omit from the transforms y; F' those that do no contain w, then the union of
the remaining y; F is still aneighborhood of w. Thus (ii) holds.

(i) = (i): For any point w of ©, the union (3.9.1) of the finitely many y; F' contains
a fundamental neighborhood W of w. Each transform y F is the closure of its interior.
Therefore, if a transform y F' meets W, then it is equal to one of the y; F. In particular,
W meets only a finite number of transforms y F. Now, let K be a compact subset of ©.
Choose for each point w of K afundamental neighborhood W meeting only afinite number
of transforms y F. Since K is compact, it follows that K meets only a finite number of
transforms y F. Thus (i) holds.

(i) = (iii): Take any point w on the boundary of F. It belongs to some boundary
segment B of F. Consider a small fundamental neighborhood W of w. It follows from (ii)
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that W is contained in the union of F and afinite number of transforms y; F containing w.
In particular, the part of B in W is aso part of the boundary of one of the transforms y; F.
Therefore, the part of B in W is part of aside of F. Hence w belongsto aside of F. Thus
(iii) holds.

(iii) = (ii): Consider the union (3.9.1), and its part in a sufficiently small fundamental
neighborhood W of w. The part is the union of a finite number of angular sectors bounded
by a finite number (possibly none) of half rays from w. By (iii), we may assume that each
bounding half ray is the part of a side of a transform y; F. However, being part a side of a
transform y F', the half ray isalso contained in asecond transform ' F', contradicting the half
ray bounded the part in W of the union (3.9.1). Thusthere are no bounding half rays. Hence
the union contains W. Thus (ii) holds.

Hence the equivalence of the three conditions has been proved. I

(3.10) Definition. Thefundamental domain F will becalled anormal domain if theequivalent
conditions of Proposition (3.9) hold. Note that we have assumed Condition (4) for F. In
general, for an arbitrary fundamental domain, the condition (5i) can be taken as the definition
of normality.

If Fisanormal domain, then for the transforms y; F in the union (3.9.1) the sum of the
angles of thetransforms y; F at w isequal to 2. Equivalently, the sum of the angles of F at

the points yj_lw isequal to 2. The points yi_lw are exactly the pointsv of F N T'w, and

each v appears as yj‘lw exactly |PI",, | times. Hence, for anormal domain F, the following
formula holds:
> Angle,F = 27/|PT,|. (3.10.1)
veFNI'w
Conversdly, if the equation (3.10.1) holds for all points w, then the condition (5ii) holds, as
observed in (3.7).

(3.11) Proposition. Assume that F is normal fundamental domain for I". Then the group PI"
is generated by the boundary transformations y;, corresponding to the sides of F.

Proof. Let A be the subgroup of generated by the y; . It sufficesto prove the equation,

D= JsF. (3.11.1)
SeA

Indeed, assume that the equation holds. Fix a point u of the interior U of F. Let y bea
matrix in I". Then yu belongsto § F for some § in A. As yu isan interior point of y F, it
followsthat y, up to 1, isequal to s.

To prove the equation (3.11.1), let ©¢ be the union on the right hand side. Using the
properties of the sides L of F, it follows easily that any point of F is an interior point of a
finite union of transforms§ F for § € A. Asaconsequence, it F meetsatransform y F, then
yF = §F forsomes in A.

It follows first that the union ©¢ is an open subset of ©, and next that the complement
D — ®g isaunion of transforms y®g. Therefore, the complement is open too, and since ©
is connected, it followsthat Do = D. 0
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(3.12) Proposition. Let A be a subgroup of finite index d in I". Assume for simplicity that A
is homogeneous or that I" is inhomogeneous. Consider a decomposition into right cosets,

'=AyU---UAy,.
Assume that F is a normal fundamental domain for I". Then the union of transforms,
G =nFU---UyF,

is a normal fundamental domain for A. Moreover, any side of G is of the form y; L where
L is a side of F, and the corresponding boundary transformation is determined as follows:
according to the coset decomposition, we have y; yL‘l = 8y for a unique k and a unique §
in A. Then § = §; 1, is the boundary transformation corresponding to the side y; L.

Proof. Theunion of the y; U isan open subset of ©, and G isitsclosure. Theinterior V of G
contains the union, and therefore G isthe closure of V. The conditions (1)—(3) follow easily
for G. Moreover, the boundary of G is contained in the union of transforms y; L where L is
aside of F. Of course, theinclusion may be strict: some side y; L of y; L may beaside of a
different y; F and hence not a part of the boundary of G. The assertions of the Proposition
follow easily. I

(3.13) Exercise. Modify Proposition (3.12) to cover the case when I" is homogeneous and
A isinhomogeneous.

(3.14) Proposition. Assume that F is a finite fundamental domain. Then F is normal, if and
only if all cusps of F are I'-parabolic. Moreover, if F is normal, then every I'-parabolic
point is I"-equivalent to a cusp of F and the quotient ©/T" is compact.

Proof. By hypothesis, thereisonly afinite number of limit pointsof F, andthey areall cusps.
Assumefirst that they are all I'-parabolic. To provethat ' isnormal, weverify Condition (5i).
Let K be acompact subset of ©. Then, by Lemma (2.10), each cusp of F has afundamental
neighborhood U, such that the intersection yU N K is empty for al y. Clearly, if we cut
away from F afundamental neighborhood of each cusp, then what remainsof F' isacompact
subset K7 of F. By Lemma (2.2), the intersection y K1 N K is non-empty for only finitely
many y. Therefore, the intersection y F N K is non-empty for only finitely many y. Thus
Condition (5i) holds.

Assume conversely that F isnormal. Let v beacusp of F. We have to show that thereis
in " aparabolic matrix with v as fixed point. After a suitable conjugation, we may assume
that (D, v) = (9, 00). Then afundamental neighborhood of v isahalf planeV : 3z > R.
When R is sufficiently big, the intersection F N V isthe union of afinite number of vertical
strips, bounded by a finite number of vertical line segments. There is only a finite number
of sidesof F. So, enlarging R, we may, by (5iii), assume that each vertical bounding line
segment is part of aside of F. In particular, the rightmost of the vertical bounding segments
is also part of a side of some transform y1 F different from F. In particular, v = yqv1 for
some cusp v1 of F. Repeat the argument to the cusp v of y1 F and the rightmost bounding
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vertical segment of y1 F, and continue. As there are only afinite number of cusps of F, it
follows that the given cusp v = oo isafixed point of some matrix y # +1of I'.

Weclaimthat y isparabolic. Indeed, otherwise y would have asecond fixed point different
from oo on the boundary of . After a conjugation we may assume that the second fixed
point of y is0. Hence, yz = rz for some positive real number r # 1. Replacing y by
y ~1if necessary, we may assumether < 1. Now, F contained a vertical strip, bounded by
two vertical lines and (below) by a horizontal straight line. Clearly, when the powers y” are
applied to the strip, the two bounding vertical lines move towards the imaginary axis and the
bounding straight horizontal line moves towards the real axis. Hence, if K is any compact
neighborhood of a point on the imaginary axis, then the intersection K N " F is non-empty
for n > 0. The latter property contradicts Condition (5i). Therefore, y is parabolic. Thus
we have proved conversely that if F isnormal, then every cusp of F isT'-parabolic.

Assumethat F isnormal. Denote by F* the union of F and the limit pointsof F. There
isonly afinite number of limit points. Therefore F* isacompact subset of ® U 9®. Each
cusp isI"-parabolic, and hence F* iscontained in® U ar®. Consider theimage of F* inthe
quotient ©/T". As F* iscompact, the image is compact. Moreover, as F contains a system
of representatives for the I'-orbitsin ©, the image contains the open subset ©/ I". The latter
subset isdensein ®/ T by (2.13). Hence theimage of F* isall of ®/T. It followsfirst that
every point of ® U ar® is I'-equivalent to a point of F*, and next that the quotient ©/ T is
compact. Thus the two remaining assertions of the Proposition have been proved. I

(3.15) Definition. A discrete subgroup I" of SL(®) such that the quotient ©/ T is compact
is called a Fuchsian group of the first kind. It follows from Corollary (3.14) that if I" has a
finite normal fundamental domain, then I' is of the first kind. Conversely, we prove in the
next section that if I' is of thefirst kind, then there exists afinite normal fundamental domain
F forT.

(3.16) Definition. For the limit points of F there is no notion corresponding to the angle at
the points of F. However, for a I'-parabolic cusp v of F we can define the width of F at v
asfollows: In afundamental neighborhood V of v, the intersection F N V isafinite union
of cuspidal sectors. Assumefirst that (D, v) = ($, o0). Then V isahdlf planeV : 3z > R
in $, and the cuspidal sectors are vertical strips. The canonical generator at v = oo isa
trandation z — z+ h. Definethewidth at oo as 1/ h timesthe sum of the euclidean widths of
the strips (where the euclidean width of a vertical strip is the euclidean distance between its
bounding vertical lines). It follows easily from Condition (3) that the width is at most equal
to 1.

In general, choose a conjugation «: (D, v) — (£, 0o), and define the width of F at the
I"-parabolic point v as the width at oo of o F with respect to the conjugate subgroup I'*. A
different choice of « differs from the first choice by a Mdbius transformation of the form
z+— rz+b,wherer > 0andb € R. Hence, for the second choice, the widths of the vertical
stripsand the number & are both multiplied by r, and consequently, the quotient isunchanged.
Hence the width of F at aI'-parabolic cusp v iswell defined.
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If F isafinite normal domain, then following formulaholdsfor any I'-parabolic point w:

> width,F =1, (3.15.1)

veF*Nl'w

where F* isthe union of F and the cusps of F. Indeed, consider the cuspsv; € F* that are
I"-equivalent to w, and choose for each amatrix y; suchthat y;v; = w. Then every transform
y F having w is acusp is of the form yy; F, where y,, is the canonical generator. Each
transform y; F is, in asmall fundamental neighborhood V of w, a union of cuspidal sectors
bounded by vertical line segments. By (5iii), we may assume that each bounding vertical line
segment is part of aside of yi F. It follows that the transform y.”y; F cover al of V. The
formula (3.15.1) isan easy consequence.

Note that, using the canonical generator y, at apoint v of F, we can normalize the angle
at v: the canonical generator y, is arotation around v by the angle 2z /|PI",,|. Define the
width of F at v tobetheangleof F at v divided by therotation angle of y,. Thentheformula
(3.15.1) hold for all points w of ® U ar®. In fact, for pointsw € 9, (3.15.1) is obtained
from (3.10.1) by division by 2 /|PT"y,|.
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4. Canonical fundamental domains.

(4.1) Setup. Fix adisk © and adiscrete subgroup I" of SL(®). Let b beapoint of ©. The
corresponding canonical domain F (b) isthe subset of © consisting of al points z satisfying
the inequalities,

F(b) : dist(z, b) < dist(z, b') forall b’ € T'b. (4.1.1)

We will show in this section that if the point » is I"-ordinary (i.e., not I'-élliptic), then the
set F(b) isafundamental domain for I'. In addition, the interior of F(b) isthe set U (b) of
points z for which theinequalities (4.1.1) are strict for b’ # b. Moreover, we provethat F(b)
isaconvex polygon with (in general) an infinite number of sides. If T" is Fuchsian group of
the first kind, then F () isafinite normal fundamental domain.

For the remainder of the section we fix a I'-ordinary orbit B, say B = I'bg where bg
is not I'-elliptic. We consider exclusively the canonical domains F (b) for pointsb € B.
Clearly, for any matrix y inI", we have that y F (b) = F(yb). Thusthe domains F (b) are
the transforms under I" of the domain F := F (bg) for any given point bg in B.

(4.2) Observation. The inequality (4.1.1), for two different points b, b’ of B, defines a
(non-euclidean) half plane F;, ;» of ©, bounded by the line,

Lb,b’ . diSt(Z, b) = diSt(Z, b/),

of pointsof equal distanceto b and »’. Each half plane F;, ;» isclosed and convex. In addition,
if visany point of F; ; then the open line segment from b to v is contained in the interior of
Fy 1y, that is, for points z on the open line segment, the inequality (4.4.1) is strict.

The subset F(b) is the intersection of the closed half planes F, ; for al b" # b in B.
Therefore, the subset F (b) isclosed and convex in®. Inaddition, if w belongsto F (), then
the open line segment from b to w iscontained in U (b). The latter property holds also when
w isalimit point of F(b), since apoint w of 0D isalimit point of F(b) if and only if itisa
limit point of each half plane F}, 5 .

(4.3) Definition. Fixbg € B andset F := F(bg). Obvioudly, if b # bg, then theintersection
F N F(b) is contained in the line L;, ;. Moreover, the intersection is closed and convex.
Hence the intersection is either empty, or asingle point, or aline segment of © (possibly with
one or both end points on the boundary 99). By definition, aline segment L of ©, which is
anintersection L = F N F(b) for someb # bg in B, iscaled aside of F. Anend point of a
sideiscalled avertex. Thefinite verticesbelong to F, the infinite vertices are limit points of
F.

The line Ly, is orthogonal to the line segment from b to b and intersects the line
segment in its midpoint. Hence, when bg isfixed, the line Ly, ;, determines the point 5. As
a consequence, different sides of F lie on different lines. It follows easily that afinite vertex
of F belongsto exactly two sidesof F and isacommon end point of thetwo. In addition, an
infinite vertex can belong to at most two sides. A limit point of F which isthe common end
point of two different sidesis called acusp of F.

We prove below that the boundary of F' isthe union of the sides of F.
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(4.4) Observation. Consider apoint z in®. By Lemma (2.11), any fundamental neighbor-
hood of u contains only a finite number of points from B. It follows that among the points
in B there is afinite number of points 5; for which the distance to « is minimal. They are
said to be the points of B nearest to u. They lie on geodesic circle around « (including the
possibility of the circle with radius zero, when u belongsto B). If u € B, thereisonly a
singleb; := u nearesttou. If u ¢ B, then, according to an orientation of the geodesic circle,
we can index the b; in acyclic order by, .. ., b,, so that there are no b; on the open arc from
b; tob;+1. Then, clearly, any fundamental neighborhood V' of u isdivided into finitely many
angular sectors,

Vi i={z e V | dist(z, b;) < dist(z, b)) for all j}, (4.4.1)

and two different V; and V; have a half ray from u in common when j =i £ 1, and only the
point « in common otherwise. If thereisonly one point ;, then V1 = V, and theangle of V1
at u isequal to 2. If there are two pointsb;, then V1 and V» have aline segment as common
boundary. The angles of V; and V> a u are equa to 7. Finally, when there are more than
two points b;, then each V; hasat u an angle strictly lessthan . In any case, the sum of the
anglesof V; a u isequa to 2. It isconvenient to define the width of V; asthe angle of V;
divided by the rotation angle of the canonical generator y,,.

Consider next apoint u in ar®. Then, again by Lemma (2.11), there is a smallest horo
cycle around u containing points of B. The points of B on this smallest horo cycle are said
to be nearest to u. The set of points of B nearest to u is a discrete subset of the horo cycle.
Moreover, it is an infinite set, since it is invariant under the canonical generator y,,. Hence
the set of pointsof B nearest to u can beindexed cyclically b; fori € Z sothat thereareno b;
onthearc from b; to b; 1. Then, clearly, any fundamental neighborhood V of « isdividedin
infinitely many cuspidal sectors V; by the equations (4.4.1), and two different V; and V; have
ahalf ray from « in common when j =i 4 1, and only the point « in common otherwise.

Define the width at « of the cuspidal sector V; as follows: Assume first that (9, u) =
(9, 00). Then the canonical generator y, isatrandation z — z + h, and the points b; of B
nearest to co are on a horizontal straight line of $. The fundamental neighborhood V isa
half plane 3z > R in $, and the cuspidal sector V; isavertica strip of $), bounded by the
two vertical lines of equal distanceto b; 1 and b; and to b; and b; 1. Define the width of V;
at u = oo asthe euclidean width of the strip divided by 4. In general, define the width of a
cuspidal sector V; by using a conjugation asin (3.16).

Note that the width of a cuspidal sector V; is at most equal to 1, since the set of nearest
pointsis stable under the canonical generator y,,.

(4.5) Lemma. Letu be a point of ® Udr®, and y, the canonical generator of I',. Consider,
in the setup of (4.4), a fundamental neighborhood V' of u and the division of V in sectors V;.
Then there is a smallest positive number d such that v, V; = V;,, for all i. Moreover, the
sum of the widths of V; for j =1, ...,d isequal to 1.

Proof. If u € ®©, then any geodesic circle around u is invariant under y,,. In particular, y,
permutes the points b;. If u € ar®, then any horo cycle around « is invariant under y,,. In

46



Automorphic functions [Discr] 23
26. februar 1995

particular, y, permutes the points b;. It follows, in both cases, that y,, permutes the sectors
V.

Assume that u € ©. Then y, is arotation by the angle 2 /|PT",,| around u. So the
number d < n defined by y, V; = V;14 isindependent of i. Clearly the union of the V;, for
Jj =1,...,eisitsef an angular sector, and its angle at « is the rotation angle of y,,. The
assertions of the Lemmafollow easily.

Assumethat u € 9r®. After aconjugation, we may assumethat (D, u) = (9, o). Then
yu i1Satrandation z — z + h, and the cuspidal sectors are vertical strips. So, the number d
defined by y, V; = V14 isindependent of i. Clearly theunionof the V;, for j =1,...,d,
isitself avertical strip of euclidean width /. The assertions of the Lemmafollow easily. 0

(4.6) Proposition. Letu« be apointof © Uar®. Consider, in the setup of (4.4), a fundamental
neighborhood V of u and the division of V in sectors V;. If V is sufficiently small, then
F(b;) NV = V; and if b is a point of B such that F(b) NV # @, then b is one of the b;.

Proof. The points b; are the points of B nearest to u. To prove the Proposition, it suffices
to show that a sufficiently small fundamental neighborhood V' of u has the following special
property: for any point w in V, the points of B nearest to w is a subset of the ;. Indeed,
assume that V has the special property. Consider a given i, say i = 0. Obvioudly, the
inequalitiesin (4.1.1) for b := bg and dl b’ € B imply the inequalitiesin (4.4.1) for al ;.
Hence, F(bg) NV C V. Conversely, assume that w belongsto V. By the special property,
the points of B nearest to w are among the b;. By déefinition of Vg, among the b;, then
point bg is nearest to w. Hence bg is apoint of B nearest to w, that is, w € F(bg). Thus
F(bg) NV = Vp. Moreover, if theintersection F(b) NV isnon-empty, take a point w in the
intersection. Then » isapoint of B nearest to w. So, by the special property, b isone of the
b;.

To provethe existence of afundamental neighborhood V with the special property, assume
first that u belongsto ®. Let » be the common (non-euclidean) distance from « to the nearest
points b;. By (2.11), any geodesic disk around « contains only a finite number of points of
B. Hence, if ¢ > 0issufficiently small, then the geodesic disk W with radiusr + ¢ contains
of points of B only the b;. The geodesic disk V around u with radius /2 has the special
property. Indeed, let w be apoint of V. If w belongsto V, then, by the triangle inequality,
the distance from w to any b; isstrictly lessthan r + ¢ /2, and the distance from w to a point
outside W isat least equal to r + /2. Therefore, the points of B nearest to w are among the
b;. Thus V hasthe special property.

Assume next that u is a I'-parabolic point. After a conjugation, we may assume that
(D,u) = (9H,00). Then the canonical generator y, is atrandation z — z + h, and the
smallest horo cycle containing the nearest points b; is a horizontal (straight) line Jz = r.
It follows from (2.11) that for some r’ < r, the fundamental neighborhood W : 3z > r’
contains of points of B only the b;. Let ¢ be the non-euclidean distance between the straight
lines Iz = r and Iz = r’. It is the distance between any two points with the same real
part on the two lines; in fact, it isequa to log(r/r’). The distance dist(z, z + h) converges
to zero uniformly as Iz — oo. Therefore, there existsan R > r such that if Iz > R and
0 < |k| < h/2, thendist(z, z + k) < e. The fundamenta neighborhood V : 3z > R has
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the special property. Indeed, let w beapoint of V. Let s be the non-euclidean distance from
w to theline Iz = r (then s = log(Ju/r)). Since the set of points b; isinvariant under the
trandation z — z + h, thereisab; such that for the difference of real parts, k := Rb; — Ru,
we havethat O < |k| < h/2. Now, the distance from w to w + k isstrictly lessthan ¢ and the
distance from w + k to b; isequal to s. Hence the distance from w to b; is strictly less than
s + &. Onthe other hand, the distance from w totheline Iz = r’ isequal to s + ¢. Hencethe
distance from w to any point of B different fromthe b; isat least equal to s + ¢. Therefore,
the points of B nearest to w are among the b;. Thus V hasthe special property. I

(4.7) Observation. Fix apointbg € B, and set F' := F(bo). Thelocal descriptionsin (4.5)
and (4.6) apply in particular to points v that are either in F or I'-parabolic limit points of F.
It followsthat a sufficiently small fundamental neighborhood V of v decomposesinto afinite
number of sectors V;, of which one, say Vp, isequal to F N V. Thewidth of Vg at v iscalled
thewidth of F at v. If visin F, then the sectors are angular and there is finite number. If v
is I'-parabolic, then the sectors are cuspidal and there is an infinite number.

Consider the following (exhaustive) cases:

(1) Thereisonly one V;. Then V = Vp iscontainedin F, and hence v isan inner point of
F. Moreover, if F(b) meets V, theb = bg. In particular, no point of V isasideof F or a
vertex of F. Thewidth of F at v isequal to 1.

(2) Therearetwo angular sectorsV;, say Vopand Vi. ThenVy = F(b1)NV,andVNF (b) =
@ when b is not bg or b1. The common boundary of Vg and V7 isthe intersection of V and
the line Cy, 1, , and equal to the part in V of the intersection F(bg) N F(b1). In particular,
the latter intersection isa side of F, it contains v, and it is the only side of F' containing v.
The width of F at v isequal to 1/2. The interior points of Vg are interior points of F. In
particular, the point v belongs to the closure of the set of interior points of F.

(3) There are more than two angular sectors V;. Then the common boundaries of Vy and
the two adjacent V;’s are parts of sides of F. In particular, then v is a vertex of F. The
width of F at v isstrictly lessthan 1/2. Theinterior pointsof Vg areinterior pointsof F. In
particular, the point v belongs to the closure of the set of interior points of F.

(o0) Assumethat v isaT'-parabolic limit point of F. If V_1 and V1 are the two adjacent
Vi, then the intersections Vo N V_1 and Vo N V; are parts of two sides of F. Thus v isthe
common end point of two different sides; in particular, then v isacusp of F.

(4.8) Theorem. Let bg be a point of © which is not I'-elliptic. Then the canonical domain
F = F(bg) of (4.1) is a fundamental domain for I", and its interior is the subset U (bg). The
boundary of F is the union of the sides of F'. In addition, every I"-parabolic limit point of F
is a cusp. Finally, every compact subset of © meets only a finite number of sides.

Denote by F* the union of F and the set of I"'-parabolic limit points of F. Then, for any
point u of ® U ar®, the intersection F* N T'u is finite, and the following formula holds,

> width,F =1

veF*Nlu

In particular, every I'-parabolic point is equivalent to a point in F *.
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Proof. Set U := U (bg), and consider the conditions (1)—(3) of (3.1). It follows from Pro-
position (4.6) in particular that any point v of © belongs F (b) for some b = ybo, and that
it belongs to only a finite number of F(b). As F(ybg) = y F (bo), it follows that condition
(1) holds. Next, let v be apointin U. Then bg isthe single point in B = I'bg nearest to
v. It follows from the discussion in (4.7)(1) that a sufficiently small neighborhood of v is
contained in F'. Hence U isan open subset of ©. If apoint of F isnotin U, it followsfrom
the discussion that any neighborhood of v contains pointsof U and points of the complement
of F. Hence U isthe set of interior pointsin F and F isthe closure of U. Thus condition (2)
holds. Finally, the intersection U N y U isequal to U (bg) N U(ybo). It isobviousfrom the
definition in (4.1) that the intersection is empty unlessbg = ybg. Since bg isnot I'-dlliptic,
the equation bg = ybo impliesthat y = +1. Hence condition (3) holds. Thus F is a
fundamental domain for I.

The assertions about the boundary of F follow immediately from the discussionin (4.7).
By the same discussion, any point « of ® has a fundamental neighborhood meeting at most
two sidesof F. It followsthat a compact subset of © can only meet afinite number of sides
of F.

Finally, the formulafollows from Lemma (4.5). I

(4.9) Corollary. The quotient ©/ T is compact, if and only if F = F(bo) is a finite normal
domain.

Proof. By Proposition (3.14), if the fundamental domain F is a finite normal domain, then
the quotient is compact.

Conversely, assume that the quotient is compact. Choose for each point u of © U or®
a small fundamental neighborhood V = V,, of u having the property of Proposition (4.6).
If V has the property for u«, and u’ is T'-equivalent to u, say u’ = yu, then V' := yV has
the property for u’. Moreover, V' isindependent of the choice of y, because two different
choicesdiffer by amatrix inT",,, and the matrices of I',, leavesthe fundamental neighborhood
V invariant. Hence we may assumethat V,,, = yV,, forall y inT.

For any point v of F*, the fundamental neighborhood V,, isaunion of sectors V;. Let F,
be the sector contained in F*.

Consider an arbitrary point u of ® U dr® and the fundamental neighborhood V,,. Then
V, isaunion of sectors V; and V; isthepartin V, of F(b;). We havethat b; = ybg for some
y inT", and hence F(b;) = y F. Thus, withv := y ~1u, wehavethatv € F* and V,, = y V,.
It followsthat V; isequal to y F,. Therefore, in the decomposition of V,,, any of the sectors
V; isatransform of F, for somepointv € F* N Tu.

Theintersection F* N I'u isfinite by the Theorem. Hence it follows from the preceding
argumentation that any point « in ® U dr® hasafundamental neighborhood whichisaunion
of transforms of sets F, for afinite number of pointsv in F*. It follows that any point in
the quotient has a neighborhood which is a finite union of the images of the F,. Since the
quotient iscompact, therefore the quotient isthe union of afinite number of images of the F,.
In other words, thereisafinite set of pointsv; in F* such that any pointin F* isT"-equivalent
to apoint in the union of the F, .
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Let w be apoint which iseither on the boundary of F or alimit point of F. Let M denote
the open line segment from bg to w. Then M is contained in the interior of F. In particular,
no points of M can belong to atransform of F different from F. Hence M is contained in
the union of the finitely many F,,. It followsfirst that w is a boundary point of one of the
F,,, and next that w belongsto one of the F,, .

Each F,, meetsat most two sides of F* and has at most one point on 9. Asthe boundary
of F isthe union of the sides, it follows first that the number of sidesis finite. Hence the
condition (4) of (3.1) holds. Next, it followsthat there is only afinite number of limit points
for F. Hence F is afinite domain. Moreover, the limit points of F arein F* and hence
[-parabolic. Therefore, by Proposition (3.14), F isafinite norma domain.

Thus the Corollary has been proved. I

(4.10) Note. If the canonical domain F = F(bg) has finite area, then it is a finite normal
domain. Indeed, assume that the area of F isfinite. For each finite vertex v of F, let «,
denote the angle of F at v (equal to 2 timesthewidth at v). Set «, := O for all limit points
v of F. Let v; beafinite number of pointsthat are either verticesor limit pointsof F. Let F’
be the convex hull of thev;. Then F’ isafinite polygon, possibly with some of itsverticeson
09. If o] istheangle of F’ at v;, thenitiswell known that the area of F’ plus 2 isequal to
Y (r — ;). Now, since F isconvex, we havethat F € F. So, theareaof F’ isat most the
areaof F andtheangle! isat most «,,. Therefore, thesum ) (7 — «,,) isat most equal to
thearea of F plus 2. Asaconsegquence, the following sum over all points v that are either
avertex or alimit point of F isbounded above:

Z(n — ). *)

In the sum (*), each limit point of F' contributes with theterm . Hencethereisonly afinite
number of limit pointsof F. Dividethe finite verticesinto I'-equivalence classes. Each class
is finite, and sum of the angles in a given class is equal to 27 /d where d is the common
number of elements of the isotropy group PI",, for any vertex v in the class. Let n be the
number of verticesin the class. Then the sum of thetermsin (*) corresponding to the vertices
inthe classisequal to (n — 2/d)r. Each angleis strictly lessthan . Therefore, if d = 1,
thenn > 3,andif d = 2thenn > 2. Hence,n — 2/d > 1ifd =1ord = 2. If d > 2, then
(n — 2/d) > 1/3. Hence, in all cases, the group contributes with at least 77 /3 to the sum. It
follows that there is only a finite number of groups. Hence the number of finite verticesis
finite.

As the number of verticesis finite, so is the number of sides. Moreover, thereisonly a
finite number of limit points of F. So F' is afinite domain. Now it follows from Theorem
(3.7) that F isafinite normal domain.

(4.11) Exercise. Provethat the considerationsin (4.10) imply the following estimate:

Area(F)/m + 2 > (number of infinite vertices) + (number of finite vertices) /3.
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5. The Euler characteristic.

(5.1) Setup. Fix adisk ® and a discrete subgroup I of SL (®©) such that the quotient X =
X () :=®/T iscompact.

The quotient is a surface by Corollary (2.13): any point in the quotient has an open
neighborhood topologically isomorphic to an open disk in the plane. Therefore, asiswell
known, the Euler characteristic x (X) isdefined. It isthe alternating sum of the ranks of the
cohomology groups,

x(X) =dimHO(X) — dim HY(X) + dim H?(X). (5.1.1)

Obvioudly, the quotient X isconnected. In addition, the definition of the local isomorphisms
in Corollary (2.13) showsthat X inanatural way isan oriented surface. Therefore, asiswell
known, the surface X is (topologically) a sphere with a certain number of handles attached.
Thenumber of handlesiscalled thegenus of X andisdenoted g = g(X) = g(I"). Inaddition,
the cohomology groups H%(X) and H?(X) are 1-dimensional, and H1(X) is of dimension
2g. Hence the genus and the characteristic are related by the formula,

X =2-—2g. (5.1.2

Moreover, it iswell known that the characteristic can be determined from any atriangulation
of X by theformula,

x (X) = #(vertices) — #(edges) + #(faces). (5.1.3

Fix afinite normal fundamental domain F for I, cf. Proposition (3.14) and Corollary (4.9).
The boundary of F' isthe union of finitely many sides. We will take as definition of a vertex
here apoint which isan end point of aside. Recall that for any side L of F thereisaunique
boundary transformation y;, inT" suchthat y; L isasideof F. Wewill say that L isan elliptic
side if y, L = L. Equivaently, aside L isdliptic, if it contains an éliptic point v which is
not avertex. Then, necessarily, the point v iseliptic of order 2 and y . isthe rotation by the
angle  around v.

(5.2) Definition. The Euler characteristic of the domain F isdefined from any triangulation
of F asthe number,

x (F) = #(inner vertices) — #(inner edges) + #(faces). (5.2.1)

The Euler characteristic is in fact a topological invariant of the interior U of F. If U is
connected, then the characteristic isequal to 1 minusthe number of holesinU. At any rate, it
isaconsegquence of (the proof of) the next formulathat the characteristic of F isindependent
of the choice of triangulation.

51



[Discr] 28 Automorphic functions
26. februar 1995

(5.3) Proposition.
Area(F) = =27 x (F) + #(sidesof F)r — ) " Angle, F, (5.3.1)

where the sum is over the vertices of F and the angle of F at a cusp is defined as O.

Proof. Consider atriangulation of F. Each faceisatriangle. An edge of atriangleis either
an inner edge or part of the boundary of F. Clearly, if we divide aside of F into two by a
point on the side, then the number of sidesisincreased by 1 and the sum of the angles of is
increased by 7 ; hence the right side of (5.3.1) isunchanged. Therefore, we may assume that
thesidesof F are exactly those edges of the triangulation that are contained in the boundary.

If we sum the areas of the faces of the triangulation, we get the area of F, that isthe |eft
side of (5.3.1). On the other hand, each face isatriangle and its areais equal to 7 minusthe
sum of the three angle of the triangle. Hence the sum of the areas of the facesis equal to =
times the number of faces minus the sum of the angles of the faces. In the latter sum, each
inner vertex contributes with 27 and each vertex on the boundary of F contributes with the
angle of F at the vertex. Hence we have obtained the equation,

Area(F) = #(faces)r — #(inner vertices) 2r — Z Angle, F.
The equation (5.3.1) is a consequence, since obviously, the equation,
3#(faces) = 2#(inner edges) + #(sides),

holds for atriangulation whose outer edges are the sides of F'. I

(5.4) Proposition. Take as vertices of F the end points of the sides. Then the Euler charac-
teristics of X = ©/I" and the fundamental domain F are related by the formula,

x(X) = x(F) -

4 dliptics fF ; f F
(non-elliptic sides 0 >+#<m>, (5.4.1)

2 r
where the last fraction denotes the set of I"-equivalence classes of vertices of F.

Proof. Consider anéllipticside L of F. It doesnot contributeto theright hand side of (5.4.1).
The boundary transformation y;, isarotation by 7 around an elliptic point v of order 2 on L.
The point v divides L into two line segments L’ and L” with v as common end point. The
two segments L’ and L” are interchanged by y; . Hence, considering the sides of F, we may
replace the side L by the two sides L’ and L” and add the point v as a vertex. The point v
isT"-equivalent to no other point of F. Therefore, the replacement does not change the right
hand side of (5.4.1). Thus, to prove (5.4.1), we may assume that no side of F iséelliptic.
Consider a side L and its transform L’ = y; L. A given point v interior on L divides
L into two line segments L1 and L» with v as common end point. Then L’ is divided into
the two line segments L} := y; L1 and L}, = y; L withv' := yv as common end point.
Hence, considering the sides of F, we may replace the two sides L and L’ by the four sides
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L1, L7, Ly, LY, and add thetwo pointsv and v” asavertices. The pointsv and v’ formasingle
I"-equivalence class of vertices. Therefore, the replacement does not change the right hand
side of (5.4.1). Thus, to prove (5.4.1), we can divide any side L of F into a finite number
of sides as long as we divide similarly the side y L. In particular, just dividing some of the
sides into two sides if necessary, we may assume that no two different points on a side are
["-equivalent.

Consider a triangulation 7 of F. As noted above, we may assume that any edge of 7
which is contained in the boundary of F isaside of F. Then every triangle of 7 is mapped
homeomorphically onto itsimage in the quotient X, and the images form a triangulation of
X. Clearly, in the image triangulation, the faces correspond to the faces of 7', the edges
correspond to inner edges of 7 and pairs L, v L of sides of F, and the vertices correspond
toinner verticesof 7 and I"-equivalence classes of verticesof F. Thustherequired equation
(5.4.1) follows from (5.1.3) and the definition of x (F). I

(5.5) Corollary. The following formula holds:

Area(F 1
w mod I

where the sum is over all orbits that are I"-elliptic or I"-parabolic, and |PT",| is the common
order of the isotropy groups of the points in an orbit. In the sum, at the I"-parabolic orbits
where the isotropy group is infinite, the fraction 1/|PT",| is counted as O.

Proof. We apply the two formulas (5.2.1) and (5.4.1). It is clear, and noted in the proof of
(5.4), that to apply (5.4.1) we may assume that no side of F isT'-elliptic. Hence we obtain
the equation,

Area(F)
2

verticesof F
r

:—X(X)+#< )—ZAngIeUF/Zyr.

In the sum, group theterms according to their I'-equivalence class. Consider aI"-equivalence
classof verticesrepresented by apoint w, that is, aclassconsisting of al verticesI"-equivalent
to w. If wisin®, then, by (3.10), the corresponding contribution to the sum is equal to
1/|PTy|. If wisin ar®, corresponding to an equivalence class of cusps of F, then al
the angles are zero, and the corresponding contribution in the sum is zero, and hence by
convention equal to 1/|PI",,|. Hence, we obtain the equation,

Area(F) 1
o = X0 Y (1= ).

wmodTD”

where the sum is over all orbits containing a vertex of F. The asserted equation (5.5.1) isa
consequence since, by assumption, every elliptic point is I"'-equivalent to a vertex. I
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(5.6) Note. It follows from (5.5) that the area of the fundamental domain F is aways a
rational multiple of 2, that is, the quotient Area(F) /2 isarational number. The quotient
isdenoted © = w(T"). Inaddition, it iscustomary to denote by v, (I") the number of I"-€elliptic
orbits of order e. In addition, the number of I'-parabolic orbits is denoted v, (I"). Hence,
using (5.1.2), the following equation isjust arewriting of (5.5.1),

,u:2g—2—|—voo+2ve(l—%). (5.6.1)

e>2

(5.7) Observation. If A isasubgroup of finiteindex in I", then
w(A) = |PI:PA| (D). (5.7.1)

Indeed, if the transformations y;, fori = 1, ..., d, represent the right cosets of PI" modulo
PA, then, as observed in (3.12), the union G := | J y; F isanormal fundamental domain for
A. Obviously, the area of G isd timesthe areaof F. Asaconsequence, (5.7.1) holds.

(5.8) Example. ThegroupI"'(1) := SL2(Z) isadiscrete subgroup of SL($)). A fundamental
domain for I" (1) was determined in (1.6). The domain was atriangle with one cusp and two
finite I'-equivalent vertices. Obviously for a triangle, and more generally for any polygon
with a simply connected interior, the Euler characteristic is equal to 1. The side connecting
the two finite verticesis elliptic, and there are two equivalence classes of vertices. Hence, by
theformula(5.4.1), the Euler characteristicof I'(1) is1— 1+ 2 = 2. Thusthe genusisequal
to 0, confirming that the quotient §/ I" (1) obviously is a sphere.

The angles of the fundamental domain at the two finite vertices are equal to 2 /6. Hence
the area of the domain is equal to 7/3. In other words, © = %. There is one parabolic
orbit, one elliptic orbit of order 2 and one of order 3 and no other eliptic orbits. Hence
Voo =V2=v3=1,andv, =0fore > 3.

Consider a subgroup I of finiteindex inI"'(1). Setd := |PI'(1):Pr"|. Then u(I") = d/6
by (5.7.1). Moreover, since every I'-élliptic pointisT"(1)-élliptic, we have v, = Ofore > 3.
Hence, with v, = v, (T"), equation (5.6.1) is equivalent to the following,

. d V2 V3 Vo
g =1+ 2 2 3 > (5.8.1)

(5.9) Note. The area of the fundamental domain F can be obtained by integration. Assume
first the disk is the upper half plane . Then,

Area(F):/ dz :/8 dx :/Fd“ly. (5.9.1)

IF SN2 F Yy y2

The two middle path integrals are over the boundary of F, orientated counter clockwise
around F. Thefirst path integral in (5.9.1) should be taken with care. If aside L of F hasan
infinite vertex as end point, then theintegral [, dz/y isnot convergent. When F hasinfinite
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vertices, the path integral along d F' isdefined asfollows: consider the path integrals obtained
by integration along the boundaries of the subdomains obtained from F by cutting away a
small fundamental neighborhood of each infinite vertex. The limit of these path integrals, as
the fundamental neighborhoods shrink around the infinite vertices, is then the path integral
aong o F.

In thefirst integral of (5.9.1), the integrand is a sum of two forms,

dz dx dy
o — 1 —

y y

The second form is a total differentia in $, y~1dy = d(logy). Hence its integral over a
closed path is equal to zero. Therefore, the second equality of (5.9.1) holds.

Consider theintegral [, dx/y over any oriented linesegment L in §). Say L isthe segment
from u to v, where u and v are allowed to be limit points. Then the path integral [, dx/y is
convergent, and given by the formula,

dx
- = QL,U - QL,M’ (592)
LYy

where, for any point w on L, theangled,, ,, isthe oriented angle from L to the (vertical) line
fromw to co. Theformulafollowseasily from the definition of the path integral, noting that L
ispart of acircle orthogonal to thereal axis(thetrivial casewhen L ispart of avertical straight
line has to be treated separately). From the formula (5.9.2) it follows that if F isatriangle,
then the path integral [, . dx/y isequal to w minusthe sum of the interior angles. Thusthe
equation [, . dx/y = Area(F) holdswhen F isatriangle. Therefore, using atriangulation
of F, the equation holdsin general. Asd(y tdx) = —y2dyAdx = y~2dxndy, thelast
equality in (5.9.1) follows from Stoke's theorem. Thus the equations of (5.9.1) have been
proved.
Thefirst equation of (5.9.1) impliesthe following:

J /
Area(F) = i / J((’;’; ZZ)) . (5.9.3)

wherethesumisover thesides L of F, and y;, istheboundary transformation. Indeed, if y €
SL($) then J(y, z) = cz + d with real numbersc and d. It followsthat 2i J (y, z)’ = 2ic =
J(y,2) — (v, 2))/Sz. Moreover, S(yz) = [J(y,2)| 7?3z and d(yz) = J(y,z)"%dz.
Hence we obtain the equations,

Zi/M_/(l_J<%Z>)§_/(@_d(ﬂ>)_/d_z_/ dz
L J(,2) L J(y,2)/ 3z L\3z  S(y2) L3z J,L 9z
Takey := y.. Theny, L isaside L’ of F. However, the orientation on L’ as aside of F
is the reverse of the orientation on L’ as an image y; L. Hence the difference on the right
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hand side of the equationsisthe sum [, dz/3z + [, dz/Jz. Consequently, (5.9.3) follows
by summation over all thesides L of F. Infact, it follows that

Area(F) / J(ye, )’ z)
. 594
Z J(yL, Z) ( )

where the sum is over unordered pairs {L, L'} of sideswith L' = y; L.
It isnot hard to see, using a M 6bius transformation to transform the integrals, that (5.9.3)
and (5.9.4) holdsfor any disk ©.
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Modular groups

1. Finite projective lines.

(1.1) Setup. Recall that the group SL () isthe group SL2(R). The subgroup SL»>(Z) isa
discrete subgroup. It is caled the modular group.

Fix a natural number N. We are going to consider various subgroups of SL2(Z) related
to subgroups of SL2(Z/N). Note that, by the Chinese Remainder Theorem, if N =[] p" is
the prime factorization of N, then

GL2(Z/N) = [ [ GL2Z/p"), SL2(Z/N) =[] SL2z/p").

Clearly, the definition of the action of GL(C) on the Riemann sphere C extends to an
arbitrary field. More generadly, if R is any commutative ring, we define PGL,,(R) as the
quotient of GL,,(R) modulo the scalar matrices:

PGL,(R) := GL,(R)/R*.
By definition, PSL,, (R) istheimage of SL, (R) in PGL, (R), that is,
PSL,(R) := SL,(R)/1un(R),
where w, (R) isthe subgroup of R* consisting of »n’th roots of unity. Note in particular, for
n = 2, that the group PSL>(R) isin general anon-trivial quotient of SL2(R)/ £ 1, sincethe
equation «® = 1in R may have non-trivial solutions.

Assume that R is alocal ring with maximal ideal m. Let R be the digoint union, R :=
RU % where % is a set consisting of one symbol for each element in m. Denote by R? the
R-module of columns, and by (R?)* the subset of columns for which at least one entry is a
unit. Then there is a surjective map (R%)* — R,

[2] > 71/22. (1.1.2)

The quotient z1/z2 € R is defined as z1z, " if z2 € R* and as the symbol 1/(z7'zp) if
z2 € m. Obviously, the group GL »(R) acts on the set (R?)* and the scalar matrices permute
the elements of the fibers of the map (1.1.1). Hence the action descends to an action of
PGL>(R) on R. Asin the case of Mébius transformations, it is a faithful representation,

PGL2(R) < AUt(R). (1.1.2)

The set R for alocal ring R is the projective line /P1(R). The action of PGL»(R) on the
projective line generalizes to an action of PGL,1(R) on projective n-space IP"(R) =
(Rn_H')*/R*.
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(1.2) Note. Consider afield F. Then it follows, as in the proof of (M6b.1.3)(3), that the
action of PGL»(F) on F istriply transitive. However, the action of the subgroup PSL »(F)
isin general only doubly transitive: if (u, v) and (u’, v’) are two pairs of different points of
F then the matrices o that map the first pair to the second are the matrices of the following
form (with an obvious notion for the representatives of the four points):

o= [0 J/][’c\) 2][& 3L,

where A, u € F*. Clearly, with suitable choices of A and ., the determinant of « isequal to
1. For instance, if F isafinitefield with g elements, then thereare (¢ — 1)(¢ — 1) matrices
a, and g — 1 of these have determinant 1. So, if ¢ isodd, there are (¢ — 1)/2 automorphisms
in PSL2(F) mapping the first pair to the second.

(1.3) Proposition. Consider in SL2(Z) the three matrices,

=l o) = [oa) =1 ]

Then s2 = —1, u® = 1, and s = tu. In particular, s is of order 4 and « is of order 3.
Moreover, the group SL2(Z) is generated by the two matrices s and ¢, and hence also by s
and u.

Proof. The three asserted equations follow by a simple computation. In addition,

rb:[é li] st_ls_lz[i 2] (1.3.2)

Denote by I" the subgroup generated by s and z. It follows from (1.3.1) that the elementary
row and column operations on matrices in GL2(Z) can be achieved by multiplication from
the left and right by matricesin I". By the Euclidean algorithm, every matrix in GL 2(Z) can
be changed into a diagonal matrix by the elementary operations. In particular, any matrix o
in SL2(Z) can, by multiplications from the right and left by matricesin I", be changed into
+1. As—1 = 52, it followsthat o belongstoT". 0

(1.4) Sublemma. The group SL»(Z/N) is generated by the following matrices:
S i1 _[m O .
si=[1 o) r=[o 1) d=[f ,a]forue@my (1.4.)

Proof. Notefirst that if theintegersa, ¢, N arerelatively prime, then thereisanumber k such
that a + kc isrelatively primeto N. Indeed, it sufficesto take k := [ [ p, where the product
isover al primes p such that p isadivisor of N and not adivisor of a.

Consider an arbitrary matrix o in SL2(Z/N):



Automorphic functions [Mdlar] 3
26. februar 1995

where ad — bc = 1 (mod N). We have to show that we can obtain the identity matrix by
multiplying o afinite number of times by the matricesin (1.4.1) and their inverses.

Clearly, theintegersa, ¢, N arerelatively prime. Hence there exists anumber £ such that
a+kcisprimeto N. Therefore, replacing o by r*o, wemay assumethata € (Z/N)*. Next,
replacing o by d 5, wemay assumethat @ = 1. Furthermore, since

=3 alle 71-[F 9

wemay assumethata = d = 1and b = 0. Finaly,

sos ¢ = s[; g]s_ltc = [é _]_E]tc =1,

and hence the identity matrix has been obtained, as required. I

(1.5) Proposition. Reduction modulo N is a surjective homomorphism of groups,
SLo(Z) — SL2(Z/N).

As a consequence, the group SL2(Z/N) is generated by the first two matrices s and ¢ of
(1.4.1).

Proof. To prove that reduction modulo N is surjective, it suffices to lift the generators of
(1.4.1). Obvioudly s and ¢ lift. For adiagonal matrix d,,, we have that u = m, where m is
primeto N. Thenm isprimeto N2. Hencetherearenumbersx and y suchthat xm —yN? = 1.
Clearly, the following matrix of SL>(Z) isalift of d,:

[V 7]

Hence the reduction is surjective. It followsthat SL>(Z/N) isgenerated by s and ¢, since
theliftsof s and ¢ generate SL»(Z) by (1.3). I

(1.6) Corollary. The group GL2(Z/N) is generated by the matrices,
0 -1 11 0 .
s=[1 o) t=lg 1] dwr=f 1]forue@m (16.1)

Proof. Clearly, the assertion follows from the last assertion of Proposition (1.5). I

(1.7) Corollary. Let p beaprimenumber. Then, forv > 1, the surjective ringhomomorphism
Z/p” — Z/p induces a surjective group homomorphism,

GL2(Z/p") — GL2(Z/p), (1.7.1)
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and the kernel of the induced homomorphism consists of all matrices in Mat>(Z/p") of the
form,
1+, (1.7.2

where all entries in « belong to the kernel of Z/p¥ — Z/p.

Proof. Clearly, the generators s and ¢ of (1.6.1) for N := p lift, and the generator dq , lifts,
because (Z/p")* — (Z/p)* is surjective. Hence the homomorphism (1.7.1) is surjective.
Obvioudly, any matrix inthekernel hastheform (1.7.2). Conversely, foramatrixo = 1+« of
theform (1.7.2), the determinant iscongruent to 1 modulo p; henceo belongsto GL 2(Z/ p"),
and obviously o belongsto the kernel of (1.7.1). I

(1.8) Proposition. The orders of the groups GL2(Z/N) and SL2(Z/N) are given by the
following formulas,

|GL2(Z/N)| = N* [,y = A= 5. [SL2Z/N)| = N3],y (L~ -5).

As a consequence,

SLaZ/N)) £ 1] { 6 for N = 2,
2 =
N3, — p_12) for N > 2.

Proof. By the Chinese Remainder Theorem, it suffices to prove the formulas when N isa
prime power, N = p”. Thequotient Z/ p isthefield F, with p elements. Hence the order of
the group GL2(Z/p) is equal to the number of bases of the 2-dimensional vector space F 2,
that is, the order isequal to (p? — 1)(p? — p). By Lagrange, thekernel of the homomorphism
Z/p’ — Z/p isof order p*~1. Hence, there are (p"~1)* matrices of the form (1.7.2).
Consequently, by Corollary (1.7),

|GL2(Z/p") = (0" H*p? = D(p? —p) = (PH L - p A -p .

Thus the first asserted formula holds. The second formula follows from the first, because
SLo(Z/p") isthe kernel of the surjective homomorphism,

det: GL(Z/p") — (Z/p")*,

and (Z/p")* hasorder p¥ — p*~1 = p*(1 — p~ 1.
Clearly, the final formulais a consequence, sincel = —1inZ/N only when N = 2 (or
N =1). i

(1.9) Remark. Theorder of PSL>(Z/N) isobtained fromtheorder of SL2(Z/N) by dividing
by the order of thegroup 12(Z/N) definedin (1.1). Clearly, thelatter order isamultiplicative
function of N. Obviously, for an odd prime power pV, the order of u2(Z/p?) isequa to 2.
For a power of 2, the order of u2(Z/2") isequal to 1 forv = 1, equal to 2 for v = 2 and
equal to4forv > 3.
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(1.10) Lemma. (1) The group SL2(Z/1) is the trivial group of order 1.
(2) The group PSL2(Z/2) = SL(Z/2) is the dihedral group D3 = S3 of order 6.
(3) The group PSL2(Z/3) = SL(Z/3)/ £ 1is the tetrahedral group A4 of order 12.
(4) The group PSL2(Z/4) = SL(Z/4)/ £ 1is the hexahedral group S4 of order 24.
(5) The group PSL2(Z/5) = SL(Z/5)/ + 1 is the dodecahedral group As of order 60.
(6) The group PSL2(Z/6) = SL(Z/6)/ £ 1 is isomorphic to the group S3 x A4 of order
72.

Proof. The assertion (1) is trivial. By the Chinese Remainder Theorem, the assertion (6)
follows from (2) and (3). To prove the remaining assertions, consider for N = 2,3,4,5
thering Z/N. Then Z/N isafiedfor N = 2, 3,5, and alocal ring for N = 4. In each
of the four cases, the order of the group PSL2(Z/N) is given by the formula of (1.8). To
identify the group with the asserted permutation group, consider the projectiveline Z/N and
the representation of (1.1.2),

PSL2(Z/N) < Aut(Z/N). (1.10.1)

N = 2. The group PSL»(Z/2) has order 6. The projective line Z/2 has 3 elements:
00, 0, 1. Hence the right hand side of (1.10.1) isthe symmetric group S3. Thusthetwo sides
have the same order, and hence the inclusion is an isomorphism.

N = 3: The group PSL»(Z/3) has order 12. The projective line Z/3 has 4 elements:
00, 0, 1, —1. Hence the right hand side of (1.10.1) is the symmetric group S4. As the left
hand side is of order 12, it isequal to the unique subgroup A4 of index 2in Sa.

N = 4: Thegroup PSL,(Z/4) hasorder 24. Theprojectiveline X := Z/4 has6 elements:
00, 3,0,2,1, —1, and there is an obvious map Z/4 — Z/2. Given any point x in X there
is a unique second point x’ having the same image as x in Z/2. Consider subsets Z of
X consisting of 3 elements lying over the 3 elements oo, 0, 1 of the projective line Z/2.
Obvioudly, if Z = {x, y, z} is such a subset, then so is the complement Z’ = {x’, y/, 7'}
Hence, there are 4 elementsin the set D of al decompositionsof X into two such subsets,

X ={x,y, 2 U{x,y, ).
Clearly, the group PSL2(Z/4) acts on the set D. Conseguently, we obtain a representation,
PSLy(Z/4) — Aut(D) = Sa. (1.10.2)

Therepresentation (1.10.2) isinjective. Indeed, assumethat o in SL 2(Z/4) actsastheidentity
on D. Take a decomposition in D, say {a, b, c} U {a’,b’,’}. Then{a,b’, '} U {d', b, c}
is a second decomposition. As the first decomposition is fixed under o, we have either
ola,b,c} ={a,b,cloro{a,b,c} ={d', b, '}. Assumethato{a, b, c} = {a’, b, c'}. Then,
since the second decomposition is fixed under o, it followsfirst that o {a, b’, ¢’} = {d’, b, ¢}
and next that ca = a’. Similarly, b = b’ and oc = ¢/, and hence ox = x’ for dl
x. However, it is easily verified that the permutation x — x’ can not be obtained from
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a matrix with determinant 1. So the case o{a, b, c} = {da’, V', ¢’} is excluded. Therefore,
ola, b, c} = {a, b, c}. Asthe second decomposition isfixed under o, it followsthat ca = a
and oa’ = a’. Similar equations are obtained for » and ¢, and hence o is the identity in
PSL2(Z/4).

As the representation (1.10.2) is injective and the two groups have the same number of
elements, the representation is an isomorphism.

N = 5: Thegroup G = PSL(Z/5) has order 60. The projective line X := Z/5 has
6 elements. 00,0, 1,2, —2, —1. The action of G on X is doubly transitively. In fact, as
observed at the end of (1.2), if (1, v) and (u’, v") are any two pairs of different points of
X, then there are two elements of G mapping the first pair to the second. Take a subset
{x1, x2} withtwo elements. There aretwo elementsof G for which x1 and x, arefixed points.
One element is the identity, and the second is (as seen by reducing to the case x1 = oo
and xo = 0) a double transposition (y1, y2)(z1, z2). Similarly, there are two elements of
G that interchanges x1 and x2, namely the two double transpositions (x1, x2)(y1, y2) and
(x1, x2)(z1, z2). Therefore, the subset {x1, x2} is part of a unique decomposition of X into
three parts,

X = {x1, x2} U {y1, y2} U {z1, 22}, (1)

with the special property that any element in G that stabilizes one part will stabilize all three
parts. There are 15 subsets with two elements. Hence, there are 5 elements in the set D
of al decompositions (1) with the special property. Clearly, the group G acts on the set D.
Consequently, we obtain a representation,

PSL»(Z/5) = G — Aut(D) = Ss. (1.10.3)

Therepresentationisinjective. Indeed, assumethat « isanontrivial element of G that actsas
the identity on D. Take a point x1 such that ax1 # x1. Consider first the decomposition (1)
with x2 := ax1. Since the decomposition isinvariant, it follows that a{x1, x2} = {x1, x2}.
Hence « has two fixed points, namely either y; and y», or z3 and z2. Consider next the
decomposition (1) with a fixed point of « as x2. Then, again since the decomposition is
invariant, it follows that a{x1, x2} = {x1, x2}, which is a contradiction since @x1 # x1 and
axz = x2. Hence the representation is injective.

Astherepresentation (1.10.3) isinjective, necessarily itsimageisthe unique subgroup A5
of index 21in Ss.

Hence all the isomorphisms of the Lemma have be established. I

(1.11) Exercise. (1) The projective line X := Z/3 has 4 elements. oo, 0, 1, —1. Prove
that, as permutations of X, we haves = (0o, 0)(1, —1) andr = (0, 1, —1). Thetetrahedral
group T isthe automorphism group of atetrahedron. The elementsof 7' permute the 4 faces
of the tetrahedron, and so T is a subgroup of S4. Prove that the permutations s and ¢ are
‘tetrahedral’, that is, under a suitable labeling of the four faces, s and ¢ can be realized as
rotations of the tetrahedron. Conclude that PSL2(Z/3) = T.

(2) The projective line X := Z/4 has 6 elements: oo, % 0, 2, 1, —1. Prove that, as
permutations of X, we haves = (o0, 0)(2, %)(1, -1 andr = (0, 1, 2, —1). The hexahedra
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group H isthe automorphism group of ahexahedron. The elementsof H permutethe 6 faces
of the hexahedron, and so H is a subgroup of Se. Prove that the permutations s and ¢ are
‘hexahedral’, and conclude that PSL2(Z/4) = H.

(3) The projective line X := Z/5 has 6 elements. oo, 0, 1, 2, —2, —1. Prove that, as
permutationsof X, wehaves = (o0, 0)(1, —1)ands = (0, 1, 2, —2, —1). The dodecahedral
group O is the automorphism group of a dodecahedron. The elements of O permute the 6
pairs of opposite faces of the dodecahedron, and so O is a subgroup of Se. Prove that the
permutations s and ¢ are ‘dodecahedral’, and conclude that PSL2(Z/5) = O.
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2. Small modular groups.

(2.1) Example. Consider the group G := SL2(Z/2). By (1.10)(2), G it is the symmetric
group S3 of order 6. Hence G has a unique (normal) subgroup G@ of index 2 (and order
3), namely the alternating group A3 generated by «. The quotient G /G @ isthe cyclic group
C>, and so the canonical map to the quotient may be viewed as a surjective character,

x2: G — Co.

Inaddition, G hasthree subgroupsof index 3 (and order 2), generated by thethreeinvolutions,

S R R

(Notethat 1 = —1inZ/2.) Thelatter three subgroups are denoted respectively Gy, Go, and
GO.

(2.2) Example. Consider thegroup G = SL2(Z/3). Itisof order 24 by (1.8). By (1.10)(3),
its quotient modulo +1 is the alternating group A4 of order 12. The aternating group A4
contains Klein's ‘ Vier’ -group, the kernel of the homomorphism S4 — S3, and the image of
A4 under the homomorphism is the alternating group Az = C3. Hence, by composition, we
obtain a surjective character,

x3: G — PSL2(Z/3) = Ay — A3 = Cs.

The kernel isdenoted G . Itisof index 3 (and order 8).

(2.3) Example. Consider the group G := SL2(Z/4). Itis of order 48 by (1.8). We will
describe some of its subgroups.

(i) The group G actsontheset X := ((Z/4)%)* of columnswhere at |east one coordinate
isaunit. There are 12 columns in X, and they are the representatives of the 6 points of
the projective line Z/4. Hence they also represent the three points oo, 0, 1 on the projective
line Z/2. Define a 3-orbit as a subset A = {a, d’, a”} with 3 elements of X such that
a + a’ + a” = 0. For instance, the following matrix is a 3-orbit:

(01 21l @

In Z/4, the sum of two unitsisalwaysin the maximal ideal. Hence the sum of any three units
isaunit. It followseasily for any 3-orbit A = {a, a’, a”’} that its three columns represent the
three points oo, 0, 1 in Z/2; consequently, there is a unique ordering of the 3 elements of A
suchthat a, a’, a” represent respectively oo, 0, 1. Clearly, the set of all 3-orbits has 42 = 16
elements. The group G acts on the set of 3-orbits. The stabilizer of the 3-orbit (1) consists of
the matricesin G = SL2(Z/4) whose columns are two of the three columnsin (1). Hence,
the stabilizer is of order 3. As a consequence, the group G acts transitively on the set of
3-orbits.
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Now, for any given 3-orbit A there is a unique decomposition of X into four 3-orbits,
X=AUBUCUD, (2)

with the special property that if E isany 3-orbit in the decomposition, then — E isnot in the
decomposition. Indeed, since G acts transitively on the set of 3-orbits, it suffices to prove
the assertion when A = {a, a’, a”} isthe 3-orbit (1). Then the unique decomposition isthe

following:
10 -1 -1 2 -1 -1 0 1 121
o1 1lvle S lvls 4 alvlz i) 3
To get the decomposition, take as A the 3-orbit (1). For B = {b, b’, b}, take b := —a. Then
b #a sincea’ € A, and b’ # —a’ by the special property. Hence the first coordinate of b’
isequal to 2. Therefore, thefirst coordinate of »” isequal to —1. Asb” # a”, it followsthat
the second coordinate of b” is equal to 1. Therefore, the second coordinate of 4’ is equal to
—1. Now it iseasy tofill in the remaining 6 columns.
Let Y betheset of al decompositionswiththe special property. It followsthat theset Y has
4 elements. Thegroup G actsontheset Y. By the special property, if D isadecompositionin
Y, then the composition —D isdifferent from D. Hencethe matrix —1 = s2 actsnon-trivialy
on Y. Consider the matrix u of order 3. There are 4 decompositions D inthe set Y, so at
least one decomposition D is invariant under . But then also —D isinvariant under u, and
hence &l so the two remaining decompositionsin the set Y are invariant under u. Thusu acts
triviallyon Y. Since G isgenerated by « and s, it followsthat theimage of the representation,

G — Aut(Y) = 84,
isacyclic group of order 4. Thusthe representation may be viewed as a surjective character,
x4: G — Cy,

where the image is generated by the image of s (or by the image of ¢, sinces = tu). The
kernel of x4 isanormal subgroup G® of order 12in G. AsG® containsall order-3 elements
of G, it is generated by the order-3 elements of G. In particular, G is the unique normal
subgroup of index 4in G.

(i) Reduction modulo 2 isa surjective homomorphism G — SL 2(Z/2). Hencethekernel
of the reduction is a normal subgroup G (2) of order 8. It is easily described: it consists of
the matrices having two equal units in the diagonal and two non-units off the diagonal. In
particular, all itselementsare of order 2. Thus G (2) itiscommutative and elementary abelian
(isomorphicto C2 x C2 x C2).

(iii) Consider the intersection,
V:i=6YNGQ).
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It is a normal subgroup of G. It can be described as the kernel of the restriction G® —
SL2(Z/2) = S3. As G® is generated by the order-3 elements of G, the image of the
restriction G® — Sz isthe subgroup A3 of order 3in S3. Hence V isof order 4 and, being
a subgroup of G(2), V isisomorphicto C> x C». Since the decomposition (3) is invariant
under V, it followsthat V consists of the following four matrices:

r1o -1 2 -1 0 12
v [O 1]’ [0 —1]’ [2 —1]’ [2 1]' “)
(iv) Denote by Gy the subgroup of G consisting of matrices whose reduction modulo 2 is
equal to one of the two matrices,
10 01
[0 1]’ [1 0]'

In other words, with respect to the reduction map SL2(Z/4) — SL2(Z/2), the subgroup Gy
isthe preimage of the subgroup of the target denoted G4 in Example (2.1). Alternatively, Gy
can be described as the subgroup of G stabilizing thefollowing set of 4 columnsin ((Z/4)?)*:

e Py ®

Clearly, Gy is a subgroup of index 3 (and order 16), it contains the subgroup G(2) and in
addition the matrix s. It followsthat restriction defines a surjective character,

x4: Gg — Ca.

Thekernel Go N G® isof order 4, and hence equal to V.

(v) The subgroup G4 has a second character defined as follows: When the four columns
of (5) are multiplied by 2, they become equal, namely equal to the column n whose two
coordinates are equal to 2. Now, there are four subsets {x, x’} with two elements of X such
that x + x’ = n, namely the following four:

]2} [l [612] L5015 ®

Clearly, the column n isinvariant under the matrices of G4. Therefore, the group Gy actson
the set Z consisting of the four subsets (6). Hence we obtain a representation,

Gy — AUt(Z) = S4.

Obviously, the matrix s2 = —1 acts nontrivially on Z. Moreover, the set W consisting of
following four matricesis easily seen to act trivialy on Z:
1o 12 10 12
vilo 1l Lol 21} [21) ?

Since Gy isof order 16, it follows that the representation isin fact a surjective character,
xo: Gg — Ca,
and that its kernel isequal to W.
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(2.4) Remark. LetI' = SL(Z) be the modular group. Its center is the subgroup +1.
Consider the commutator quotient I' := I'/I'’. AsT isgenerated by the matrices s and u, it
followsthat T is generated by theimages s and i. Moreover, since s* = u3 = 1, the order of
s isadivisor of 4 and the order of i of order adivisor of 3. Therefore, being commutative,
the quotient is cyclic and its order isadivisor of 12.

Now, by Example (2.1), the quotient SL2(Z/2) of T has a surjective character onto Cs.
Hence, by composition, we obtain a surjective character

x2: T — SL2(Z/2) — C».

The kernel is denoted '@, Similarly, from Example (2.2), we obtain a surjective character,
x3:T'— SLa(Z/3) — Cs,

whose kernel is denoted I'®

It follows from the Chinese Remainder Theorem that the intersectionT'® := 1@ nr®
isin fact the kernel of the surjective character,

x6: ' = SL2(Z/6) — C2 x C3 = Cé.

Asaconsequence, the order of i isequal to 3 and the order of 5 isequal to 2 or 4. Clearly,
ass? = —1, the order of 5 isequal to 4 if and only if —1 ¢ I'". In fact, it follows from the
more complicated example (2.3) that there is a surjective character x4: I' — Ca. Hence the
order of 5 isequal to 4 and the commutator quotient I' is cyclic of order 12.

Therefore, in an obvious notation, the commutator subgroup I'’ is equal to 2| where
1 = r® nro jsthekernel of asurjective character

x12: ' > Cq x C3 = C1o.
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3. Congruence subgroups.

(3.1) Definition. By Proposition (1.5), reduction modulo N is a surjective homomorphism
of groups,
SLo(Z) — SL2(Z/N).

The kernel of the reduction map is denoted I'(N). Thus I'(1) is the full modular group
SLo(Z), and I'(N) isanormal subgroup. A subgroup of I'(1) containing I'(N) iscaled a
level-N (congruence) subgroup. As the reduction map is surjective, the level-N subgroups
correspond bijectively to the subgroups of SL2(Z/N).

Important series of level- N subgroups are defined by the foll owing congruence conditions
modulo N on the usual four entriesa, b, ¢, d of amatrix in SL2(Z):

f‘(N): a=d=41, b=c=0,
I'o(N): ¢=0,
I'ot(N): ¢=0, d=1,

F8(N): c=0, b=0.

The four subgroups correspond respectively to the following subgroups of SL2(Z/N): the
subgroup +1, the subgroup of upper triangular matrices, the unipotent subgroup (upper
triangular matrices with 1 in the diagonal), and the subgroup of diagonal matrices. Note that
the subscripts on the middle two subgroups refer to the second row (¢, d) modulo N of the
matrix (intheliterature, o1 issometimesdenoted I'1). Similar congruence subgroupsIT'O(N)
and I'9(N) are defined using the first row (a, b).

The subgroups I'(N) for N > 2 are inhomogeneous, that is, they do not contain the
matrix —1. In general, if I" isa subgroup of SL»(C), we denote by I" the homogenized group
' U (=T). Then T is a homogeneous group, and the two groups I" and " have the same
image in PSL»(C), that is, Pl = PI". If " isinhomogeneous, then T is of index 2 in T,
and I' => PI". Clearly, the congruence group I"(N) is the homogenized group of I'(N).
Note that, for N = 2, we have that I'(2) = T'(2). The groups ['o1(N) and T'IO(N) are
inhomogeneous, and they define homogeneous groups Co1(N) and T1O(N).

(3.2) Observation. Congruence subgroups have finite index in I'(1) = SL2(Z), because
the quotient I'(1)/ ' (V) isthefinite group Gy = SL2(Z/N). Infact, the order of Gy is
determined in Proposition (1.8), and it follows that

(1) theindex of ['(N) isequal to N3], v (1 — #).

It is easy to determine the orders of the various subgroups of Gy that define the special
level-N subgroups of (3.1). It followsthat

(2) theindex of ['(N) isequal to N3 [Tn@— p_12) when N > 2.
(3) theindex of T'o(N) isequal to N [T,y (1 + ).

(4) theindex of oy (V) isequal to N2, (1 — p—lz).

(5) theindex of P(N) isequal to N[,y (1 + 3).
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Indeed, the group I" (V) isthe preimage of the subgroup +1 of G i, and so theindex in (2) is
obtained by dividing the order of G 5 by 2. Similarly, in G y the number of upper triangular
matrices is equal to the product of the ordersof Z/N and (Z/N)*. Hencetheindex in (3) is
obtained by dividing the order of G y by No(N) = N2 pr(l — %). Theindicesin (4) and
(5) are obtained similarly.

(3.3) Example. Level-2 subgroupscorrespond to the subgroupsof G = SL 2(Z/2) considered
in Example (2.1). The preimage, under the reduction modulo 2, of the subgroup G @ isa
normal subgroup I'® of index 2in '(1). It isequal to the kernel of a surjective character,

x2: (1) — Co.

The preimages of the subgroups G and G° are the subgroups 'p1(2) = I'(2) and I'%%(2) =
'%(2). In addition, the preimage of the subgroup G is a level-2 subgroup I'y, called the
6-group. The latter three subgroups are non-normal subgroups of index 3.

(3.4) Example. The subgroup I"(3) is of index 24, and the homogeneous group I'(3) is of
index 12. The homogeneous level-3 subgroups correspond to the subgroups of the group
PSL»(Z/3) considered in (1.10)(3). In particular, the normal subgroup I'® introduced in
Remark (2.4) isalevel-3 subgroup of index 3, equal to the kernel of a surjective character,

x3: (1) - Cs.

(3.5) Example. The subgroup I'(4) is of index 48. Various level-4 subgroups correspond
to the subgroups of G = SL2(Z/4) considered in Example (2.3). The preimage, under the
reduction modulo 4, of the subgroup G is anormal subgroup I'® of index 4, equal to the
kernel of a surjective character,

x4:T'(1) > Cy.

The preimage of G(2) isthe level-2 subgroup I'(2) of index 6. Theintersection ' N T'(2)
isthe preimage of V; itisanormal subgroup of index 12inT"(1), and itisdenoted I"y. Note
that I'® and I"y are non-homogeneous. Their homogenized groups are respectively I' @ and
Q).

The preimage of the subgroup G isthe6-group I'y of index 3. It containsthegroup I'(2),
and in particular the normal subgroup I'yy. Hence restriction defines a surjective character,

x4:T9 — Cay.
In addition, there is a surjective character,
xo:Tg — Ca,

whose kernel isthe preimage I'yy of W. Notethat I'y isof index 12in T"(1), but not normal.

(3.6) Exercise. Prove that the conjugate group I'y’ = uTgu is equal to I'g(2). [Hint:
reduce s* = u~1su modulo 2.]
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(3.7) Exercise. Thegroup I'(2) isthe homogenized group of I'y. The character x4 on I'(1)
restricts to a surjective character,
x4:T'(2) — Co.

By example (2.3)(iii), the kernel of the restricted character is equal to I'y. Prove that the
restricted character on I'(2) is determined by the formula,

a bl _ . i\(a+btc-1))2
xS 0= .

[Hint: Clearly, for amatrix in I'(2), we have modulo 2that a == 1andc = d = 0, and
hencea + b + ¢ = 1. Therefore, modulo 4 we havethat a + b + ¢ = +1. Now show from
the description of V in (2.3) that a + b 4+ ¢ = 1 holds for the matricesin "y .]

(3.8) Exercise. Clearly, for amatrix in I'y we have for the numbers ¢ and d that exactly one
isodd. Provethat the character xo: 'y — Ca isgiven by the formula,

1 ford=1 (mod4),

a b i forc=1 (mod 4),
Xe[c a’] - —1 ford = —1 (mod 4),
—i forc= -1 (mod 4),

wherei ‘= xp(s). [Hint: inspect the cosets of Go/ W.]
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4. Some modular fundamental domains.

(4.0) Setup. Inthissectionwedescribefundamental domainsfor some congruence subgroups
of the modular group I'(1) = SL2(Z) acting on the upper half plane $). The congruence
subgroups are of finiteindex in I'(1). Recall that if F isafundamental domain for adiscrete
group I and A isasubgroup of finiteindex in I" with agiven system y; of representativesfor
the right cosets of A in I", then the union G of the transforms y; F is a fundamental domain
for A. Moreover, if y; isthe systems of boundary transformations corresponding to the side
L of F,then asystem of boundary transformations of G are obtained asfollows: Consider a
sideof G, say y; L where L isasideof F. Then y; L isasideof F. According to the coset
representation, we have

-1 -1
Vivp = 5_,'7L)/k

withauniqued; ; € A. Thens; ry;L = yryrL isasideof G, and so §; ;. isthe boundary
transformation corresponding to the side y; L.

(4.1) Example. Take as F the fundamental domain F for the full modular group I'(1)
describedin Proposition (Discr.1.6). Eachtransformy F for y inT" (1) isaagain afundamental
domain, and the transforms cover ).

F

t~1F F tF

2F

1 3 1 3
0 : -3 a1 -3 0 1 3

NI
Nl

The fundamental domain F for I"(1), and some of its transforms.

It follows from the description that under the action of I"(1) there are exactly two élliptic
orbits, namely one of order 2 represented by the point i and one of order 3 represented by the
point p. In addition, there is only one parabolic orbit, represented by the point co.

Moreover, it followsfrom the description of the equivalence on the boundary of F that the
orbit space §/ I" (topologically) is a2-sphere minus a point.

(4.2) Example. Occasionally, to obtain different fundamental domains, itisconvenient to cut
adomain in subdomains, and then to apply different y’sto the different pieces. For instance,
F can be cut into two domains, F = F~ U FT, defined respectively by the inequalities:
Mz > 0and Nz < 0. Then F’ := ¢+~ 1Ft U F~ isadifferent fundamenta domain for I"(1)
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and sois F” := sF™ U F~. For the two latter domains, the boundary transformations are
t,uands, u.

F F/ F//

e A F~

sFT

1
-3 0

NI
|
[EEY
|
Nl
o

0

Nl
Nl

The fundamental domains F, F’ and F” for I'(1).

(4.3) Example. Thegroup I'® isanormal level-2 subgroup of index 2 in ' (1), equal to the
kernel of the character x2: I'(1) — C». Representatives for the cosets are 1, . Hence the
union F U ¢ F isafundamental domain for I'®. Similarly, the union F® := F UsF isa
fundamental domain.

F®@

|
Nl
o
Nl

1

Nl

Nl
o
Nl

Fundamental domainsfor '@

Consider thefirst domain F Ut F. It hasthreefinitevertices p, ¢ and p + 2, and oneinfinite
vertex co. Its boundary transformations are 12 and v := st—1. The angles at the vertices p
and p + 1 areequal to 277/6, theangle at ¢ isequal to 2 /3 and the width at oo isequal to 1.
Hence, there aretwo élliptic orbits of order 3, represented by p and ¢, and one parabolic orbit
represented by co. Clearly, the boundary transformationsare +2 and s ~1. Topologically, the
orbit space $/ '@ is a 2-sphere minus a point.

Similarly, the second domain F @ has 2 finite vertices p and ¢, and two infinite vertices
oo and 0. Theanglesat p and ¢ are equal to 27 /3 and the widths at 0 and oo are equal to %
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The boundary transformations are defined by the two matrices

u=t_1s=[_11 _01], v=st_1=[2 :ﬂ (4.3.1)

As a consequence, modulo +1, the group I'® is generated by « and v.

(4.4) Example. Thegroup I'® isanormal level-3 subgroup of index 3in I'(1), equal to the
kernel of the character x3: I'(1) — C3. Representativesfor the cosets are the three matrices
1, u, and u?. From the fundamental domain F’ of (4.1), we obtain the fundamental domain
G:=F UuF Uu?F forT®,

G

F’ s'G G sG

VYT

-1 -3 0 —2 -1 - 0 1

NIl

The fundamental domain G for I'®, and some of its transforms.

The domain G has no finite vertices, and 3 infinite vertices —1, 0, and co. The boundary
transformations correspond to the matrices,

Sl ERY A I e IPa e S

It followsthat there are 3 elliptic orbits, all of order 2, represented by the pointsi, i — 1, and
— % + lz In addition, the three infinite vertices are equivalent, so there is only one parabolic
orbit. The orbit space £/ I'® is a 2-sphere minus a point.

As a consequence, the group I'® is generated by the 3 matrices of (4.4.1).

(4.5) Example. Thecongruence subgroup I'g(2) isalevel-2 subgroup of index3inT"(1). The
threematrices 1, u, u? representstheright cosetsmodulo I'(2). So, thedomain G of Example
(4.4) is dso afundamental domain for I'p(2), but, of course, the boundary transformations
are different. For G as a fundamental domain for I'g(2), the boundary transformations are
associated to the matrices,

=[oa) =[5 7] (452
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There is one eliptic orbit, of order 2, represented by the point —% + % on the boundary. It
isfixed under s*. Of theinfinite vertices, —1 and O are equivalent. So there are 2 cusps, and
9/ T'o(2) isa2-sphere minus 2 points.

Ast € I'o(2), we can, asin Example (4.2), obtain a different fundamental domain Fp(2)
by cutting G by avertical line and tranglating the |eft piece by 7.

G Fo(2)

e

-1 0 -3 0 3

The fundamental domains G and F(2) for I'p(2).

The domain Fy(2) has two finite vertices, i% + ’7 both of angle 27 /4 and representing
(of course) the same elliptic point. In addition, Fo(2) hastwo infinite vertices 0 and co. The
boundary transformations of Fp(2) correspond to the matrices,

(33 e Y w52

As a consequence, the two matrices in (4.5.1) (or, up to 1 the two matrices in (4.5.2))
generate the group I'o(2).

(4.6) Example. The6-group I'y isalevel-2 subgroup of index 3, and asin the previous two
examples, thematrices 1, u, u? represent the right cosets. Hence, again, the domain G isalso
afundamental domain for I'y.

From the decomposition F = F™ U F~ of Example (4.2), adifferent fundamental I'y can
be obtained as follows: The three matrices 1, r 1, rs form a different set of representatives
for the cosets modulo 'y, and so do the three matrices 1, 7, r~1s. Apply the first set of
matrices to the subdomain F* of F and the second set to the subdomain F~. The result
is a fundamental domain F, for I'y which is the union of the following 6 pieces. FT,
Ff=t7YF* Ff i=tsFT, F~, F[ :=tF~,add F, =t 1sF~. Thepiecesfit together,
and they form adomain like G with three infinite vertices and no finite vertices.

For G as afundamental domain for I'y, the boundary transformations correspond to the

matrices,
S I | @
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There is one élliptic orbit, of order 2, represented by the point i. Of the infinite vertices, oo
and O are equivalent. The orbit space £/ I'y isa 2-sphere minus 2 points.

G Fy

N

-1 0 -1 0 1

The fundamental domains G and Fy for T'y.

For the fundamental domain Fy, the boundary transformations are obviously s and z2. In
particular, the §-group I'y is generated by the two matrices s and 72.

(4.7) Example. Thegroup I'(2) isanormal level-2 subgroup of index 6, equal to the kernel
of SL2(Z) — SLo(Z/2) = S3. Coset representatives are the six matrices 1, u, u?, t, tu, tu?.
The group I'(2) is a subgroup of I'p(2) and 1, ¢ represent the cosetsin I'p(2). Hence, with
G isthe fundamental domain of (4.5), the union F(2) := G U tG isafundamental domain
for I'(2). Clearly, the matrix s* of (4.3.1) isin I'g(2) and not in I"'(2). Hence, the union
H = G U s"G isasecond fundamental domain for I"(2).

F(2) H

-1 0 1 -1 -3 0
The fundamental domains F(2) and H for I'(2).

Thedomain F (2) hasno finite vertices; itsinfinite verticesare —1, 0, 1, oo. The boundary
transformations are defined by the two matrices,

tzz[cl) i] st_zs:[_zl _01]. (4.7.1)
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Thus, up to 41, the group I'(2) is generated by the matrices (4.7.1). Clearly, there are no
eliptic points. Of the infinite vertices, —1 and 1 are equivalent. Hence, the orbit space
$/T'(2) isasphere minus 3 points.

The group I'(2) is the homogenization of the inhomogeneous level-4 subgroup I'y de-
fined in Example (3.4). Hence the two groups have the same fundamental domain. As a
consequence, I'y is generated by the two matrices,

—z—2:[_01 _21] st_zs:[_zl _01]. (4.7.2)

(4.8) Example. The group I'g(4) is a level-4 subgroup of index 6. It is a subgroup of
I'o(2), of index 2. Clearly, the matrix s* of (4.3.1) belongsto I'g(2) and not to I'g(4), and
hence it represents the non-trivial coset of I'g(4) in I'p(2). Hence the fundamental domain
H := G Us"G for I'(2) described in Example (4.7) is aso afundamental domain for I'g(4).
Sincet isin I'g(4), the latter domain can be cut in two by avertical line, and we can obtain a
second fundamental domain Fp(4) by trandating the left piece by .

H Fo(4)

1 1
-1 -3 0 - 0 3

Nl

The fundamental domains H and F(4) for I'g(4).

The domain H has 4 infinite vertices, co, —1, —%, and 0. Its boundary transformations
arer and s"1(s*) L. For the domain Fo(4), the boundary transformations correspond to the
matrices,

_ri11 w,~1,un-1,-1_[—1 0
t—[o 1], st (s _[4 _1]. (4.8.1)
In particular, 'p(4) modulo +£1 is generated by the two matrices (4.8.1).
The orbit space )/ I'o(4) is a sphere minus 3 points.

(4.9) Example. The group I'® isanormal level-6 subgroup. It isthe kernel of a surjective
character xg: SL2(Z) — Cg. The cyclic group Ceg is generated by the image of ¢. Thusthe
powerst’ fori = 0, ..., 5 are representatives for the cosets, and a fundamental domain K
for I'® js obtained as the union of thetrandatest’ F fori =0, ..., 5.
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The domain K has oo as its only infinite vertex. The finite vertices are the 7 points
withimaginary part 3+/3 and real parts 3 j for j = —1,1, 3,5, 7, 9, 11. To get the boundary
transformations, notethat modulo I ® wehavethat s = 3. Itfollowseasily that the boundary
transformationsarer®, sr =3, t4st—1, and 125 —°. Clearly, of the seven finite vertices, thethree
with real parts % % and % are equivalent and the remaining four are equivalent. Theanglesin
both classes add up to 27. Hence, there are no dliptic pointsfor I'® . It does require some
feeling for cutting and pasting to see from the domain K that the orbit space $/ I'® isatorus
minus one point.

K

l\JlH
Nl
NIw
Nlol
NI~
Nl

The fundamental domain K for I'®,

A more manageable fundamental domain for I'® isthe domain F©:
F®

-1 0 1

The fundamental domain F© for I'®,

It isobtained asfollows: Thelevel-6 group I'® iscontained in the group I" (3) of Example
(4.4), and G was a fundamental domain for the latter group. The boundary transformation s
of GisinT'® and not in I'®. Hence the two cosets of I'® in I'® are represented by the
two matrices 1 and 7. Hence a different fundamental domain for I'® is obtained as the union
F® =G uUsG.
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AssG = tG,theunion F® = GUsG isequal tothefundamental domain F (2) considered
in Example (4.7), but the boundary transformations are different. The domain has 4 infinite
vertices, —1, 0, 1, and oo, and it has no finite vertices.

The boundary transformations correspond to the two matrices,

tst? = [1 1

. 2], tzst:[z 1]. (4.9.1)

11
It follows (again) for I'® that there are no dliptic points and exactly one cusp, and the

orbit space is a torus minus a point. Modulo +1, the group I'® is generated by the two
matrices (4.9.1).
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Automorphic forms

1. Automorphic factors.

(1.1) Definition. Fix an action of agroup G onaset X. Asusual, when asecond set Y is
given, thegroup G actsontheright ontheset Y X of all functions f: X — Y by thedefinition,

fo = fox, (1.1.0)

where oy isthe automorphism x — ox of X.
Let H beasecond group. Then an H-valued automorphic factor for the action of G on X
isamap j: G x X — H satisfyingfor al o, tin G and al x in X the automorphy equation,

jlot,x) = j(o,tx)j(T, X). (2.1.1)

Alternatively, the map j may be viewed asamap o — j, from G to the group H¥ of all
maps X — H, and the automorphy equation is the following:

Jor = (JoTx) Jz- (1.1.2

Assumethat H actsontheleft ontheset Y. Then, for every H-valued automorphic factor
j, aright action of G ontheset YX of all functions f: X — Y isobtained by the definition,

fio=j; X fox), (1.1.3)

or, with arguments,
(f-j o)) = j(o,x) L f(ox). (L1.4)

The action of G on Y ¥ iscalled the automorphic action defined by the factor j. Note that a
function f: X — Y is G-invariant with respect to the automorphic action if and only if, for
dlxinXandaloinG,

flox) = j(o,x)f(x). (1.15)
(1.2) Note. Clearly, the constant map j (o, x) = 1 isan automorphic factor. The correspon-
ding automorphic action on Y X is given by (1.1.0). More generaly, automorphic factors
Jj (o, x) that are independent of x correspond to homomorphisms of groups x: G — H.
Functions f: X — Y that are invariant under the automorphic action corresponding to x are
often called semi invariant. They are characterized by the equation,

flox) = x(o) f(x).

81



[Autm] 2 Automorphic functions
16. februar 1995

(1.3) Note. Assumethat thegroup G actsontheright onagroup N, by group automorphisms
of N. Inother words, assumegiven, for o in G, agroup automorphismof N denotedn +— n?,
suchthat n°® = (n?)*. Thenthesemi-direct product isthe product set G x N with the group
composition given by the equation,

(o,n)-(t,m) ;= (oct,n" m). (2.3.2)

Obviously, the two maps o — (0,1) and n — (1, n) identify G and N as subgroups of
product, and the pair (o, n) isthe product o - n. Under the identification, the composition
(1.3.1) isessentially given by the commutation rule,

or equivaently, by n® = =1 .n-o. The projection p : (o,n) — o is a surjective

homomorphism of groups p: G x N — G, and its kernel is equal to N. The inclusion
o +— (o0, 1) isasection of p, that is, it is a homomorphism which composed with p isthe
identity of G. Clearly, the general sectionsof p arethemapsof theformo +— (o, v, ), where
o +— v, isal-cocycle, that is,amap G — N satisfying the following condition,

Vor = (V(T)TU‘L"

Consider, in the setup of (1.1), the semi-direct product G x HX. Then, by (1.1.2), the
automorphic factors G — HX are precisely the 1-cocycles. Equivalently, amap o — j,
is an automorphic factor if and only if the map o +— (o, j,) isahomomorphism of groups
G — G x H¥X. Asaconsequence, an automorphic factor j, isuniquely determined by its
values on a system of generators o; for G.

(1.4) Note. Let j(o,x) be an H-valued automorphic factor. Clearly, it follows from the
automorphy equation first, that j (1, x) = 1, and next that

jehx)=j, o)L (1.4.1)

Assumethat H actson Y, and consider the corresponding automorphicactionof G on Y X. As
usual, aright action of G is changed into aleft action by composing with the anti-involution
o — o~ tof G. Itfollowsfrom (1.4.1) that the corresponding | eft action of G on Y X isgiven
by the equation,

o [ = Uoflox™ (14.2)

(1.5) Note. In the setup of (1.1), assumethat Y is a homogeneous space over H, that is, for
any two elements y and y’ of Y thereisauniqueelement z in H suchthat y’ = hy. Clearly,
if somefunction f: X — Y isG-invariant with respect to the automorphic action defined by
J, then j isunique, and given by the equation,

Jj(o,x) = flox) f(x)"L. (15.1)

Conversely,when f: X — Y isany function, thentheequation (1.5.1) definesan automorphic
factor ;.
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(1.6) Lemma. Let « and B be matrices of GL2(C). Let z be a point of C, and assume that
the two points Sz and o8z are different from co. Then the following equation holds:

J(ap,z) = J(a, Bz) J (B, 2). (1.6.2)

Moreover, if z is a fixed point of g8, then the representatives of z are eigenvectors of g
corresponding to the eigenvalue J (8, z).

Proof. The points 8z and a8z are represented by the columns

s3] =160 epli] =@ 0[] (16.2)

It followsthat the second equation isobtained by multiplying thefirst by «. Therefore (1.6.1)
holds. Clearly, the last assertion of the Lemma is a consequence of the first equation of
(1.6.2). i

(1.7) Observation. Consider afinite disk ©, that is, a disk not containing the point co. Thus
D isether theinterior of ausual circlein C or the points of an open half planein C. Inthe
former case, the point co does not belong to the boundary of ©, in the latter case it does.

It follows from (1.6.1) that, for any subgroup I"' of SL(®), the function J (y, z) isaC*-
valued automorphic factor for the action of I" on ©. More generally, for any integer &, the
function J (y, z)¥ isan automorphic factor.

Note that the absolute value | J (v, z)|*, for any real number k, is an automorphic factor.
Our principal interest is, for certain subgroups I', automorphic factors j such that j(y, z) is,
at least up to a complex sign, a determination of the function J (y, z)¥ where the exponent k
isan arbitrary real number.

(1.8) Remark. Fix areal number k. Let w be a non-zero complex number. Recall that a
complex number « is called avalue of w*, if [u| = |w|* and if, for some argument 6 of w,
the real number k6 isan argument for u. If k isintegral, thereisonly onevalue of w¥, if k is
rational there is a finite number of values, and if k isirrational there is an infinite number of
values.

Let g: X — C* beacontinuous map. Recall that amap #: X — C* iscalled a deter-
mination of g*, if i is continuous and, for every x in X, h(x) isavalue of g(x)*. If hgisa
determination of g¥ then, for every integer n, the following product is a determination of g*:

¥ ho(x); *)

moreover, if X isconnected, then all other determinations are of the form (*).
Determinations of g* exist if X issimply connected, or if the image of g(X) is contained
in a simply connected subset of C*. In the latter case there exists a continuous argument
on g(X), that is, areal valued continuous function ® defined on g(X) such that ® (w) isan
argument for w for all w in g(X), and then the following function is a determination,

h(x) 1= g (x)[Ce OEE,

83



[Autm] 4 Automorphic functions
16. februar 1995

In most of our applications, the map g will be holomorphic, and the image of g will avoid a
half ray starting at the point 0. Inthiscase, the existence of a continuousargument isobvious,
and any determination of g is again a holomorphic function. For example, if the image
g(X) avoids the negative real axis, we may always consider the principal determination of
g¥, defined using as argument of g(x) the principal argument 6, where — < 6 < 7.

For instance, let © be afinite disk and let « be a matrix in GL»(C) such that «z # oo
for al z in®. Then the function J («, z) is (finite) and non-zero everywherein ©. It hasthe
form Cz + D. If C = 0, then the function J («, z) is the non-zero constant D. If C # 0O,
then J(a, z) isa Mdabius transformation, and in particular, the image of ® isfinite disk not
containing the point 0. Therefore, in both cases, there are determinations of the function
J (o, 2)¥. Inthefirst case, any determination is constant, and hence defined on al of C. In
the second case, the function J («, z) has a zero v outside ®. Let V be the open subset of
C obtained by cutting away a half ray starting at v and having no other points in common
with the boundary of ®. Then there is a determination of J («, z)* defined on al of V. In
particular, there is a determination J (o, z)* defined on ©, and it extends continuously to the
points of 3D except possibly to the two points oo and v = « ~1oo if they belong to 8.

(1.9) Definition. Let ® beafinitedisk, andlet I be asubgroup of SL (®). A factor of weight
konT isafunction j(y, z) defined for y € " and z € © and satisfying the following three
conditions:

(1) Thefunction j isaC*-valued automorphic factor for the action of I" on ©.

(2) Forfixed y inT", the function j (v, z) is holomorphic.

(3) The absolute value |j| isequal to |J |¥, that is, for al y and z,

(v, Dl =1y, 2.

The group C* acts on itself, it actson C, and it acts on C. In particular, from a given factor
J on I we obtain a corresponding automorphic action of I" on the numeric functions on ©.
The action is given by the formula,
1
(f i@ =——=Ff2. (1.9.1)
(v, 2)

Numeric functions on © that are invariant under the action are called (T, j)-invariant, or
J-invariant. They are characterized by the equations, for y e ' and z € D,

fly)=jly,2f(@). (1.9.2)

Obvioudly, the action (1.9.1) islinear. Hence, the j-invariant functions form a vector space
over C.

(1.10) Lemma. Let® be a finite disk, and I" a subgroup of SL (©). Assume that j is a factor
of weight k£ on I'. Fix a matrix y in I, and consider a determination J(y, z)* on ®. Then
there is a complex sign ¢ (i.e., |¢|] = 1), and an equation,

j.2)=¢el(z )k forallz e®, (1.10.1)
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In particular, the function j (v, z) is completely determined by any of its values j (y, zo) (and
the given weight k).

Proof. By Condition (1.9)(3), thequotient j (y, z)/J (v, z)¥ isof modulus 1, and holomorphic
by Condition (2). Therefore, the quotient is a constant function, and hence equation (1.10.1)
holds. I

(1.11) Observation. (1) The constant automorphicfactor j(y, z) = lisafactor of weight O,
and the corresponding invariant functions are simply I'-invariant functions: f(yz) = f(z)
foral y inT.

Moregenerally, any factor j (y, z) of weight Oisof constant modulus 1, and hence constant.
Therefore, the factors of weight O on I" are precisely the unitary characters x : I' — C*.

(2) Clearly, the product j1 j» of factors of weights k1 and k2 isafactor of weight k1 + ko.
If f1is ji-invariant and f> is je-invariant, then the product function f1 f2 is ji jo-invariant.

Similarly, the quotient j;/j» is afactor of weight k1 — k2. Asaconsequence, if jo(y, 2)
is given factor of weight &, then the factors of weight k are precisely the functions,

J,2) = x()joly, 2),

where x : I' — C* isaunitary character. In particular, if the commutator subgroup I'’ is of
finite index in I, then the number of factors of weight & is either zero or equal to the index
IT:T).

(3) If k is an integer, then the function J (y, z)* is a factor of weight k. In particular, it
follows from (2) that the factors of integral weight k on I are the functions,

X (v, ), (1.11.1)

where x : I' — C* isaunitary character. For an integer &, the action (1.9.1) of I on numeric
functions corresponding to the factor J (y, z)* isdenoted f - y, that is,

1
(fxy)@)= mf()’Z)-

Numeric functions on ® that are invariant with respect to the factor J (y, z)* are said to be
I"-invariant of weight k.

(4) Asnoted in (1.4), it followsfrom the automorphy equationsthat j (1, z) = 1. Assume
that I" is homogeneous, that is, —1 € I'. Then it follows similarly that j(—1,z)% = 1.
Conseguently, the function j (—1, z) isthe constant 1 or —1. If afunction f is j-invariant,
and f isnon-zero, say f(zo) # 0, then it follows from the equation f(zo) = f((—1)z0) =
Jj(—1, z0) f(zo) that j(—1, zo) = 1. Hence j(—1, z) isthe constant 1. Therefore, whenT is
homogeneous, we are mostly interested in homogeneous factors, that is, factors j for which
j(=1,2) =1

Note that the factor J(y, z)* for an integer k is only homogeneous when k is even. The
homogeneousfactors of odd (integral) weight k arethe functions(1.11.1) where y : I’ — C*
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is an odd unitary character (that is, x(—1) = —1). In particular, if —1 belongs to the
commutator subgroup I'’, then there are no homogeneous factors of odd integral weight on
r.

(5) Clearly, if I" isinhomogeneous, and I” denotes the homogenized group I' = ' U (T,
then every factor j on I' extends to a homogeneous factor j on I by defining j(—y, z) :=
Jj(y,z)foryinT.

(6) The function | J (y, z)|* isan automorphic factor on T, but it is not holomorphic, and
henceit isnot afactor in the sense of Definition (1.9). Note that the condition (1.9)(3) isthat
the automorphic factor | j (v, z)| isequal to the automorphic factor | J (y, z)|¥. Clearly, for an
automorphic factor j (y, z) to satisfy condition (1.9)(3), it suffices that the equations,

iy, 2 = I, 2, (1.11.2)

hold for a system of matrices y generating the group I.
(7) Asnotedin (1.5), if f: ® — C* isany function, then the equation,

Jy,2) = fry2)/f(2), (L113)
defines an automorphic factor on any subgroup of SL(®). If f isholomorphic, then j is
holomorphic in z. In fact, if f is meromorphic and the right hand side of (1.11.3) has no

zeros or poles, then (1.11.3) defines a holomorphic automorphic factor j. But of course, for
J to be afactor in the sense of Definition (1.9) it is required that the equations,

Ifra)/f@] =1y, ), (1.11.4)

hold for all matrices y in the group I'. As observed in (6), it suffices that the equations
(2.11.4) hold for a system of generatorsfor I'.
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2. Examples I.

(2.1) Example. Letk beaninteger. Let 2 bealatticein C, say Q = Zw1 + Zwy where the
complex numbers w; and w; are linearly independent over R. Consider the following sum,

E(Q) = Ek[z;] -y L 2.1.1)

_k b
w#0 @
where the sum is over all w # 0in Q. The sum is absolutely convergent for k > 3. For
typographical reasons, the sum will also be denoted E (w1, w2). In particular, for z € §, we
define the Eisenstein series,

1

T (212

/

Ex2) =E@:D=)

where the sum is over pairs of integers (m, n) # (0, 0). The function Ex(z), for k > 3, is
holomorphicin $.

Clearly, if A is a non-zero complex number, then Ex(AQ) = A% Ex (). In addition, if

y isamatrix in I'(1) = SL,(Z) then the two pairs (w1, wp) and (w1, w2)y" generate the

same lattice. As a consequence, E (w1, wp) = E(w1, wp)y". In particular, we obtain the

equations,

E(y) = B 7F r|1] =700 B,

=FE
=& J(y.2)
In other words, for an integer k > 3, the function E; (z) isT'(1)-invariant of weight k.

Note that the function Ex(z) is equal to zero when & is odd. We will see later that the
function in non-zero when k is even.

(2.2) Example. TheEisensteinseries(2.1.2) isclosely related to the following series, defined
for aninteger k > 3,
1 1
Gi(@) 1= 3 > (2.2.1)

it (mz + n)k’

where the sum is over al pairs of relatively prime integers (m, n). Indeed, if we group in
(2.1.2) the terms corresponding to the greatest common divisor d of (m, n), we obtain the
equation,

Ex(2) = 20 (k)G (2), (2.2.2)
where ¢ (k) = Zd>1d—k. Hence, the function G isT"(1)-invariant of weight k. It vanishes
when k isodd. If k_iseven, then the value ¢ (k) isawell known rational multiple of 7*. More
precisely, then 2¢ (k) = —(27i)* B/ k! where By isthe k’th Bernoulli number.

(2.3) Example. Dedekind’s n-function isthe function in the upper half plane $ defined by
the product,

n(z) = leriz/24 1_[(1 _ lerinZ). (2_3.1)

n>1
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Thesum ), e?"inz converges normaly in $; hence, so does the product. Consequently, the
n-function is holomorphic and everywhere non-zero in §).
The n-function satisfies the following functional equations,

Nz +1) = e z), n(=1/2) = Vz/in), (2.3.2)

where /z/i isthe principal determination. The first equation is obvious, but the second is
far from trivial. It follows from the functional equations that

nz+ Dl =@, In(=1/2)|= |Z|%|77(Z)|-

The modular group I' (1) = SL2(Z) isgenerated by thetwo matricest and s, andrz =z + 1
and sz = —1/z. Moreover, J(t,z) = 1and J (s, z) = z. Hence, the equation,

n(r2) /(@) = 1J (. 2|2,

holdsfor thetwo generatorss and . It followsthat the equation holdsfor all matricesinI"(1).
Therefore, as observed (1.11)(7), afactor j, of weight % on I'(1) is defined by the equation,

Inv,2) =nly2)/n(). (2.3.3)

Of course, the n-factor j, isfully determined by the automorphy equations from the special

values,
. ; . Z
MU&)=€hM%,Jﬂ&ZV:/;

but apriori, it isfar from obviousthat these two val ues define an automorphic factor on " (1).

By construction, the function n is j,-invariant. Asthe weight of j, is % the even powers
j,2* areof integral weight k, and hence of the formin (1.11.1). In particular, the square j, is
afactor of weight 1 on I'(1), of the form,

. =x)J (. 2),

where x: I'(1) — C* isaunitary character. For y := t we obtain the equation ¢?7i/12 =
x(t). For y = s we obtain the equation z/i = x(s)z, that is, x(s) = e~?"/4. Ast and
s generate I' (1), it follows that x maps into the cyclic subgroup C12 of C*. A priori, the
character group of I'(1) is cyclic of order a divisor of 12, since I'(1) is generated by the
matrices s and u of orders 4 and 3. Hence, using the functiona equation of the n-function,
we recover the result of (Mdlar.2.4) that the character group is cyclic of order 12.

As a consequence, the power j, (y, z)%, where k isan integer divisibleby 12, isequal to
J(y, 2)*. In particular, the discriminant A(z), defined by the equation,

A(z) = n(2)%,

isaI'(1)-invariant function of weight 12 on ). Like n(z), the discriminant is everywhere
non-zero.
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(2.4) Example. Asthe n-function iseverywhere non-zeroin §), thereis, for an arbitrary real
number &, a determination of the function n(z)%. In fact, a canonical determination of n%
is selected by chosing for the first factor in the product (2.3.1) the determination ¢27ik2/12
and for the n’th factor in the product the principal determination (1 — ¢2*/"2)% (given by the
binomial expansion). It followsthat afactor of weight £ on I"(1) is defined by the equation,

.2 =¥ ).

It followsin particular that for any given real number k there are exactly 12 factors of weight
konT(1).

(2.5) Example. Thefunction G4 of Example (2.2) isT (1)-invariant of weight 4. Hence the
cube G2 isof weight 12. Thediscriminant A isof weight 12, and it is everywhere non-zero.
Therefore, the following function,

j(2) = Ga(2)3/Az), (2.5.1)

is of weight O, that is, the function j(z) is a I"'(1)-invariant function in the usual sense:
Jj(yz) = j(z) for al matricesy inT"(1). The function j is caled Klein’s j-invariant. We
prove later the following equation,

122A(z) = Ga(2)® — Ge(2)>. (2.5.2)

It allows an expression of j(z) intermsof G4 and Gg. In terms of the Eisenstein series, it is
customary to write,
82(z) '=60E4(z), g3(z) = 140E4(z).

Then, using the values of the Bernoulli numbers, B4 = —1/30 and Bg = 1/42, itiseasy to
derive the equation,
123 g5(2)°

82(2)3 — 27g3(2)? "
We show later that Klein'sinvariant defines an isomorphism,

j@) = (25.3)

$/T (1) —C,

from the orbit space to the Riemann sphere.

(2.6) Example. The 6-function is the function defined in the upper half plane $ as the sum
over al integersn,

0 =Y ", (2.6.1)

The 6-function is holomorphicin $ and it satisfies the two functional equations,
0(z+2) =0(z), 0(=1/2)=+/2/i0(2), (2.6.2)
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where /z/i isthe principal determination. Asin Example (2.3), the first equation follows
immediately from the definition, but the second isfar fromtrivial. Infact, the second equation
is equivalent to the functional equation for Riemann’s ¢-function. It follows from the two
equationsthat |0(z + 2)| = |6(z)| and |0(—1/z)| = |z|*?10(z)].

The M&bius transformations z — z 4+ 2 and z — —1/z are associated to the matrices 12
and s. Moreover, J (12, z) = 1and J (s, z) = z. Therefore, the two equationsimply that the
6-function satisfies the equation

0(y2)/0()| = |J(v. 2)|2,

for the two matrices y = 12 and y = s. The latter two matrices generate the 6-group 'y by
(Mdlar.4.6). It follows that the #-function determines a unique factor jg of weight % on the
group I'y, given by the equation,

Jo(y,2) =0(y2)/0(2). (2.6.3)

The 6-factor jy isof course fully determined by its values on the two generators,

jo?, ) =1, Jjols,2) = z/i,
but apriori, it isfar from obviousthat these two val ues define an automorphic factor on I'y.

(2.7) Remark. The sum (2.6.1) defining the 6-function can be split into two parts, 6 =
Bey + Bodd, Where the sums are respectively over the even and odd integers. Obviously,
Bev(z) = 0(4z), and hence Opgq(z) = 0(z) — 6(4z). Moreover, O (z + 1) = O (z) and
Oodd(z + 1) = —6Boqd(z). Hence we obtain the functional equation,

0(tz) = 20(4z2) — 0(2). (2.7.1)

From the functional equation (2.7.1) for 6(rz) and the functional equation (2.6.2) for 6(sz)
we can obtain afunctional equationfor 6 (y z) for any matrix y inI"(1). Consider for instance
the matrix u = r~Ls defining the Mébius transformation uz = —1 — 1/z. From (2.7.1) and
(2.6.2) we obtain the equations,

0(—1—1/2) = 0(=1/z + 1) = 20(—4/z) — 0(=1/z) = 2/2/4i 0(2/4) — \/2/i0(2).

Hence,
0(uz) = \/z/i<9(z/4) _ 0(z)>. (2.7.2)

It follows easily from (2.7.1) and (2.7.2) that the two functions, 6(¢z) and 6 (uz), are given
by the sums,

_ _a\n min®z 1 _ E nin22/4
9(z+1)_;( 1)"e™ "2 9(—1 1/z)_\[,2e . (2.7.3)

n odd
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3. The signs of a factor.

(3.1) Setup. Fix afinitedisk ® and a discrete subgroup I' of SL(®). In addition, fix a real
number k and a factor j (y, z) of weight k on T".

(3.2) Lemma. Let y be a matrix in ", and let « be a fixed point of y in the closure of D.
Then the following limit exists:

Jjy,u) = zlig;j(y, 2), (3.2.1)

where the limit is taken over points z of ©. If y is elliptic or equal to 41, then j(y, u) is a
d’th root of unity where d is the order of y. If y is parabolic, then |j (y, u)| = 1.

Proof. Consider adetermination of J(y, z)* on®. By Lemma (1.10), there is an equation,

Jjv,2) =eJ(y, 2k,

where |¢e| = 1. Asremarked in (1.8), it followsthat the function j (y, z) extends continuously
to the points of 3D, except possibly to the points oo and y ~1oo. Since u is afixed point, it
is only exceptional when it is equal to co. In the exceptional case, the function J(y, z) is
constant. Therefore j (v, z) is constant and hence it extends trivially to al of C. Thus, in all
cases, the limit (3.2.1) issimply the value at « of the extended function j (y, z).

Theremaining assertionsholdtrivialy if y = +1. Assumenextthat y iselliptic. Thenthe
fixed point u belongsto ©. Clearly, since u isafixed point, it follows from the automorphy
equation that j (y, u)¢ = j(y?, u) = 1. Hence j(y, u) isad’th root of unity.

Assume next that y is parabolic. Then the fixed point u belongs to the boundary 99. If
u # oo, then by (1.6), the number J(y, u) is an eigenvalue of y, and hence equal to +1
since y is parabolic. Consequently, if u # oo then j(y, u) = &J (v, u)* is of modulus 1.
Clearly, if the fixed point u is equal to oo, then the function J (y, z) is constant, and, since y
is paraboalic, it isthe constant +£1. Hence, j(y, z) isaconstant of modulus 1. In particular,
thelimit j (v, u) is of modulus equal to 1.

Thus the assertions have been proved in all cases. I

(3.3) Definition. Recall that for any point « in ® U or® we have defined the canonical
generator y, of I' at u. It belongsto theisotropy group I',,. It followsfrom Lemma (3.2) that
the following number,

a)u = a)u(]s F) = ](yua M),

isof modulus 1. It is called the sign of the factor j at the point «. The unique real number
Ky, = Ky (j) determined by the conditions,

is called the parameter of the factor ; at the point u.
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At arl-ordinary point u, the canonical generator isequal to 1. Hencew,, = 1and k, = 0.
Assume that « is a T"-éliptic point of ©. Then, by (3.2), the sign isad,’th root of unity,
where d,, isthe order of y,,. Hence the parameter «,, isof theform«,, = a/d,, wherea isan
integer and 0 < a < d,,. In particular, we obtain for any point « of ® the inequalities,

0<ky <1—1/d,. (33.1)

Clearly, if —1 € T" and thefactor j ishomogeneous, then thesign w,, isan ¢,’th root of unity,
wheree, = |PI', | isthe order of the I"-elliptic point «, and in the inequalities we can replace
d, by e,.

(3.4) Proposition. Assume that I" is the modular group I"(1) = SL2(Z) acting on the upper
half plane §). Then the sign of the factor j at the point oo is of the form,

Woo = é_—leZT[ik/lz’ (341)

where ¢ is a 12th root of unity. Moreover, the factor j is completely determined by the root
¢ and the given weight k. At the elliptic points i and p, the signs of the factor j are the

following:

3
w; =7, wp =2¢".

Finally, j(—1, z) = % for all z.

Proof. The point oo isparabolic, and the matrix ¢ isthe canonical generator y~.. AsJ (¢, z) =
1, it followsthat j (¢, z) is constant, and hence we obtain the equation,

](ta Z) = a)OO'

Thepoint i iselliptic, and thematrix s of order 4 isthe canonical generator y;. AsJ (s, z) = z,
thefunction j (s, z) is, by Lemma(1.10), of theform ez¥ where |¢| = 1and z* istheprincipal
determinationin $3. Evaluation at i yieldsw; = ¢i*. Hence,

j(s.2) = wizk/ ik,

and thesign w; isa4throot of unity. Now s = ru. Therefore, from the automorphy equation,
we obtain that

Jw,z)=j(s,2)/j(t,uz) = a)gola)izk/ik.
The point p is elliptic, and the matrix « of order 3 is the canonical generator y,. Hence the
sgnw, = j(u, p) isa3rdroot of unity. Take z = p in the expression for j (u, z) to obtain
the equation,
Woo = W; /Wy - ,ok/ik.

Clearly, p¥/i* = ¢*"k/12 and ¢ := w,/w; is a 12th root of unity. Hence wn, has the
form (3.4.1). Moreover, the assertions about w; and w, follow from the definition of ¢.
Furthermore, j is uniquely determined, because I" is generated by s and ¢, and j (¢, z) and
Jj (s, z) were determined above by the signsat oo and i. Finally, j(—1, z) is constant; the
constant isequal to j(—1,i) = j(s2,i) = j(s,i)? = w? = ¢5. 0
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(3.5) Note. In (3.4), there are twelve possible values for ¢, and hence at most 12 possible
factors of a given weight k. As noted in example (2.4), there are in fact 12 factors of any
given real weight k.

Clearly, for an integral weight k, the factor J (y, z)* correspondsto ¢ = e?7ik/12,

(3.6) Example. The factor j, associated with Dedekind’s n-function is a factor of weight
k = 5 onthe modular group I'(1). As j,(t, z) = eZ"/24, we have, in the notation of (3.4),
that ¢ = 1. Hence we obtain for j, the following signs,

— eZm/Z4

C()Oo P a)l = 1, a)p = 1.

The corresponding parameters are 1/24, 0, and 0.
The square jn2 is one of the possible 12 factors of weight 1 on I"'(1). In fact, by (2.3),

JZ(r.2) = x22(0)J (. 2).

where y12: I'(1) — C1o is the unique character for which x12(r) = ¢/12, As wy, =
¢?"1/12, we have ¢ = 1in (2.4.1), and we obtain for ;2 the following signs:

— e2m'/12

Woo , wi=1 w,=1

(3.7) Example. Theé@-group 'y C SL2(Z), acting on the upper half plane $), hasoneélliptic
orbit represented by the point i, and two cusps represented by the points co and —1. At the
three points, the canonical generators are the matrices,

T L I - IPEOE

Indeed, the first two equations are obvious. To find the canonical generator at —1, apply
conjugation by u. Under the conjugation, the point oo corresponds to u(oo) = —1 and I'g
corresponds to the conjugate group I' ¥ = u~1T'yu. Modulo 2, we have that u ~1su = ¢, and
it follows that the conjugate group I' ;' is equal to I'g(2), cf. Exercise (Mdlar.3.6). Clearly,
for the conjugate group the canonical generator at oo isthe matrix . Thus y_1 = utu=1.
Consider the0-factor jy onTy. Itisof weight % and determined by the equations of (2.6),

]9()/009 Z):l’ jG(Vi, Z): \/Z/i'
Clearly, y_1 = —ygly;. Therefore, from the automorphy equation, we obtain that
Jor-1.2) = joreo ™ vi2)j (i, 2) = 1+ /2 /i = /7/i.
As /z/i — e%"i/8for z - —1, we obtain for j, the following signs,
21i/8

Woo =1, w_1=c¢ , w; =1

The corresponding parametersare 0, 1/8, and 0.
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(3.8) Lemma. Let L be a linear function, L(z) = Cz + D, where C # 0. Assume that
L(z) # 0 everywhere on ®, and consider a determination of L(z)* on ®. Let y be a matrix
in SL(®) and let u be a fixed point of y belonging to the closure of ©. If u belongs to the
boundary of ©, assume moreover that y is parabolic. Then,

lim L(y2)*/L)* =1, (3.8.1)

where the limit is taken over points z of ©.

Proof. Thefunction L hasonezerov = —D/C inC. Let V bethe open subset of C obtained
by cutting away from C a half ray starting at v and having no other pointsin common with
the boundary of ©. Then © is contained in V, and clearly there is a unique extension of
L(z)* to a determination defined on all of V. Therefore the assertion (3.8.1) is elementary
when u belongsto V: in the fraction, both the denominator and the numerator converges to
the non-zero value L (u)*.

It remains to consider two further possible cases: u = oo and u = v. Clearly, to prove
(3.8.1), it suffices to prove that the quotient,

L(y2)/L(2), (382)

convergesto 1 for z — u. The map L is a Mobius transformation. Therefore, after a
conjugation, replacing® by L(®), ' by LI'L~Y, and y by Ly L~, we may assumethat L is
theidentity, L(z) = z. Thus® isafinitedisk not containing the point 0, and the two possible
casesareu = oo andu = 0.

Assumefirst that u = co. Then ® isahalf plane and, since y is parabolic, the associated
transformation is of theform yz = z 4+ b. Then the fraction (3.8.2) isequal to 1 + b/z, and
it convergesto 1 for z — oco. Assume next that u = 0. Then © isadisk containing O on its
boundary. Since y is parabolic with O as fixed point, the associated transformation is of the
form yz = z/(cz + 1). Then thefractionin (3.8.2) isequa to 1/(cz + 1), and it converges
tolforz — O.

Thus the assertion has been proved in all cases. I

(3.9) Exercise. Inthe setup of (3.8), assume that the fixed point « is on the boundary of ©,
but assume that y ishyperbolic. Prove the limitin (3.8.1) exists, and find its value.

(3.10) Definition. Let o be amatrix of GL2(C) mapping afinite disk ©’ onto the finite disk
. Let IV :=I'* = « T be the conjugate subgroup. It is a discrete subgroup of SL (D).
Consider a determination J («, z')¥ on ®’. Define the conjugate j of j as the function on
I x ©’ given by the equation,

J(a, 2)*

ST 1
J(a, y'2)k!

jY& 7)) = (ay'a™, az)). (3.10.1)
Clearly, the fraction on the right is independent of the choice of determination.
Note that the conjugate factor is not obtained simply by atransport of structure. The latter

transport would yield the function j (ay a1, az’).

94



Automorphic functions [Autm] 15
16. februar 1995

(3.11) Lemma. In the setup of (3.10), the conjugate ;' := ;¢ is a factor of weight £ on
the conjugate group I'' := I'“. Moreover, if u’ and u = au’ are corresponding points of
D' Uar® and © U arD, then the signs are equal:

wu (j1) = wu(j). (3.11.1)

If the matrix « belongs to I", then I’ = I" and j’ = j. In particular, the signs of j at two
I"-equivalent points are equal.

Proof. In (3.10.1), the function j («y’a ™1, az’) is an automorphic factor for the action of I’
on®’, becauseitisobtained by asimpletransport of structure. Moreover, asnotedin (1.5), the
fraction in (3.10.1) is an automorphic factor. Therefore, the function j¢ is an automorphic
factor on I'". Clearly, the function j*(y’, z’) is holomorphic in z’. Finally, the condition
(1.9)(3) for j* follows by applying (1.6) to ey’ = ya, where y = ay’a~t. Hence the
conjugate factor j* isafactor of weight k.

Assumethat u = au’. Then, if y, isthe canonical generator of I',,, the conjugate matrix
a1y, isthe canonical generator y, of I . Therefore, the equality (3.11.1) follows from
Lemma (3.8).

Assume that o belongsto I'. Then I’ = I". It follows from Lemma (1.11) that in the
definition of j in (3.10.1), we may replace the fraction J («, z)¥/J («, yz)* by the fraction
j(a,z2)/j(a, yz). Thenthe equation j* = j follows by applying the automorphy equation
toay’ = ya, wherey =: ay’a™ L.

Clearly, the last assertion of the Lemmais a consequence of (3.11.1). I

(3.12) Note. (1) For an integral weight k, the factor J (y, z)¥ isinvariant under conjugation,
asit followsfrom (1.3).

(2) In the setup of (3.10), let B be a matrix mapping a finite disk ®” onto ®’. Then
j*P = (j*)P, asit follows by an easy computation.

(3) It follows from the last part of Lemma (3.11) that the signs w,, of j are completely
determined by the signs at one point in each parabolic or eliptic orbit.

(4) Clearly, if j1 and jo are factors of weights k1 and k> on I', then jj j» is a factor of
weight k1 + k2, and for the signs we have the equation w,, (j1j2) = wy, (j1)wy (j2).

(5) The signs w, (T, j) depend on the group T, that is, they change if j isrestricted to a
subgroup A of I'. Assume that A is of finiteindex inT". Then 0o,® = or®. Consider a
point u in® U ar®. Denote by d theindex d := |PI",:PA,|. Assume for simplicity that A
is homogeneous and that the factor j ishomogeneous. If y, isthe canonical generator of I',,,
then yud isthe canonical generator of A,. Therefore we obtain the equation,

ou(A, j) = oy (T, )7,
(3.13) Proposition. For j(y, z) = J(y, z)* where k is an integer, the sign is equal to 1 at a
regular cusp, it is equal to (—1)% at an irregular cusp, and at a point u of ® it is equal to

eTik(=1/ew) where e, = |PT,|. In particular, for k = 2, the parameter is equal to O at any
cusp, and equal to 1 — 1/e, at a pointu € .
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Proof. For a cusp u we may, by conjugation, assume that (D, u) = (9, o0). Hence the
canonical generator y, isequal to 7, isthe regular case and equal to —1;, intheirregular case.
Therefore, intheirregular case, we have that J (y,, z) isthe constant —1; it followsthat sign
at u of J* isequal to (—1)%. In particular, the parameter is equal to O when & is even, and
equal to % when k isodd. The assertionsin the regular case are proved similarly.

For a point u of ®, we may, by conjugation, assume that (9, u) = (&, 0). Then the
canonical generator y, is the matrix of (Discr.1.3.1) with d = e,. Thus J(y,, z) isthe
constant —e /e = ¢Tid=1/e0) |t follows that the sign of J¥ at u is equal to e™k(—1/eu),
In particular, the parameter is the fractional part of %(1 — 1/e,). Thus, for k = 2, the
parameter isequal tol — 1/e¢,. I

(3.14) Example. Assumethat j isafactor onI"(1), determined asin Proposition (3.4) by its
weight k and al12throot of unity ¢. Restrict j tothesubgroupI'y. Atthepoint i, thecanonical
generators are equal and so we obtain the equation w; (I'y, j) = w;(I'(1), j). Atthe point oo,
the canonical generator of I'y isequal to 2, and hence woo (I'y, j) = woo (I'(1), j)2. Finaly,
at the point —1, the two groups have the same canonical generator, and hence w_1(I'g, j) =
w_1(T'(1), j) = wo(T'(1), j). Hence, by the results of Proposition (3.4), we obtain for the
restriction of j to I'y the following signs:

~2,21ik/6 ~1,2mik/12

Woo = ¢ w-1=¢ w = ¢°.

In particular, the factor j, of Example (3.7) is not the restriction of afactor on I"(1).

(3.15) Exercise. Onthe6-group I'g, the two factors j,, and jy differ by a unitary character
x: Ty — C*. Identify the character.

(3.16) Definition. Assumethat the matrix « in SL 2(C) mapsthefinite disk © onto thefinite
disk ©’. Consider adetermination J («, z')¥ on ®’ and a complex sign e. For any numeric
function f on ®, we define the weight-k conjugate to f asthe function,

o . € /
7@ = T Z,)kf(Otz ). (3.16.1)

The definition of a weight-k conjugate function does not depend on the given subgroup I'
of SL(®) and in particular, it is independent of the factor j. However, it should be noted
that contrary to the definition of the conjugate factor j¢, the definition of the conjugate
function is ambiguous: f* depends on the choice of determination J («, z/)F. As different
determinations differ by a complex sign there s, strictly speaking, only a well defined class
of conjugate functions that differ by acomplex sign.

Clearly, afunction f is(I", j)-invariant if and only if the weight-k conjugate function 1
is(I'®, j*)-invariant. Note also that if o« belongsto I' (in which case ®’ = D), then f -; «
isaweight-k conjugateto f.
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4. Automorphic forms.

(4.1) Definition. A numeric function f (with valuesin C) defined on the upper half plane $
will be called exponentially bounded at oo, if there existsareal number C such that

f(z) = 0(e'*|€) for Iz — oo, (4.1.1)

uniformly on any vertical strip in §. The positive function |¢/%|€ is equal to e =€~ and the
condition on C implied by the O-notation is equivalent to the following: For every vertical
strip in $), there are positive real numbers R and M so that the inequality,

1f(2)] < Me™ €%,

holdswhen z isin the strip and 3z > R.

In the most important of the casesto be considered, the function f will in fact be periodic,
with areal period. Clearly, in this case, the condition holdsfor C if and only if (4.1.1) holds
uniformly on al of .

The supremum of the numbers C for which the condition holds, will be called the order of
f a oo and it will be denoted ord?, f. The number ord?, f isequal to +oc if the condition
holdsfor al C, and equal to —oo if it holdsfor no C.

Clearly, if the order is positive, then f(z) — 0 for Iz — oo, uniformly in any vertical
strip. Conversely, if f isbounded in every vertical strip for Iz > 0, then the order of f at
0o 1S non-negative.

(4.2) Note. The order defined in (4.1) is in some sense analogous to the usual order at a
finite point: Let f be a numeric function defined in an open neighborhood of a point u of C.
Consider real numbers C such that

f(z) =0(z —ul€) forz = u.

In other words, assume for some M and R that | f(z)| < M|z — u|€ for 0 < |z —u| < R.
Clearly, if C exists, then f(z) hasfinite valuesin apointed neighborhood of u. The supremum
of the possible numbers C isthe order ord,, f. Assumethat f isholomorphic near u. Then
the order is —oo if u isan essential singularity of f. If f is meromorphic, then the order is
the usual order and, in particular, the order isan integer if f isnot the zero function.

(4.3) Lemma. The order at oo of functions on $ has the following properties:
(1) ord? (¢'¢?) = C.
(2) ord2 (f + g) > inf{ord? f, ord2 g}.
(3) ord2 (fg) > ord? f + ord?, g, with equality if ord2 (1/f) = — ord2 (/).
(4) If z > az is any Mobius transformation and & is a real number, then ord?, |az|¥ = 0.
(5) ord?, f(rz + b) = r ord2, f(z) for real numbers » > O and b.
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Proof. In (4), set f(z) := |az|F. Therearetwo casesto consider: aco # oo andaz = 0o. In
thefirst case, az hasafinitelimitasz — oo. Inparticular, (4.1.1) holdsfor C = O uniformly
on al of $). Thusthe order is non-negative, and obvioudly, it is not positive. Hence the order
isegual to 0. In the second case, «z = cz + d with complex numbersc # 0 and d. Clearly,
in any vertical strip, we have |z| = O(3z), and hence £ (z) = O(|3z|¥). Hence (4.1.1) holds
for any C < 0. Thusthe order is non-negative, and obvioudly, it is not positive. Hence the
order isequal to 0.

The remaining assertions are easy consequences of the definition. I

(4.4) Definition. Let f beanumeric function defined on afinitedisk ®. Let u be apoint on
the boundary of ®. Choose a Mdbius transformation o« mapping (), oo) onto (®, u). Then
f will be said to be exponentially bounded at the point «, if the conjugate function f« on
is exponentially bounded at co.

A second choice of « would differ from the first by a Mobius transformation of the form
z + rz + b. Hence it follows from the result (4.3)(5) that the definition of exponentially
boundedness is independent of the choice of «.

(4.5) Definition. In the setup of (4.4), from the same result (4.3)(5) quoted at the end, it
follows that we cannot define the order of f at u ssmply asthe order of f« at co.

However, if adiscrete subgroup I' of SL (®©) isgiven, and u isa Tl -parabolic point, we can
normalize the order and obtain the I"-order of f at u asfollows: The conjugate group I'“ is
a discrete subgroup of SL($)), and the conjugate of the canonical generator y,, is canonical
generator of I'y,. Moreover, the latter canonical generator defines a M6bius transformation
of theform z +— z + h, where h > 0. Set,

od f = a ord? (fa). (45.1)
2T

It isaconsequence of the proof of the following lemma, that the I"-order at « iswell defined.
Obvioudly, it isdifferent from —oo if and only if f isexponentially bounded at u.
If u isapoint of ©, we define the I'-order of f at u by the formula,

1
r ..

ord, f = BT ord, f, (4.5.2)
where the order on the right hand side is usual order at u of the function f, see (4.2). Note
that the order of the group PT",, is equal to the order of the canonical generator z — y,(z).
If f is meromorphic, then the order on the right side of (4.5.2) isthe usua order of f. In
particular, then it is an integer (unless f = 0), and the I'-order of f at apoint u of ©® isa
rational number. On the contrary, the I'-order at a cusp can be an arbitrary real number.

(4.6) Lemma. Consider a finite disk ®, a discrete subgroup I"' of SL(®) and a point u of
D Uar®. Let z — az be a Mobius transformation mapping a finite disk ©’ onto ©. Let

u' := a~1u be the conjugate point and I’ := I'* be the conjugate subgroup. Consider a
function f on ® and, for a given real number k, a weight-k conjugate /' = f* of f,
&
') = —— M. 4.6.1
(@) J(oz,z/)kf(az) (46.1)
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Then,
ord), 7' = ord! f. (4.6.2)

Proof. Assume first that u belongsto ®. The Mdbiustransformation z — «z isan analytic
isomorphism. Hence, on the right side of (4.6.1), the order of f’'(az’) at u’ isequa to the
order of f at u. Moreover, the fraction is holomorphic and everywhere non-zero on ©’. In
particular, its order at u’ isequal to 0. Hence, the order of f’ at u’ is equal to the order of f
at u. Moreover, the stabilizer groups '/, and I',, are conjugate, and hence of the same orde.
Therefore, it follows from the definition (4.4) that (4.6.2) holds.

Assume next that u is I'-parabolic. Choose a Mdbius transformation z — Sz mapping
(9, 0o) onto (D, u). Then the conjugate subgroup A = I'* isasubgroup of SL (), and the
conjugate § of the canonical generator of I",, definesaM6biustransformation z — z+ h with
h > 0. By definition, the right hand side of (4.6.2) isequal to (h/2m) ord2, f(Bz).

Choose and define similarly g/, A, §’, and h’. By (4.6.1),

el o\ € /
(B2 = T Bk fap'z). (4.6.3)

Now, thetwo matricesa 8’ and B differ by thematrix o := p~taB’. Thelatter matrix belongs
to SL($), and it fixes the point co. Hence, oz = rz 4+ b. Therefore, on the right side of
(4.6.3) we have f(aB’z) = fB(rz + b). Moreover, in the fraction, J(«, B'z) is a Mobius
transformation or a constant function. Therefore, by Lemma (4.4), (4) and (5),

ord2, (f'B") = rord2 (fB). (4.6.4)

Clearly, for the two subgroups A and A’ we havethat A’ = o 1 Ao . Hence their canonical
generators 8’ and § are conjugate: 8’ = o ~180. Therefore, i’ = h/r. Now (4.6.2) follows
from (4.6.4). I

(4.7) Lemma. Let A be a subgroup of finite index in I". Then, for any meromorphic function
f on® and any point u of ® U ar®,

ord® f = |PT,:PA,|ord] f.

Proof. Set d := |PI',:PA,|. If u isapoint of ©, the assertion follows from the definition
and Lagrange: |PI',| = d|PA,|. Assume that u is I'-parabolic. Then PI',, is an infinite
cyclic subgroup. Therefore, if y, defines the canonical generator of PT',,, then ¢ defines
the canonical generator of PA,,. Hence, in the notation of Definition (4.5), if 4 isthe &
corresponding to I, then the & corresponding to A isequal to dh. Thus the assertion holds
for aT"-parabolic point. I

(4.8) Setup. Fix afinite disk © and a discrete subgroup I" of SL(®). Let j be afactor of
real weight k onT.
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A numeric function f defined on ® iscalled a j-automorphic form, or a (T", j)-automor-

phic form, if the following conditions hold:

(1) fisj-invariant: f(yz) = j(y,2)f(z)fory €T,

(2) f ismeromorphicin®,

(3) f isexponentially bounded at all I'-parabolic points of ©.
If the group I" is homogeneous, we will often assume that the factor j is homogeneous, since
only the zero function is j-invariant if j(—1, z) = —1, see (1.11)(4).

Note that to verify condition (3) for a given j-invariant function f, it suffices to verify
the condition for one point in each I'-parabolic orbit. Indeed, assumethat f isexponentially
bounded at some point « on the boundary of ©. Assumethat u = yu’ for a matrix y in
I". It followsimmediately from the definition in (4.4) that the function fy isexponentially
bounded at the point u’. Since f is j-invariant, f(yz) = j(y, z) f(z). Therefore, it follows
from Lemma (4.3)(4) that f isexponentially bounded at u'.

Thecondition (3) for agiven meromorphicfunction f isusually expressed by sayingthat f
is meromorphic at the cusps, and the automorphic forms defined above are sometimes said to
be meromorphic automorphic forms. Anautomorphicform f issaid to bean integral form, if
f isholomorphicin® and theI"-ordersof f at all cuspsare non-negative. If, in addition, the
I'-orders at all cusps are positive, then f iscalled acusp form. The spaces of j-automorphic
forms that are meromorphic, or integral, or cusp forms, are denoted respectively,

M@, ., 6T, j, ST, ).

Clearly, the spaces are vector spaces over C.

If k isaninteger, then J (y, z) isafactor of weight k onT". Moregenerally, thenthefactors
of weight k on I' are exactly the function j (y, z) = x(y)J(y, z)* for a unitary character
x: T — C*. Accordingly, the corresponding spaces are denoted M (T, x), G« (T, x), and
Si (T, x). Omission of x indicates the trivial character x = 1. The forms of M (") are
called I'-automorphic forms of weight k.

When theweight k isequal to 0, a j-automorphic formisalso called a j-automorphic fun-
ction. In particular, aI"-automorphic function isaI'-invariant function satisfying conditions
(2) and (3). The space of I'-automorphic functionsis denoted M (I).

(4.9) Observation. (1) The product j1jo of factors of weights k1 and k2 on T" is a factor
of weight k1 + k2. It follows that the product f; f» of forms f; € M(T, j;) isaformin
M(T, j1j2). Similarly, the quotient f1/f2, when f> £ 0, isaformin M(T, j1/j2).

It follows in particular that the I"-automorphic functions form a field M (I"). Moreove,
if M(T, j) # (0), then M(T, j) is a one-dimensional vector space over M(T"). In other
words, if f isanon-zero formin M (T, j), thenthemap ¢ +— ¢f isanisomorphism,

M(@T) —= M(T, j).

(2) Let A be a subgroup of finite index in I'. Obviously, a (", j)-invariant function is
(A, j)-invariant. The two groups A and I" have the same set of parabolic points. Hence the
condition (4.8)(3) for afunction f holdsfor I" if and only if it holdsfor A. Consequently,

M(T, j) € M(A, j).
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Similarly, it follows from Lemma (4.7) that G(T', j) € G(A, j) and S(T', j) € S(A, j).

(3) Consider afinitedisk ® and aMdbiustransformation o : ©’ — D defined by amatrix
a € SL(C). Then the conjugate factor j* is afactor of weight £ on the conjugate group
I'* = o 1l'a. Choose adetermination of J (e, z')¥ on®’. Then for every function f on D,
theweight-k conjugatefunction /¢ isafunctionon®’. Clearly, conjugation f +— f* defines
anisomorphism M (T, j) — M(I'%, j%), and under conjugation, integral forms correspond
to integral forms and cusp forms correspond to cusp forms.

(4.10) Lemma. Let f bea (T, j)-automorphic formon®. If u and v are I"-equivalent points
of ® U or®, then
ord! f=ord f. (4.10.1)

Proof. The equation follows from Lemma (4.6). Indeed, let v = yu for some matrix y in
I". Then (4.10.1) holds if the function f on the left hand side is replaced by any weight-k
conjugate f7 of f. However, the function f -; y is weight-k conjugate, and it is equal to

S 0
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5. Fourier expansions.

(5.1). Keep the setup of (3.1). Assume for the moment that © is the upper half plane $
and that the point oo on the boundary of $) is I"-parabolic. Then the M6bius transformation
associated to the canonical generator yo, isof the form,

YooZ = Z + h, for someh > 0.

Thesign, ws (), of j at infinity isof modulus 1, and the parameter k = k() isdefined be
the conditions, .
W (j) = eZK L 0<k < 1.

Since J (o, z) = %1, it followsthat j (yeo, z) iS constant,

2miK

.](VOO7 Z) =e

Now, let f be a hon-zero j-automorphic form on $. Then, in particular, f(ye0z) =

]()/OO’ Z)f(Z),that'S, .
f@+h) =" f(2). (5.1.1)

Let F(z) bethefunctionin $ defined by the equation,
F(z) := e 22/l r (. (5.1.2)
It followsfrom (5.1.1) that F is periodic:
F(z+h) = F(2).

In addition, the function F (z) is meromorphic because f(z) is. Consequently, there exists a
unique meromorphic function g(¢) on the pointed unit disk: 0 < |¢| < 1 such that

F(z) = g(e?i#/M, (5.1.3)

Thefunction F(z) isexponentially bounded because f(z) is. In particular, in astrip of width
h, it followsthat F(z) has no polesfor Iz > R. Hence, being periodic, it followsthat F(z)
isholomorphicinthedomain Iz > R. Therefore, the function g isholomorphicin apointed
disk: 0 < |g| < &, and the possible singularity of ¢ at O isisolated. It followsthat g has a
convergent Laurent expansion,

g(q) = Z anq" for0 < |g| < e. (5.14)

—o0<n<0

The possible singularity 0 of g isat most a pole, that is, the Laurent expansion (5.1.4) has
only afinite number of negativeterms. Indeed, since F(z) isexponentially bounded, thereis
areal number C, say of theform —2z N/ h for someinteger N, sothat F(z)/¢!€* isbounded
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for 3z > R. It followsthat ¢"V g(q) is bounded near 0. Hence, in the Laurent expansion,
a, = 0forn < N. Thusthe function g is meromorphic in the whole unit disk: |¢| < 1, and
the order, ordg g, of g at Oisthe least integer n such that a,, # 0.

Let N betheorder of g at 0. Then g(g) = g™V &(g), where g isholomorphic and non-zero
at 0. Hence F (z) = e?"iN2/hg(e2miz/ 1y Obvioudy, then ord2, F(z) = 27 N/ h. Combined
with the definition of F, it follows that

ord, f =« +N.
To summarize, we have proved the following: Thereisa Laurent series,
g@) =Y anq", (5.1.5)
n>N

convergent in apointed disk 0 < |¢g| < &, so that for Iz > 0 (more precisely, for Iz > R
where R = (— loge)h/27) we have the following expansion of f,

f(z) = ¥rirz/h Z apeZrinz/h (5.1.6)
n>N
Clearly, the I"-order of f at co isrelated to the order of g at O by the formula,
ordl, f =« +ordo g (5.1.7)

(5.2) Definition. The series(5.1.6), defined in the setup of (5.1), is called the Fourier expan-
sion of the form f, and the coefficients a,, are called the Fourier coefficients. The function
g = q(z) = ¢?"¢/ iscalled thelocal parameter at co. Asafunctionon ) it has, for any real
number [ the obvious determination ¢! = %72/, Accordingly, we may write the Fourier
expansion in the form,

q" Z anq". (5.21)

n>N

Notethat (5.2.1) does not make sense asafunctionof ¢ for 0 < |¢| < € unlessk isaninteger.

Now assume again that © isan arbitrary finitedisk, and let f beanon-zero j-automorphic
formon®. Let u be aTI-parabolic point. Consider the sign w, = w, (j) and the parameter
Kk, = ku(j). Choose a Mobius transformation z +— Bz mapping (£, oo) onto (D, u), and
choose a determination of J (8, z)¥ on $. Then the weight-k conjugate,

) = —
YT Bk

is a j#-automorphic form on $. Hence the preceding discussion applies to f#. Under
conjugation, the sign and the parameter are unchanged by (3.11), and the order is unchanged
by (4.8). The series (5.2.1) for f#, or the series (5.1.6), is called the Fourier series of f at
the point . It followsfrom (5.1.7) that,

ord f =, +ordgg.

f(B2),

In particular, the T"-order ord! f of a j-automorphic form f iscongruent to the parameter «,
modulo Z.
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(5.3). Assume for the moment that © isthe unit disk &, and consider the point 0 in &. The
M 6bius transformation associated to the canonical generator yyq is of the form,

2rife, wheree = |Plgl.

Yoz =e
[Warning: there are two ¢’s: one for Euler, and one for elliptic.] Thesign, wo(j), of j a0
isan e’th root of unity. The parameter k = «x(j) is defined be the conditions,

w=e¥* 0<ik <l
and hence k = a/e for someinteger a with 0 < a < e. The matrix yg isadiagona matrix,
and hence J (1o, z) is constant. It followsthat j (o, z) iS constant,
Jj (v, 2) = e,

Now, let f be a non-zero j-automorphic form on &. Then, in particular, f(yoz) =

J(v0,2) f (2), that is, . .
f(eZm/eZ) — eZme(Z). (5.3.1)

Let F(z) bethefunctionin & defined by the equation,
F(z) =z f(2); (5.3.2)

note that ex is an integer, since xk = a/e. It follows from (5.3.1) that F(z) satisfies the
equation: .
F(e*'/2) = F(2).

In addition, the function F(z) is meromorphic because f(z) is. Consequently, there exists
a unigue meromorphic function g(w) on the pointed unit disk 0 < |w| < 1 such that, for
z#0,

F(z) = g(z°). (5.3.3)

The possible singularity for g a O isa pole. Indeed, since F(z) is meromorphic at O, there
isan integer, say of theformeN, so that z¢N F(z) is bounded near 0. Hence, it follows from
(5.3.2) that w" g(w) is bounded near 0. Therefore, the function g has a convergent Laurent
expansion in asmall pointed disk,

g(w) = Z a,w" for0 < |w| < ¢, (5.3.9)
n>N

Assumethat N istheorder of g at 0, i.e, ay # 0. Then it follows from (5.3.3) F(z) is of
order eN at 0, and then from (5.3.1) that f isof order ex + eN. Hence, for the I'-order, we
obtain the equation,

ordy f =« + N.
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To summarize, we have proved the following: The Laurent seriesfor f near O is of the form
f(z) =2z%g(z%), thatis,

f(2) =z Z anz", (5.3.5)
n>N
wheree := |PI'g|. TheT'-order of f at Oisrelated to the order of g at O by the formula,
ordy f =« +ordpg (5.3.6)

(5.4) Definition. Assume again that © is an arbitrary finite disk, and let f be a non-zero
Jj-automorphic form on ®. Let u be a point of ©. Consider the sign w, = w,(j) and the
parameter «, = «,(j). ChooseaM6biustransformation z — Bz mappingtheunitdisk (&, 0)
onto (D, u), and consider asin (5.2) aweight-k conjugate 7. Then f# isa j#-automorphic
form on &. Hence the preceding discussion applies to f#. The Laurent series (5.3.5) for
f#, or the expansion (5.3.4), is called the normalized Laurent seriesfor f at the point u. It
follows from (5.3.5) that,
ord f =, +ordgg.

In particular, the T-order ord! f of a j-automorphic form f iscongruent to the parameter «,
modulo Z.

(5.5) Note. Let f bea(T, j)-automorphicformon®, andlet u beapoint of ©® Udr®. Then
the Fourier expansion of f at u defined in (5.2) when u is I'-parabolic and the normalized
Laurent expansion defined in (5.4) when u belongsto ® depend on the choice of conjugation
B. (In addition, they depend on the choice of a determination of J (B, z)*, but the latter
ambiguity isonly up to acomplex sign.) To normalize, we may assumethat det g = 1.

Consider the case when u is I'-parabolic. Then a second choice B’ is of the form Bo,
whereoz = rz 4+ b (r > 0). Clearly then, a weight-k conjugate f#' can be obtained as a
weight-k conjugate (f#)?. Hence, to simplify, we may assumethat ® = §) and that 8 = 1.
Then B/ = o and the canonical generator of I'° hash’ = h/r. We want to compare the
Fourier expansion (5.1.6) of f with the Fourier expansion of the weight-k conjugate f°. The
matrix o is adiagonal matrix. Hence J (o, z) is constant, and equal to +1/./r. Hence, up
to a complex sign, the determination J (o, z)* is constant and equal to »—%/2, Therefore, a
weight-k conjugate f° isgiven by

@) =r*?f(rz +b).

Accordingly, we obtain the Fourier expansion of f° essentialy by substitution of rz + b for
zin(5.1.6). If welet A := rk/2¢27ixb/h gnd g := ¢27ib/1 then the result is the following:

fO‘ (Z) — )\'eZﬂiKZ/h/ Z (8nan)627Til’lZ/h.
n>N

In particular, the Fourier coefficients of the new series are given by
a, = re"ay,.

Here |A| = r¥/2 and |¢| = 1.
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(5.6) Example. TheEisenstein series Ex(z), for aninteger k > 4, and the normalized series,

Gi(2) = % > .

el (mz +n)k’

were considered in Example (2.1). They are I'(1)-invariant functions of weight k. Clearly,
they are holomorphic. The Fourier expansions of the functions are determined in (App.2.5).
Theseriesvanishwhen k isodd. Fork > 4 even, theexpansionisthefollowing, forg = 27z,

-2k
Gr@) =14 =) or-1(mq". (56.1)

n>1

where By, isthek’th Bernoulli number. In particular, the order at oo of the functionsare equal
to 0. As oo represents the only cusp of I'(1), it follows that the functions E(z) and G (z)
are integral automorphic forms.

For k = 4 and k = 6, the expansions are the following,

Ga(z) =1+240) 03(r)q",

r>1

Ge(z) =1—504) os5(r)q’.

r>1

Thefunctions G 4(z)® and G(z)? areintegral automorphicformsof weight 12. Clearly, in
their Fourier expansion, the constant term is equal to 1. Hence, for the difference, G4(z)® —
Ge(z)?, there is no constant term in the expansion, that is, the difference is a cusp form of
weight 12 for I'(1). It is easy to see that the coefficient to ¢ is equal to 1728 = 123. Sothe
difference has an expansion of the form,

G4(2)® - Ge(2)? =12%g + - - - . (5.6.2)

(5.7) Example. Dedekind’s n-function,

77(2) — e27TiZ/24 1_[(1_ eZJTiI’lZ)

n>1

wasconsidered in Example (2.3). Itisholomorphicin $ and everywhere non-zero. Thefactor
Jn isof weight % on I"(1) and, by its construction, the function n is j,-invariant. Obviously,
theorder, ord?, n, a oo isequal to 27 /24. As oo representsthe only cusp for I'(1), it follows
that n isa j,-automorphic form. The canonical generator at oo isthematrix ¢, andrz = z 4 1.
Hence h = 1, and the I'(1)-order of n a oo isequal to 1/24. As the order is positive, it
followsthat n isacusp form. At the pointsof §), the function » isnon-zero, that is, the order
isequal to 0.
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The Fourier expansion of n is obtained by developing the product [],.,(1 — ¢") into a
power series. With itsfirst termsit becomes, B

n@) =q"*1—q—q¢*+q¢°+q" — ). (5.7.1)

In fact, the coefficientsin the expansion are given by Euler’swell known pentagonal number

formula, ,
[Ta—-g" =2 1mg® "

n>1 m

It follows from the expansion of » that the discriminant A(z) defined in Example (2.3) as
the power A(z) = 1(z)?* has a Fourier expansion of the form,

AGR) =q—24g% +--- . (5.7.2)

We provelater that the difference (5.6.2) isin fact equal to 122 timesthe discriminant (5.7.2).

0(z) =y e,

n

(5.8) Example. The 6-function,

was considered in Example (2.6). It is holomorphicin $). The factor jy is of weight % on
the group I'y, and by its construction, the function 6 is jg-invariant. There are two cusps for
'y, represented by the points oo and —1. Clearly, the 6-function converges uniformly to 1
as Jz — oo. In particular, the 6-function is exponentially bounded at oo and the order at
oo isequal to 0. Essentially, the sum defining 6 is the Fourier expansion at co. In fact, at
oo the canonical generator of 'y ist2, and hence i = 2. Thusthe local parameter at oo is
g = e%7i2/2 = o™iz and the Fourier expansion at oo isthe series,

1429 +29° +2g* +2¢% + - - - . (5.8.1)

For the second cusp —1, take the conjugation by the matrix u. Thenuoco = —1. A wei ght-%
conjugate 6* isthen given by the equation,

0"(2) = ———O(uz) = —
YT T TR

for any complex signe. In particular, thefunction /i /z 6(—1—1/z) isaconjugate. It follows
from (2.7.3) that the latter conjugate has the expansion,

0(—1—-1/z).

0'z) = Y &I, (5.8.2)
n odd

In particular, the conjugate is exponentially bounded at oo, and hence 6 is exponentially
bounded at —1. Therefore, 6 isa jg-automorphic form. To get the Fourier expansion of 6 at
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—1, note that under conjugation by «, the canonical generator of I'y at —1 correspondsto z.
Hence h = 1, and the local parameter at oo isqg = ¢%*2. Now, when n is odd, we have that

n? = 1 modulo 8. The n’th term in (5.8.2) is equal to e27i2(*~1/8,27iz/8 Thys (5.8.2) is
the Fourier expansion of 6 at —1, and it takes the form,

0" (2) = =78 Z PTI D8 g2+ 2q 4+ 243 +2¢° +2¢1° 4. ).
n odd

In particular,
ord™ 6 = 1/8.

Asthe orders at the two cusps are nonnegative, 6 is an integral form.

109



[Autm] 30 Automorphic functions
16. februar 1995

110



Automorphic functions [Autm] 31
16. februar 1995

6. The Main Theorems.

(6.1). Keep the setup of (3.1). In other words, © isafinitedisk, I' isadiscrete subgroup of
SL(®), and j isafactor of real weight k for I". In this section, we assume throughout that I"
isaFuchsian group of thefirst kind. In addition, we assumethat thefactor j ishomogeneous,
thatis,if —1 eI, then j(—1,z) =1

Thegroup I" actson ® and on the closure® U ar®. Since I' isof thefirst kind, the orbit
space X = ®/ T isacompact surface. Moreover, there exists afinite fundamental domain F
for I'. Accordingly, there are two fundamental invariants associated with I". The first isthe
nonnegative integer ¢ = ¢g(I") defined as the genus of X. The second is the positive rational
number © = (") defined asthe areaof F divided by 27r. The two invariants are related by
the formula, see (Discr.5.5),

w@ =240 -2+ (1— 1), (6.1.1)

e
umodT u

wheree, = |PI',|. Inthesum (6.1.1), and in the sums below, the summationisover theorbits
in X, or equivaently, over one point u in each I'-orbitin ® U ar®. For aI'-parabolic point
u, the fraction 1/¢,, isinterpreted as zero. So, in the sum (6.1.1), each of the finitely many
cusps contributes with the term 1, and for the orbitsin ©, only the finitely many I"-elliptic
orbits contribute with non-zero terms.

I n thissection we state the main theorems on automorphic forms. Theproofsare postponed
to a separate section.

(6.2) Theorem A. The field M (T") of I"-automorphic functions on ® is finitely generated (as
a field) over C, and of transcendence degree 1.

The quotient X = X (T") is a compact Riemann surface, and by construction, M(T") is
the field of meromorphic functions on X. The assertion of Theorem A is a well known
conseguence.

(6.3) Theorem B. The space M(T", j) of j-automorphic forms on © is non-zero. Moreover,
if £ is any non-zero j-automorphic form, then

r o, kud)
> ord, f = > (6.3.1)

u mod I

The existence of a non-zero j-automorphic form will follow from the construction of
Poincaré Series. The proof of (6.3.1) will be given later in this chapter.

(6.4) Corollary. The space G(T', j) of integral j-automorphic forms is of finite dimension
over C. If k£ < 0, then the dimension is equal to zero. If k > O then the dimension is at most
equal to ku/24 1. If k = 0, in which case j (y, z) = x(y) with a unitary character x on T,
then the dimension is zero if x # 1. Finally, the functions of G(I") are exactly the constant
functions.
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Proof. Consider a nonzero function f in G(T", j). Then the ordersord’ f are non-negative,
and the sumin (6.3.1) isequal to k. /2. Clearly, therefore, no such f can existif k < 0.
Assumek > 0. Thenord! f < ku/2. Let N be the largest integer less than or equal to
ku/2. To prove that the dimension is finite we may assume that the disk is the unit disk €&.
Since the order of f at zero is nonnegative, the normalized Laurent series around O is of the
form,
f@) =z auw" forw=z", (6.4.1)

n>0

where k = ko(j) and e = eg. The I'-order of f at zero isequal to k + n where n is |least
index such that a, # 0; on the other side, the I'-order is at most equal to ku/2. It follows
that one of the N + 1 coefficientsa,, for 0 < n < ku/2 isnonzero. The N + 1 coefficients
may be viewed as a C-linear map G(I', j) — CN*1 and we have just seen that the map is
injective. Hence the dimension of G(T", j) isfinite and at most equal to N + 1.

Assumethat k = 0. Let f beafunctionin G(I', x). Then f is holomorphic in ®, and
defines a continuous function on ® U ar®. Moreover, since x isunitary, it followsfrom the
equation f(yz) = x(y) f(z) that the function | f| is I'-invariant. As the quotient ®/T is
compact, it followsthat | f| attains its maximum value at a point « of © U opr®. It follows
from the maximum principlethat f isconstant. Indeed, if u isin ®, the maximum principle
appliesdirectly. If u isin ar®, we may, after conjugation, assumethat © = $ and u = oc.
If k, = Othen, in aneighborhood of u, f = g(q¢) where g = ¢27%/" and g is holomorphic
at the origin; hence the maximum principle appliesto g. If «,, > O, then f vanishesat u; by
the choice of u, therefore f = 0.

Hence every functionin G(T', x) isconstant. Clearly, if x # 1, then no non-zero constant
is x-invariant.

Thus all assertions of the Corollary have been proved. I
(6.5) Note. Assumethat k& > 0. It followsfrom (6.1.1) that the number k. /2 isat most equal
to the following number,

k(g —1) + g#(parabolic or elliptic I"-orbits). (6.5.1)

Hence, if N istheinteger part of the number (6.5.1), thenthedimensionof G(T", j) isat most
N + 1. Clearly, the argument given in the proof of (6.4) appliesequally well to aI"-parabolic
point u, replacing the Laurent expansion by the Fourier expansion. In particular, if for two
functions f and g in G(T", j) itisknown that their first N 4+ 1 Fourier coefficients are equal,
then the two functions are equal.

(6.6) Special case. Assume that the disk is the upper half plane $ and that I" is a subgroup
of finite index in the modular group I'(1) = SL2(Z). Denote by d the homogeneous index,
d = |I'(1) :T'|. Then, for any non-zero j-automorphic form on §,

> ord f = kd: (6.6.1)

umodIl 12
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Moreover, if £ > 0, then the dimension of G(T", j) is at most equal to [kd/12] + 1.

Proof. Inthegeneral setup of (6.1), let A beasubgroup of finiteindexinT". Setd := |PI":PA|.
Then, by Proposition (Discr.3.12), afundamental domain G for A can be obtained asthe union
of d transforms of the fundamental domain F for I". Hencethe areaof G isd timesthe area
of F. Therefore, u(A) = d u(I').

A fundamental domain for the modular group I' (1) was described in (Mdlar.4.1). Clearly,
itsareais equal to 27 /6. Consequently, u(I'(1)) = %. Therefore, the assertion is a special

case Theorem B and its Corollary. I

(6.7) Theorem C. Thenumberé = §(T', j), defined by the following expression, is an integer:

k
5::1—g+7”— 3 ki, (6.7.1)

umodT

where «, (j) is the parameter of j atu. If § < 1 — g, then G(T", j) = (0). Assume that
8 > 1 — g. Then the following inequalities hold:

§<dimgT, j) <8+ g.

Moreover, if § > g, then
dmg(T, j) =34. (6.7.2)

The number § is an integer. Indeed, let f be a non-zero j-automorphic form (Theorem
A). By Theorem B, the number k. /2 isthe sum of theI"-ordersof f. Asobservedin Section
5, the T'-order ord!, f is congruent modulo Z to the parameter «, (j). Thus the difference
ord! f — «,(j) isaninteger. Hence § is an integer.

If £ isan integral non-zero j-automorphic form, then ord f > 0. As the order is
congruent to x, and 0 < «, < 1, it follows that ordgf > ky(j). Hences > 1 — g.
Therefore, the assertionthat G(T', j) = (0) when § < 1 — g isaconsequence of Theorem B.

The remaining assertions of Theorem C are consequences of Riemann’s part of the Rie-
mann—Roch Theorem. Note that the assertions give full information on the dimension of
g, j)wheng = 0. If g > 0, the Theorem gives only an estimate of the dimension when
l-g<é=<g-1

(6.8) Note. Thefollowing alternative expressionsfor § are easily obtained from the formula
(6.1.2):

azg—1+(§—1)u+2(1—%—,cu)

= k- - v+ Y (50— 2) - x).
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(6.9) Corollary. The dimension of G(T", j) is equal to § and at least equal to g under any of
the following conditions: (1) k > 2, or (2) k = 2 and there are I"-parabolic points, or (3)
k = 2 and there are I'-elliptic points u at which «,(j) < 1—1/e,.

Proof. Consider the first expression for § in (6.8). In the sum, the term corresponding to
a I'-parabolic point « is equal to 1 — «,, and hence positive. The term corresponding to a
I"-elliptic point is non-negative by (3.3), and positiveif x, < 1— 1/e,. It follows easily the
8 > g — 1l under any of the conditions given for the first assertion. Therefore, since § isan
integer, the first assertion of the Corollary follows from Theorem C. I

(6.10) Definition. A T'-parabolic point « is said to represent a j-regular cusp, if the sign
w, (j) isequa to 1, or, equivalently, if «,(j) = 0. Obviously, j-regularity is a property of
the cusp represented by u.

It follows from (3.13) that acuspis J-regular if and only if itisregular. Moreover, if k is
an even integer, then all cuspsare J*-regular. If k isan odd integer, then acuspis J*-regular
if and only if itisaregular cusp for I'.

Denote by 8’ = §'(T", j) the following number,

8’ =& — #(j-regular cusps).

(6.11) Theorem D. Consider the space S(T', j) of j-automorphic cusp forms on ©. If
8 < 1— g, then ST, j) = (0). Assume that 8 > 1 — g. Then the following inequalities
hold:

8 <dimS(T, j) <8 +g.

Moreover, if 8 > g, then
dimsS(T, j) =46 (6.11.1)

(6.12) Corollary. The dimension of S(T', j) is equal to §" and at least equal to g under any
of the following conditions: (1) k > 2, or (2) k = 2 and there are I"-parabolic points that
are not j-regular, or (3) k = 2 and there are I'-elliptic points u at which «,(j) < 1—1/e,.

Proof. Consider the first expression for § in (6.8). Clearly, in the sum, each regular cusp u
contributes with the term 1. Therefore, if we omit from the sum the terms corresponding to
the regular cusps, the resulting expression is equal to §’. The remaining part of the proof is
now identical to the proof of Corollary (6.9). I

(6.13) Note. Anintegral j-automorphicform f hasnon-negative I"-order at every point u of
D U ar®. In particular, f hasawell defined value at pointsu of ©. For apointu € ar®,
choose a conjugation «.: (9, o0) — (D, u). Then the weight-k conjugate function f* has a
value at oo which, by an abuse of language, will be referred to as the value of f at u. The
valueis zero if and only if the order of f at u is positive. The order is at least equal to the
parameter . Inparticular, thevalueat apoint u representing a j-irregular cusp isnecessarily
zero. It followsthat f isacuspformif andonly if the valueisequal to zero at every j-regular
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cusp. Inother words, if Ze is afinite set of I'-parabolic points representing the subset of
j-regular cusps, then the evaluation map,

G(T, j) — Cr, (6.10.1)

has as kernel the space S(T", j) of cusp forms. In particular, the codimension of S(T", j) in
Gg(T, j) isat most equal to the number of j-regular cusps, and equality holdsif and only if
the evaluation map is surjective. Clearly, the evaluation map is surjective, if and only if, for
every j-regular cusp u for I', there existsan integral j-automorphic form that has a non-zero
value at u and vanishes at all other cusps.

Since § — §’ is equa to the number of j-regular cusps, it follows that if both equalities
(6.7.2) and (6.11.1) hold, then the evaluation map is surjective. In particular, therefore the
evaluation map is surjectiveif 8 > g, and especialy, it is always surjective when k > 2. It
should be emphasi zed that the evaluation map is not surjective in general.

(6.14). Consider in particular the factor j = J*. Thus k is assumed to be an integer; if
k is odd, the group I' is assumed to be inhomogeneous. The parameters at cusps u were
considered in (6.10): If k iseven, then all cuspsare J*-regular (and «, = 0). If k isodd, then
the J*-regular cusps are exactly the regular cuspsfor I'. At theirregular cusps, the parameter
isequal to 3.

Consider the parameter at a point  of ©. It follows from (3.13) that «, (J¥) is equal to
{5(1—1/e,)}, where {x} denotes the fractional part, {x} := x — [x].

An expression for 8; = 8(I", J¥) is obtained from the second expression for § in (6.8). If
k iseven,

S=k-DEe-D+Y [5(1-2)] (6.14.1)

Note that each cusp of I" contributes with the integer £/2 to the sum. If k£ isodd,
S=(k-D—-D+ Y [5(1- o) + 3 #(regular cusps). (6.14.2)

Note that each cusp contributes with the integer [5] = & — 3 to the sum.
The numbersfor k = 1 and k = 2 are the following:

1
81 = > #(regular cusps), 2 = g — 1+ #(cusps). (6.14.3)
The dimensions of G (I") and Si(I") are determined by the preceding results for k < 0

and k > 3. In addition, if there are cuspsfor I", then the resultsimply that dim Go(T") = é».

(6.15) Theorem E. The dimension of So(I") isequal to g. Inaddition, if " isinhomogeneous,
then the codimension of S1(I") in G1(T") is equal to half the number of regular cusps.

The proof of Theorem E uses the Roch part of the Riemann—Roch Theorem.

Note that the dimension of G>(T") is determined in al cases. If there are cusps, then
the dimension is equal to the number §, of (6.14.3). If there are no cusps, then of course
Go(I') = So(T), and the dimensionis equal to g.
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Asnotedin (6.13), the codimension of S (I") in G (I") isequal to the number of J*-regular
cuspsif k > 3. It follows from Theorem E that the assertion does not hold for k = 2 if there
are cusps, and it does not hold for k = 1 if there are regular cusps.

Theorem E determines the codimension of S1(I") in G1(I"), but no general method is
known to determine the actual dimension.

(6.16) Theorem F. Assume that the disk is the upper half plane $. Let f be a non-zero
j-automorphic cusp form. Then the function f(z)(3z)*/? is bounded in $. Consider the
Fourier expansion of f around a cusp u,

o
= p2rixz/h Z anezmnz/h (6.16.1)
n=0

where « = ord! f is positive. Then, for the coefficients, we have the estimate,

a, = O(n*/?). (6.16.2)

Proof. Note that the weight & is non-negative, since S(I', j) # (0). Consider the function
p() = | f @R 2. AsI(yz) = | (y, 2)|7°I(z) and f is j-invariant, it followsthat p(z)
isT-invariant. Obvioudly, p iscontinuousin®. We claim that p(z) converges to zero when
z approaches a cusp u. Clearly, if o isamatrix of SL($)) such that eco = u, it sufficesto
provethat p(az) — Ouniformly as Iz — oo. Clearly,

| f(2)]

Jia o 39 (6.16.3)

paz) = | f2)|3@)?? =

The fraction on the right is the absolute value of a weight-k conjugate f¢. It follows from
the Fourier expansion (6.16.1) that /¢ = O(|eZ"**/"|). Thus p(az) — 0 for Iz — oo.

It followsthat p extendsto acontinuous function on the quotient © / T". Asthe quotient is
compact, therefore p is bounded on ).

Assumethat p(z) < K foral zin . Let g(g) be the function defined in the unit disk:
lg] < 1by f%(z) = eZi¥2/hg(e? /M) Then g is holomorphic in the unit disk, since f
in holomorphic in $. The Fourier coefficients a,, are the coefficients in the power series
expansion of g. Hence they can be obtained by integration,

1 [glg) dg

dan P

= 21 " q’

where the path integral can be taken over any circle around 0 in the unit disk. Equivalently,

an:h =

1 g(eZﬂiz/h)dZ 1 fa(Z)dZ
M e2rinz/h _ Z e2ri(n+i)z/h’
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where the path integral can be taken over any (euclidean) vertical line segment of length 42 in
$). Integrate fromie to ie + h. On the path we have, by (6.16.3), the estimate,

1f%(2)] = plaz)(J2) /% < Ke™*/2,

and the equality |eZ7i(1H2/h| = o=2m(tme/h - Therefore, we obtain the estimate for the

coefficient,

|an| < Kg—k/zeZﬂ'(K-H’l)é‘/h.

Fix e and apply the estimate with ¢ := ¢/n forn > 1. Since (x + n)/n < 2, it followsthat

la,| < Ke k264l yk/2,

Therefore (6.16.2) holds. I
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7. Examples I1.

(7.1) Example. For the modular group I'(1) = SL2(Z) acting on $), there are two elliptic
orbits represented by i of order 2 and p of order 3, and one cusp represented by co. The
genusis g = 0; theareais /3, and so u = &, confirming that

§=0-2+1-H+A-P+1L

Let k be a non-negative even integer, and consider the spaces Gy = G(I'(1), J¥) and Sy =
S(I'(1), J5). Apply the Main Theoremsto the factor J*. The number 8, = §(I"(1), J*) is
given by (6.14.1):
1+[4] whenk # 2 (mod 12),
S=—Gk-D+[Ea-DH]+[5@a-1 +ﬁ={ 12
g ( 1+l 2 -]+ 5 [4] when k = 2 (mod 12).

Notethat §; > 0 = g since k isnon-negative. Hence it follows from Theorem C that

dimgG; = 6.
Clearly, if k > 4,then §; — 1> 0 = g. Therefore, by Theorem D, if k > 4, then
dmS; =6, — 1.
Obvioudly, Sp = 0, and by Theorem E,
dimSZ =0.

For small values of k, the dimensions are the following:

k 0/ 2|4|6|8|10|12 14|16 |18 |20|22 |24 |26 |28
dmggf212j0j12(2}12|1}2 122 |2|2|3|2]3
dms&fo0j0j0fo0jo0ojoj;j1,0}1,212}1|1]|2|1]2

TheEisenstein series £ (z) and modified seriesG (z), for k > 4, arefunctionsinGy. They
are not cusp forms, since G hasthevalue 1 at oo. Clearly, the function G (z) generates the
1-dimensional space G for k = 4, 6, 8, 10, 14. In particular, comparing the values at co, we
obtain the equations Gg(z) = G4(2)%, G10(z) = Ga(2)Ge(2), and G14(z) = Ga(2)*Ge(2).

The first weight k at which there is anon-trivial cusp form isk = 12. The discriminant
A(z), defined by A(z) = n(z)?, is a cusp form of weight 12, with the Fourier expansion
A(z) = q — 24q + - - - . Hence it generates the 1-dimensional space S12. On the other hand,
the difference G3 — G2 isacusp form; it is easily seen that the coefficient to g in its Fourier
expansion is equal to 1728. Therefore, since the space Si2 is 1-dimensional, the following
equation is a consegquence:

Az) = 1273(G} - G@). (7.1.2)
The Fourier expansion of A(z) isof the following form,
A(z) =) t(mq", witht(l) = 1. (7.1.2)
n>1

The function 7 () is Ramanujan’s T-function. From the equation A(z) = n(z)?%4, it follows
immediately that 7(n) € Z. Itisnot hard to see directly the right hand side of (7.1.1) has a
Fourier expansion with integral coefficients.

119



[Autm] 40 Automorphic functions
16. februar 1995

(7.2) Example. The Fourier expansions of the functions G(z) for k = 4,6,8,... are
determined in (App.2.6): If wewrite Xy =} 4 or(r)gk, then for even k > 4,

G(z) =1+ o Zg-1, (7.2.2)

where o = —2k/By.. Interms of the integers Ay of (App.1),

B (_l)k/22k+l(2k — 1)

o
Ay

In particular, as A4 = 2 and Ag = 2%, it followsthat oy = 2*- 3.5 = 240 and ag =
—23.32.7 = —504. The number o isthe coefficient of ¢ in the Fourier expansion (7.2.1).
In particular, from the equations Gg = G}, G10 = G4Gg, and G142 = GgGg oObserved in
(7.1), it followsthat ag = 204 = 2°-3-5, 10 = ag4 + g = —2°-3- 11, and avgq = —23- 3.
Of course, the values of ag and a1g confirm the values Ag = 2* - 17 and A9 = 28 - 31in
(App.1.4). Since A1» = 29 - 691, it follows that

24.32.5.7.13

722
691 ( )

o12 =

Relations among the series G, (z) imply relations among their Fourier coefficients. For
instance, from the relation Gg = G2, it followsthat ag =7 = (24¥3)? + 204 X3. Hence,

r—1

o7(r) = o3(r) +22- 3. 5203@)03(;» —1).
t=1

For the discriminant A(z), say given by (7.1.1), it follows that
(123A(z) = G2 — G = 0323 + 302SZ + 3ws T3 — af T2 — 2a65s.
As a consequence,

53+ 7%
A(z) = % + 8000%3 4 100%2 — 147%2,
It iseasily seen that the fraction hasinteger coefficients. Hence the coefficients r (n) of A(z)
areintegers. It followseasily fromtheequation that (1) = 1, t1(2) = —24, and 7(3) = 252.
It can be provedthat thefunction t (n) ismultiplicative. Moreover, for aprime p thefollowing

equation holds:

t+1 l—l)

(' =t(pe(p") — pep

Thus 7 (n) iscompletely determined by its values on primes p. Since A(z) isacusp form of
weight 12, Theorem Fimpliestheestimater (n) = O(n1%/2). Infact, Ramanujan’sconjecture,

lT(p)| < 2p**? for all primes p,
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was proved by P. Delignein 1974. Far moretrivial is Ramanujan’s congruence,
t(n) =o11(n) (mod 691).

It can be proved as follows. The form G12 — Gf is a cusp form of weight 12, and hence
equal to a constant times A. The constant can be determined by comparing the coefficients
toq. It followsthat G2 — G = (a2 — 3aa) A. By (7.2.2) the number a := 691y, isan
integer, and prime to 691. Hence, by multiplying by 691, we obtain the equations of forms
with integer coefficients:

(@ —691-3-as)A =691G1p — 691G = a¥q1 — 691(G2 — 1).

Modulo 691, it followsthat at (n) = ao11(n). Hence Ramanujan’s congruence holds.

(7.3) Example. Consider again the modular group I'(1). Let f be a non-zero function in
My = M (I'(1)). By the Specia Case (6.6), we have the equation ), ordg(l) f =k/12.
The " (1)-order at oo, which we will denote by ord., f, isan integer, since the parameter at
oo isequal to zero. TheI'(1)-order at i isequal to % ord; f and theI"(1)-order at p isequal
to % ord, f. At points of $ that are not I"(1)-equivalent to i or p, the I"(1)-order is simply
the usual order. Hence the equation may be written as follows:

> ord, f+ 30rd; f + Ford, f + 0rds f = 5. (7.3.1)

where the sum is over a system of representatives for the I (1)-ordinary orbits. If f isan
integral form, then the orders are non-negative.

For example, consider a non-zero form f in S12. The right hand side of (7.3.1) is equal
to 1. On theleft, the order ord., f isan integer, and positive since f isacusp form. Hence
it follows from (7.3.1) that ord, f = 1 and that f isof order O at al points of §. In other
words, f hasno zerosin $). Of course we know, by example (7.1), that f is a multiple of
A(z), and it isobvious from A(z) = n(z)?* that A(z) has no zeros.

Consider the Eisenstein series G for k > 4. The functional equations, for y = s and
y = u, arethe following:

Gr(sz) = Zka(Z), Gr(uz) = szk(z).

The point i is a fixed point of s. Hence, by the first equation, if £ % 0 (mod 4), then
G (i) = 0. Similarly, if k £ 0 (mod 6), then G¢(p) = 0. In particular,

Ga(p) =0, Gg(i) =0. (7.3.2)
It follows from (7.3.1) that the pointsin the orbit represented by p are the only zeros of G 4

and, moreover, that these pointsare ssmple zeros. Similarly, the function G ¢ hassimple zeros
at the pointsin the orbit represented by i, and no other zeros.
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(7.4) Example. Klein's j-invariant is the function defined in $) by

J(2) 1= Ga(2)}/Az).

Itisof weight 0. Since A(z) hasno zerosin §, the function j (z) isholomorphicin $. It has
asimple pole at co (since A(z) has asimple zero), with the Fourier expansion,

j@) =q 14744+ 196884g + - - - .

The coefficients are integers. Indeed, it follows from (7.1.2) that A(z) ! has an expansion
A(z)"t =¢71+. .. withintegral coefficients. Asthe Fourier coefficientsof G4 areintegral,
therefore, so are the coefficients of j (z).

The two values j(p) = 0 and j(i) = 1728 are immediate from (7.1.1) and (7.3.2).
Consider, for 1 € C, thefunction f(z) = j(z) — A and the equation (7.3.1). The right hand
sideis 0, and the order at infinity is —1. It follows that exactly one of the remaining orders
isnon-zero. Therefore, the function j (z) has the value A exactly at the points of one single
orbit. In other words, Klein's j-invariant defines a bijection,

$/T1) = C. (7.4.1)

Infact, it followsthat j (z) has p asatriple zero, it takesthe value 1728 with multiplicity 2 at
the point i, and it takes any other value with multiplicity 1 at the points of the corresponding
orbit. It is easy to deduce that (7.4.1) is an analytic isomorphism.

(7.5) Note. The result of the previous example has as corollary the following theorem of
Picard: Any holomorphic function f(z) in C which avoids at least two values is constant.

Indeed, we may assumethat f(z) avoidsthetwovalueswi ;= j(p) = 0andwz := j(i) =
1728. Let X by the open subset of § obtained by subtracting the two orbits containing i and
p,and let Y be the open subset of C obtained by subtracting to two points w1 and wa. Then,
by (7.4), the j-invariant is an analytic isomorphism of X/I'"(1) onto Y. Since I'(1) acts
properly discontinuous on X, and without fixed points, it follows that j defines a covering
j: X — Y. By assumption, f maps C into Y. Therefore, since C is simply connected, f
lifts to a holomorphic map f: C — X. Consider the function ¢’/ @ . Itis defined on C, and
bounded, because £ (z) takes values in the upper half plane; hence it is constant. It follows
that f(z) isconstant. Therefore, f(z) isconstant.

(7.6) Example. Thefield of I'(1)-automorphic functionsis generated by Klein'sinvariant,
M (D) = C()). (7.6.1)

Indeed, the function j(z) has a simple pole at co and no other poles. If u € $, then the
function j(z) — j(u) hasazero at u, and the I' (1)-order of the zero isequal to 1. It follows
that the function (j (z) — j (u)) ™ hasapole of order m (i.e., azero of I'(1)-order —m) at the
pointsof theorbit represented by «, and no other poles. Let f beanon-zero I' (1)-automorphic
function. It followsthat by subtracting from f alinear combination of functions of the form,

J"e G =)™,
wecan obtain adifferencewithout poles. Thusthedifferenceisaconstant function. Therefore
f belongsto C(j).
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(7.7) Example. Consider again the modular group I'(1). Let k£ be an arbitrary positive real
number. By Proposition (3.4), afactor of weight k on I"'(1) is completely determined by the
sign at co which is of the form,

woo = 2T O/12 (7.7.0)

where a isan integer, 0 < a < 12. To get a homogeneous factor, assume that a is even.
Denote by jx , the corresponding factor, and set My (a) := M(I'(1), jk.4) €tc. By (3.3), the
parameters at oo, i, and p of the factor ji , are, respectively,

Koo = {(k —a)/12}, Ki = {a/4}, Kp = {a/3}.
Hence the number 8, = §(I" (1), jk.o) IS given by the equation,
Sk(a) =14 k/12— {(k — a)/12} — {a/4} — {a/3}.

When k is an even integer, the factor J* is obtained by taking a = k (mod 12), and the
expression above reduces to that of Example (7.1).

Tekek = 3 and a = 0. The corresponding factor of weight 3 is then the n-factor, see
Example (3.6). Clearly, 1/2(0) = 1. Hence G(I'(D), j,,) = S(I'(1), j,) isal-dimensional
space generated by the n-function.

(7.8) Example. Consider the 6-group I'y. Thegenusisg = 0, and u = % since the index
of Ty inT'(1) isequal to 3. For the 8-group, there is one elliptic orbit, represented by i of
order 2 with canonical generator y; = s. In addition, there are two cusps. one is represented
by oo, where the canonical generator is#2, and oneis represented by —1 where the canonical
generlator is conjugate to 7. The 6-function belongsto G(I'y, jg). Thefactor j, has weight

= 5, and the parameters at the three orbits are respectively,

ki =0, Kkoo=0, k_1=

@l

Consequently, §(T'g, jo) = 1+ 555 — 3 = 1. Therefore, the space G(I'y, jo) is 1-
dimensional, and the 8-function is agenerator. The #-function isnot a cusp form sinceit has
thevalue 1 at co. Hence there are no non-trivia jg-automorphic cusp forms, confirming that
8’ = 0 sincethe cusp oo is jy-regular and the cusp —1 is not.

The 6-function has a zero of order 1/8 at the cusp —1. Therefore, from the equation
Y, ord,? f = 1/8, it followsthat 6(z) hasno zerosin .

Since6(z) hasno zerosin $ and thevalue 1 at oo, thereis, for any real number /, aunique
determination of 6(z)! with the property that the limit of 6(z)! for Iz — oo is equal to 1.
Obviously, 8(z)! isa jé-automorphic form, where jé is the factor of weight //2 defined by
Jl(v,2) =0(y2)!/6(2)". Thefactor j/ hasthefollowing signs:

0i(jH =1 0() =1 o_1()) =18

(Thefirst two equations are obvious, the third can be seen from (2.7.3); of courseit isobvious
when [ isan integer.) For convenience, take! = 2k where k is positivereal. Then j92k isa
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factor of weight £ on I'y, and the corresponding parameters are respectively 0, 0, and {k /4}.
It follows that
dimG Ty, ji*) =1+ 5 — {5} =1+ [k/4].

The cusp oo isalwaysregular, the cusp —1 isregular if and only if £ € 4Z. Hence,

[k/4] -1 ifk € 4z,

dimS(Ty, % ={
(To. g™ [k/4] otherwise.

Notethat, if k € 4Z, then j2* = J*.

(7.9) Exercise. Prove the results of Example (7.1), using only the Special Case (6.6) of
Theorem B. [Hint: Estimate the dimensiondim Gy for k = 2, ..., 12. Use Equation (7.3.1)
to show that the dimension is O for k = 2 and use the Eisenstein series to conclude that the
dimensionis1for k = 4, 6, 8, 10. Usethe Eisenstein seriesand A(z), say defined by (7.1.1),
to conclude that the dimension is 2 for k = 12. Investigate zeros and poles of A(z), and
conclude that there is, for k > 0, an exact sequence,

0—>gk£>gk+12—>C—>0.

Now deduce the results of Example (7.1).]
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8. The Proofs.

(8.1). Keep the setup of (6.1). In the calculations below we will need the formula,

Y ord, f = 21 fl@adz. (8.1.1)

MGU i S @

Intheformula, U isan open subset of C with compact closure, f isanon-zero meromorphic
function defined in an open domain containing the closure of U. The integral is the path
integral over the oriented boundary of U, assumed to be sufficiently regular. It is assumed
that the function f has no zeros or poles on the boundary 0U. The formulaisawell known
consequence of Cauchy’s residue formula.

The path integral on the right hand side of (8.1.1) can be formed over any path C that lies
in thedomain of f and avoids the zeros and polesof f. We define

_ 1 [ f@dz
Ie(f) = i ) ) (8.1.2)

The notation extendslinearly to achain C, defined asaformal integral linear combination of
oriented paths. Note the following two equations,

Ic(f1f2) = Ic(f1) +1c(f2),  lpc(f) = Ic(fod). (8.13)

The first equation follows because the logarithmic derivative of the product function is the
sum of the two logarithmic derivatives. In the second equation, the map ¢ is a holomorphic
map from some domain into the domain of f. The equation follows from the definition of
the path integral, noting that d (¢ (« (1)) = ¢’ (a(2))da(r) when ¢ is holomorphicand « isa
C°°-map of thereal variabler.

(8.2) Proof of Theorem B. We have to prove, for a non-zero j-automorphic form f, the
following formula:

k
Y ol f = (8:2.1)
2
umodT

The main observation used in the proof is the following: Let C be a path in ® avoiding the
zeros and polesof f and let y be amatrix of I". Then the following equation holds:

Lyc(f)=1Ic(f)+klc(Jy). (8.2.2

Indeed, foy = j, f since f is j-invariant. Hence, by (8.1.3), the left side is equal to
Ic(f)+1Ic(j,). Moreover, j(y,z) =¢eJ(y, z)¥ for some constant ¢ and some determination
J(y, 2)¥. Hence the logarithmic derivative of j(y, z) is equa to k times the logarithmic
derivativeof J(y, z). ThusIc(j,) = klIc(J,).
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Let F be afinite normal fundamental domain for I", and denote by U the interior of F.
The domain F has afinite number of sides and vertices. Consider an infinite vertex u of F.
By (Discr.3.14), u isacuspfor I'. Therefore, since f isexponentially bounded at the cusps, it
followsthat f isholomorphic and non-zero in some fundamental neighborhood of . When
a small fundamental neighborhood of each cusp of F is cut away from F, there remainsis
compact set. Asa consequence, the function f has only afinite number of zeros or polesin
F (and in particular on the boundary of F).

A sideof F can bedivided into two by adding to the verticesapoint of aside and theimage
of the point under the boundary transformation corresponding to the side. Hence we may
assumethat all zeros or polesof f onthe boundary of F arefiniteverticesof F. Inaddition,
we may assume that no side is mapped onto itself under the boundary transformation.

Let Fp be the subdomain obtained by cutting away from F asmall fundamental neighbor-
hood of each vertex. Choose the neighborhoods such that if V isthe chosen neighborhood
of avertex u and if yu belongsto F, then y V is the chosen fundamental neighborhood of
yu. Thereisonly afinite number of zeros and poles of f in U. So, when the fundamental
neighborhoods are chosen sufficiently small, then all zeros and polesin U belong to the in-
terior Up of Fp. The pointsof U are I'-ordinary, and hence the I"-order of f at apoint u of
Up isthe ordinary order. Therefore, by (8.1.1),

> ordy f = Ly (f) (8.2.3)

uelU

We will prove the formula (8.2.1) by evaluating carefully the integrals on the right side over
the various components of 9 Uj.

The boundary 0Ug has three types of components: there are line segments left from the
sidesof F whentheneighborhoods of thetwo end pointsare cut away, therearearcsconsisting
of thepartsin F of the geodesic circles bounding the fundamental neighborhoods of thefinite
vertices, and there are segments consisting of the partsin F of the horo circles bounding
the fundamental neighborhoods of the infinite vertices of F. The contributions to the path
integral in (8.2.3) coming from the components are grouped as follows: Denote by Igges(f)
the sum of the contributions coming from the sides. Choose in each I"-equivalence class of
vertices of F' one vertex u, and denote by I,,(f) the sum of the corresponding contributions
from the class; it isthe sum of the path integrals along the partsin F' of the boundaries of all
fundamental neighborhoods of the vertices I'-equivalent to u. Accordingly,

Lo (f) = Isides(f) + Y _ L(f), (8.2.4)

where the sum is over the chosen system of representatives of the I'-equival ence classes of
verticesof F. Now, by (8.2.3) and (8.2.4), to prove Theorem B, it suffices to prove that, as
the neighborhoods shrink around the vertices,

ku

Isdes(f) = = L(f) — —ord} f. (8.2.5)
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Consider first the contribution coming from the sides of F. For each side L of F there
isacomponent C = C of dUg lying on L and a corresponding component C’ lying on the
side y; L, where y;, isthe boundary transformation corresponding to L. The orientation of
C’ isthereverse of the orientation of y;, C. Hence, by (8.2.2), thetwosidesL and L = y. L
contribute to I5ges( f) with the sum,

Ic(f)+Ic(f) =Ic(f) — Ly c(f) = —klc(Jy,).

Therefore,
Isdes(f) = =k Y Ic, (Jy,),

where the sum is over unordered pairs {L, L'} of sides of F with L’ = y; L. Clearly, the
sum on the right hand side converges, when the fundamental neighborhoods shrink around
the vertices, to the following sum

_ J(ye,2) Z)’
Z Il =55 Z / J(vL, z)

The latter sum is, by (Discr.5.9.4), equal to —p/2. Therefore, Isges(f) COnvergesto ku/2,
and thefirst relation in (8.2.5) has been proved.

Consider next the contribution 1, ( f) coming fromatheverticesI"-equivalenttou. Choose
(finitely many) matricesy; inT" so that the verticesI"-equivalent to u arethe pointsu; = y;u.
The fundamental neighborhoods of the points u; are of the images y; V of a fundamental
neighborhood V' of u. Hence the components around the u; are of the form y; D; where the
D; are segments of the boundary of V. The contribution 7,,(f) isthenthesum, ), I, p, (f).
Let D bethe union of the D;. Then, by (8.2.2),

L(f)=Ip(f) +k D Ip,(Jy). (8.2.6)

The terms in the sum on the right side converge to zero when the neighborhoods V' shrinks
around u. Indeed, the assertion is obviousif u is afinite vertex, because then the integrand
is bounded and the length of the integration path goesto 0. If u isan infinite vertex, we may
assumethat the disk isthe upper half planeand that u = oco; inthiscasethe assertioniseasily
verified.

Therefore, to provethesecondrelationin (8.2.5), it sufficesto provethefollowing equation,

Ip(f) = —ordy (f). (8.2.7)

To prove (8.2.7), assume first that u is an infinite vertex. We may, after conjugation,
assume that (D, u) = (9, oo). Then the canonical generator y, isatrandation z — z + h.
The fundamental neighborhood V is a half plane: Imz > R, and the components D; are
horizontal straight line segments on the boundary: Iz = R; they are oriented from the right
to the left. As observed in (Discr.3.16), the union D is a system of representatives for the
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action of the canonical generator y, ontheline3z = R. Set¢(z) := %%/ 1t followsfrom
thelocal analysisin (5.1) that there is an equation,

f(z) = &kl hg(g), (8.2.9)

where k, = «,(j) isthe parameter and g is meromorphic in the unit disk: |¢| < 1, say of
order N at the origin. By the choice of fundamental neighborhood V, the function f has no
zeros or polesin the closed half plane 3z > R. The half planeis mapped by ¢ onto a pointed
disk: 0 < |¢g| < e. Hence g hasno zeros or polesin the closed disk: |¢| < & except possibly
at the origin. The image ¢ D is the full boundary: |¢| = ¢ of the disc, clockwise oriented.
Therefore, by (8.1.1) and (8.1.3), Ip(goq) = —N. The logarithmic derivative of the factor
e?rikz/h isequal to 2ik/h. As D isthe union of horizonta line segments, oriented from
right to left, of lengths adding up to #, it follows the Ip (e?7i%«2/y = —k,,. Therefore, by
(8.2.9),
Ip(f) = —k, — N =—ord! f,

and thus (8.2.7) holds.

Assume next that u is afinite vertex. We may, after conjugation, assume that (D, u) =
(¢,0). Then the canonical generator y, is a rotation z +—> e%"i/¢«z, The fundamental
neighborhood V is a disk: |z| < &, and the components D; are arcs on the boundary:
|z| = ¢; they are clockwise oriented. Asobserved in (Discr.3.16), the union D isasystem of
representatives for the action of the canonical generator y,, onthecircle. Set w(z) = z°. It
follows from the local analysisin (5.3) that there is an equation

f@) =z7"%“g(w), (8.2.10)

where k, = «,(j) is the parameter and g is meromorphic in the unit disk: |w| < 1, say
of order N at the origin. By the choice of fundamental neighborhood V, the function f
has no zeros or poles in the pointed disk: 0 < |z] < &. The pointed disk is mapped by
w onto a pointed disk with radius £«. Hence g has no zeros or poles in the image disk:
lw| < &% except possibly at the origin. The image wD is the full boundary of the image
circle |lw| = &%, clockwise oriented. Therefore, by (8.1.1) and (8.1.3), Ip(gow) = —N.
The logarithmic derivative of the factor z<«¢« is equal to k,e,z~t. As D is the union of
arcs, clockwise oriented, of angles adding up to 2z /e,, it follows that Ip(z*««) = —k,.
Therefore, by (8.2.10),
In(f) = =Ky — N = —ord, f,

and thus (8.2.7) holds.
Hence (8.2.7) holdsin both cases, and the proof of Theorem B is complete. I

(8.3). The proofs of Theorems A, C, D, E assume familiarity with the theory of Riemann
surfaces. Let X be a compact (connected) Riemann surface. It iswell known that the only
globa holomorphic functions on X are the constants. Denote by M = M (X) the field of
meromorphic functionson X. If ¢ # 0 isameromorphic function on X, then ¢ has finite
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order ord, ¢ at every point u of X. The order is zero except for a finite number of points u,
and the sum of the ordersis equal to O:

> ord, ¢ =0. (8.3.1)
ueX
A divisor D on X is afinite forma sum, D = > n,.u, of pointsu of X. The coeffici-
ents ord, (D) := n, are integers, and equal to 0 except for a finite number of points u.
The degree of the divisor is the sum, degD = ) ord, (D), of the coefficients. To every
non-zero meromorphic function ¢ there is associated a principal divisor, div ¢, defined by
ord, (divg) = ord, (¢), that is, by

divep = Z(Ordu @).u.
It follows from (8.3.1) that the degree of aprincipal divisor isequal to O,
deg(divg) = 0. (8.3.2
Two divisors D and D’ are called linearly equivalent, if the difference D — D’ isaprincipal
divisor. Thuslinearly equivalent divisors have the same degree.
Associate with agiven divisor D the following vector space over C of rationa functions
on X:
HO(D) :={g | dive + D > 0},
wheretheinequality div ¢+ D > Ofor divisorsmeansthe correspondinginequalitiesord,, ¢+
ord, D > Ofor al the coefficients. Notethat theinequality ord, ¢ +n > Oforn < Orequires
@ tohaveazeroat u of order at least —n, andfor n > 0 alowsg to haveapole of order at most
natu. Inparticular, afunction ¢ in H%(D) isholomorphic except possibly at thefinitely many
pointsu whereord, (D) > 0. If D and D" arelinearly equivalent, say D — D’ = div v, then,
clearly, the multiplication, ¢ — ¢, defines a C-linear isomorphism H%(D) —=> HO(D).
By definition, if ¢ is a non-zero function in H°(D), then ord, ¢ + ord,(D) > 0. By
taking the sum over u, it followsthat deg(div ¢) + deg D > 0. Hence, by (8.3.2), deg D > 0.
Therefore,
HO%D) =0 if degD < 0. (8.3.3)
Let w be a non-zero meromorphic differential form. Locally, around a point u of X, we
havethat w = f dz, where z isaloca parameter a u. By definition, the order ord, w isthe
order of f at u. Associate with w the divisor,

divw = Z(Ordu w).U.

Any meromorphic differential form o’ is of the form o’ = pw with a meromorphic function
. It followsthat divw’ = div g + divw. Hence the divisors of differential forms form one
single class of divisors modulo principal divisors, called the canonical class. Any divisor in
the canonical class, that is, any divisor of adifferential form,

K =divw,

is called a canonical divisor. Obvioudly, div(pw) = (dive) + (divw). It follows that the
map ¢ — g induces an isomorphism from H2(K) to the space of holomorphic differential
forms.
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The Riemann-Roch Theorem. The vector spaces H%(D) are of finite dimension, and they
vanishif deg D < 0. If deg D > 0, then the dimension of H9(D) isamostequal to deg D+ 1.
Moreover, there exists a number g = g(X) such that for any canonical divisor K and any
divisor D,

dimH%(D) =degD +1— g +dimH°(K — D). (8.3.4)

The number ¢ = ¢g(X) iscaled the genus of the Riemann surface X. It can be shown to
be equal to the topological genus of X as a surface.

Corollary. The genus ¢ = g(X) is equal to the dimension of the space of holomorphic
differential forms, and the degree of a canonical divisor is equal to 2g — 2,

g =dimH°(K), degk =2g—2. (8.3.5)
Moreover, if degD > 2g — 1, then dim HO(D) = degD + 1 — g.

Proof. Thefirst equality follows from (8.3.4) by taking D := 0. Next, the equality deg K =

2g —2followsbytaking D := K in(8.3.4). Finaly,if deg D > 2¢g—1,thendeg(K — D) < O.

Hence the last assertion of the Corollary follows from (8.3.3). I
It follows from the Theorem and the Corollary that if deg D > 0, then

degD +1— g <dmH%D) <degD + 1,

and the first inequality is an equality if deg D > 2g — 1. The latter result is referred to as
Riemann’s part of the Theorem.

(8.4). To apply the theory of Riemann surfaces to automorphic forms, note that the quotient
X = ®/T is, by the construction given in the proof of Corollary (Discr.2.13), a connected
Riemann surface. To get alocal parameter around a point of X, choose arepresentative u in
D U ar®. Assumefirst that representative u isin ©. After a suitable conjugation, we may
assumethat (D, u) = (&, 0). Then the map,

w =z,

where the canonical generator at 0isz +— e?"¢«z, identifies, for asmall fundamental neigh-
borhood U of u, the open subset U/ T",, of X with asmall neighborhood of 0in C; thusw is
alocal parameter around the given point of X. Assume next theu isin 9r®. After asuitable
conjugation, we may assumethat (9, u) = ($, o). Then the map,
g = e2m'z/h’

where the canonical generator at oo is z + z + h, identifies, for a small fundamental
neighborhood U of u, the open subset U/ I',, of X with asmall neighborhood of 0in C; thus
g isalocal parameter around the given point of X.

SinceT isassumed to be a Fuchsian group of thefirst kind, the Riemann surface X iseven
compact.

By construction, the field M (I") of I"-automorphic functionsis the field of meromorphic
functionson X. Moreover, the I'-order at u of anon-zero automorphic function ¢ isequal to
the order of ¢ as ameromorphic functionon X.
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(8.5) Proof of Theorem A. Asiswell known, acompact Riemann surface isalgebraic and, as
a conseguence, its field of meromorphic functionsis finitely generated and of transcendence
degree 1 over C. Therefore, since X = X (I") iscompact, Theorem A holds. I

(8.6). Let X = X(I') be the Riemann surface of (8.4). Denote by Cqugp the cuspidal divisor
of X, defined as the sum,

Associate with anon-zero j-automorphic form f the following divisor on X:

Dy =) [ord, f]u,

u

where [x] isthe integral part. Recall that the I'-order is congruent to the parameter «,(j);
whence [ord}, f] = ord, f — «,(j). Therefore, by Theorem B, we obtain the equation,

k
deg Dy = 7“ — 3 k) (8.6.1)

As a consequence,
degDr +1— g =68()). (8.6.2)

Fix the non-zero j-automorphic form f. By (4.9)(1), the multiplication ¢ — ¢f iSan
isomorphism M — M(T, j). Under the multiplication, the product ¢f is an integral form,
if and only if, for al u, ord! (¢f) > 0, that is, if and only if the following inequality holds:

ord, ¢ + ord’ f > 0. (8.6.3)

The order ord, ¢ is an integer. Hence the inequality (8.6.3) is equivalent to the following
inequality:
ord, ¢ + [ord}, f] > 0. (8.6.4)

It followsthat ¢ f isin G(T, j) if and only if ¢ isin HO(Df). In other words, multiplication
by the fixed form f induces an isomorphism,

H(Ds) = G(T, j). (8.6.5)

In particular, dim HO(Dy) = dimG(T, j).

Clearly, if ¢f isan integra form, then ¢f is a cusp form, if and only if the inequality
(8.6.3) isstrict for al cuspsu. If acuspu is j-irregular, then the parameter «, (j) iSnon-zero,
and hence the order ord! £ isnot an integer; hence, the inequality in (8.6.3) is strict, if and
only if the inequality (8.6.4) holds. If acusp u is j-regular, then the inequality in (8.6.3) is
gtrict if and only if theinequality (8.6.4) is strict, that is, if and only if,

ord, ¢ + [ord}, f]—1>0. (8.6.6)
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Hence ¢f isacusp formif and only if (8.6.6) holdsat all j-regular cuspsu and (8.6.4) holds
at all other orbits. Let C;_reg denote the j-regular part of the cuspidal divisor Ceusp, that is,
Cj.reg = Y Lu wherethe sumisover the j-regular cuspsu. It followsthat ¢f iscusp form
if and only if ¢ belongsto HO(Df — Cj-reg)- In other words, multiplication by the fixed form
f defines an isomorphism,

H%(Dy — Cjreg) —=> S(T, j). (8.6.7)

In particular, dim HO(Dy — Cj.reg) = dimS(T, j).
Obviously, the degree of Cj.rey is equal to the number of j-regular cusps. Hence, by
(8.6.2),

(8.7) Proofs of Theorems C and D. Theassertionsfollow from Riemann’spart of the Riemann—
Roch theorem, given the expressions (8.6.2) and (8.6.8) for §(;) and §’(j), and the isomorp-
hisms (8.6.5) and (8.6.7). I

(8.8). Tousethefull strength of the Riemann-Roch Theorem, we haveto identify acanonical
divisor K on X. Let f beanon-zero I'-automorphic form of weight 2, thatis, f € M(T, J2).
Clearly, the differential form fdz on® isT-invariant. Hence it descends to a meromorphic
differential formon ®/ I", and in fact, as the following cal culation shows, to a meromorphic
differential formon X.

Consider first apoint of ©/ T, represented by a point u of ®. After conjugation, we may
assumethat (D, u) = (&, 0). Thenw = z% isaloca parameter at u. Thereisanormalized
Laurent expansion around u,

fz) =z"""g(w),

and the parameter «, = «,(J?) isequa to 1 — 1/e,. Thus f(z) = (z/w)g(w); asdw =
enzf Ydz = e (w/z)dz, it follows that e, f(z)dz = g(w)dw. Hence the order at u of
f(z)dz asadifferential form on X isequal to the order of g(w) at 0. On the other hand, the
I'-order ord! f isequal to «, plusthe order of g(w). Therefore,

ord, f = ord,(fdz) + (1 — ). (8.8.1)

Consider next acusp represented by apoint u of 9. After conjugation, we may assume
that (D, u) = (9, 00). Theng = ¢%*¢/" jsalocal parameter at u. Thereis anormalized
Fourier expansion around «, and it has the form,

f(2) =¢g().

since the parameter «, = k,(J?) isequal to 0. Asdg = (2rwi/h)qdz, it follows that
(2i/h) f(z)dz = g~ 1g(q)dq. Hencethe order at u of f(z)dz asadifferential formon X is
equal to the order of g(g) minus 1. On the other hand, the I"-order of f isequal to the order
of g(g). Therefore, at acusp u,

ord! f = ord,(fdz) + 1. (8.8.2)
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If 1/e, isinterpreted as O at a cusp u, then (8.8.2) is smply (8.8.1). The divisor Ky =
div(fdz) isacanonical divisor on X. From the two equations (8.8.1) and (8.8.2), it follows
that

Take the degree in (8.8.3) and apply (8.6.1) with j := J? to obtain the equation,
1
,u,=2g—2+Z<l— 5>' (8.8.4)

Theequationisidentical to (6.1.1). However, (6.1.1) was obtained with the topol ogical genus
and (8.8.4) was obtained with the holomorphic genus of X. Hence the two genera are equal,
that is, the topological genusis equal to the dimension of the vector space of holomorphic
differential forms.

In addition, since al cusps are J2-regular, the isomorphism H%(K) —> So(I") follows
from (8.8.3) and (8.6.7). Hence the space S>(I") of cusp forms of weight 2 isisomorphic to
the space of holomorphic differential formson X; in particular, dim S>(T") = g.

(8.9) Theorem H. Let ; be the factor defined by j = J2/j. Thena cusp u is j-regular if and
only if itis j-regular, and 6(j) + 8()) is equal to the number of j-regular cusps. Moreover,
the following equation holds,

dimG(T, j) = 8(j) + dimS(T, j). (8.9.1)

Proof. The factor j isof weight 2 — k and jj = J2. Fix two non-zero automorphic forms,
f e M, j)and f € M(T, j). Then the product f f belongsto M(T", J2). Hence the
divisor K = div(f fdz) isacanonical divisor. Now, for any point u,

ord! (f f) = ord! f+ord! 7. (8.9.2)

The fractional parts of the three orders in (8.9.2) are the parameters, «,(J2), k. (j), and
ku(J). Hence either «,(J2) = ku(j) + ku(J) OF 6, (J2) + 1 = k,(j) + ku(j). Assume
that u isin®. Then «,(J?) = 1 — 1/e,. Moreover, any parameter at u is, by (3.3.1), at
most equal to 1 — 1/e,. Therefore, k,(J2) = ku(j) + ku(J). Assume next that u is a cusp.
Then k,(J2) = 0. If u is j-regular, then k, (j) = 0; it follows that also «, (j) = 0 and that
ku(J2) = ki (j) 4+ ku(J). 1f uis j-irregular, then it followsthat u isalso j-irregular and that
iu(J) +ru(J) = 1. Hence i, (J2) 4+ 1 = i (j) + ().

Now take integral parts of the ordersin (8.9.2), and consider the corresponding divisors.
On the left we obtain, by (8.8.3), the divisor K + Ccusp. On the right we obtain, by the
discussion above, thedivisor D + D 7t C.irreg- ASaconseguence, we obtain the equation,

- (8.9.3)

It was seen inthe discussion abovethat acusp u is j-regular if and only if itis j-regular. Take
degreesin (8.9.3) and use (8.3.5) and (8.6.2) to seethat § (j) + () isequal to the number of
j-regular cusps. Finaly, apply (8.6.5) to (f, j) and (8.6.7) to ( f, J). By the Riemann-Roch
Theorem and (8.9.2), the final assertion of the Mail Theorem is a consequence. I

K+Cj-reg:Df+D
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(8.10) Note. The factor j introduced in the Theorem may be called the dual factor. Since
3(j) + 8(j) isequal to the number of j-regular cusps, it follows that

8()) =—=8"()). (8.10.1)

The Main Theorem implies the Theorems C, D, and E. To obtain Theorem E, note first that
J? isthe dual to the trivial factor j = 1. The constant function f = 1 is I'-automorphic
of weight O, and the corresponding divisor is D1 = 0. Hence, §(1) = 1 — g and since
dim H°(0) = 1, the equation dim So(I") = g followsfrom (8.9.1).

Note next that the factor J isself-dual. Hence §(J) isequal to half the number of regular
cusps of T, cf. (6.14.3). Therefore, the last part of Theorem E is a consequence of (8.9.1).
Notethat, moregenerally, any factor of weight Lisof theform x (v)J (v, z), andthedual isthe
factor x (y)J (y, z). In particular, if the character x isquadratic, then the factor x (y)J (v, z)
isself dual.
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Poincaré Series and Eisenstein Series

1. Poincaré series.

(1.1). Fix afinite disk ©, adiscrete subgroup I' of SL (®), and a homogeneous factor j on
I" of real weight k. Assumethat I isa Fuchsian group of the first kind.

(1.2) Definition. Recall that thefactor j definesanright action of I on meromorphic functions
¢ onD, determined by (¢ -; ¥)(z) = j(y, 2) "¢ (z). Clearly, the series,

Z ¢y,
yel
isformally I'-invariant. In general, of course, the series can not be expected to be convergent.

Assume more generally that A isagiven subgroup of " and that ¢ is (A, j)-invariant, that
is, ¢(yz) = j(y,2)¢(z) foral y € A. Consider the series,

yeA\I'

where the sum is over a system of representatives for the right cosetsof A inT". Since ¢ is

(A, j)-invariant, thetermin the sum corresponding to y dependsonly on the coset containing

y. Again, theseriesisformally I'-invariant. The series(1.2.1) isthe general Poincareé series.
The main questions associated with Poincaré series are the following:

(2) Isthe seriesnormally convergent in ©? If it is, then the sum G(z) ismeromorphicin
®, and (T, j)-invariant. Moreover, if the given invariant function ¢ is holomorphic
in®, then G(z) isholomorphicin®.

(2) 1s G(z) exponentially bounded at the cusps of I'? If it is, then G(z) isa (T, j)-
automorphic form. If the given function ¢ is holomorphic, is G(z) then in integral
form, or even acusp form?

(3) Findly, is G(z) not the zero function?

(1.3). Consider an isomorphism «: ©’ — © from afinite disk ®’ onto ©, defined by a
matrix o in SL2(C). Recall that o defines a conjugate factor j* on the conjugate group I"*.
Moreover, for every meromorphic function ¢ on ®©, there is a weight-k conjugate function
»* on ®’ defined by ¢%(z/) = eJ(, 2)) ¢ (az’) with a fixed complex sign ¢ and a fixed
determination of J («, z)*. Clearly, if ¢ is (A, j)-invariant, then the conjugate function ¢¢ is
(AY, j*)-invariant, and

G, j, A, )% = G(%, j* A%, ¢%). (1.3.1)
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(1.4) Definition. Let u beapoint of © U ar® and take theisotropy group I', as A. Natural
(T, j)-invariant functions are obtained as follows.

Assume first that (D, u) = (&, 0). The canonical generator y, a u = 0 is adiagona
matrix, and the associated Mobius transformation is a rotation z > e%%/¢«z. The function
j (vu, 2) isconstant, and equal to the sign e %« where k,, = k,(j) isthe parameter. Hence
yu actson functionson & by (¢ -; y,)(z) = e~ ZFikug(e?Ti/uz). It followsthat the (T, j)-
invariant functions are the functions of the form ¢(z) = z“« ¢ (w), where w = z%. In
particular, take ¢ (w) = w! wherel is an integer. Then ¢(z) = z*«tDe, Therefore, if « is
any real number congruent to the parameter «, (j) modulo Z, then the following function is
(T, j)-invariant:

ér.0.(2) = pie(z) = 2. (1.4.1)

Assume next that (D, u) = (), 00), where oo is I'-parabolic. The canonical generator y,
at u = oo isan upper triangular matrix with £1 in the diagonal, and the associated Mdbius
transformation is a trandation z +— z + h. The function j(y,, z) is constant, and equal
to the sign e%*i%«, where k,, = «,(j) isthe parameter. Hence y, acts on functions on $) by
(¢ vu)(2) = e~ Zikug(z+h). Itfollowsthat the (', j)-invariant functionsarethefunctions
of theform ¢ (z) = eZ" ¥4/ ¢ (q), where g = eZ7'2/" In particular, take ¢(q) = ¢’ where
[ isaninteger. Then ¢ = ¢Z7i®utD2/h Therefore, if « isany real number congruent to the
parameter «, (j) modulo Z, then the following functionis (T, j)-invariant:

Prcou (2) = i (2) = T3/, (1.4.2)

Ingenerd, ifu € ®UJdr®, and« isany real number congruent to the parameter «,, (j) modulo
Z, define a I',-invariant function ¢, , as follows: inthetwo casesu € ® andu € 9r®
respectively, choose aMobiustransformationa: (9, u) — (€, 0) anda: (D, u) — (£, 00).
Set
d)u,/c = (¢K)a’
where the right hand side is the weight-k conjugate of the function defined for the conjugate
group “T" in (1.4.1) and (1.4.2) in the two cases respectively.
The Poincaré series G(T', j, T'y, ¢u .« ) isdenoted G (T, j, u, k), that is,

G jou)@= Y Purcy2) (1.4.3)
yerar 472
In terms of the chosen conjugation «,
G, jou,i)(2)=¢) Peler?) (1.4.4)

J(a, y2)*jly,2)

It should be emphasi zed that the Poincaré series (1.4.3) isonly defined when « iscongruent
to the parameter «, (j) of j at u. If u isaT-ordinary point, then the canonical generator y,,
istheidentity, and the parameter «, (j) isequal to 0. The parameter is also zero, whenu isa
J-regular cusp. Hence, in these two cases, the series is defined for integer values of «. The
series (1.4.3) for a j-regular cusp u and x = 0 iscalled the Eisenstein series associated with
the cusp u.
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(1.5) Note. In spite of the notation on the left hand side of (1.4.3), the series does depend
on choices. Firgt, thereisasign involved in the definition of the weight-k conjugate under «
(of course, when k is an integer, then there is a unique k’th power J («, z)*, and we can take
¢ = 1). But the function ¢, , = (¢,)®, and hence also the Poincaré series, depends on the
choice of «.

Compare the function ¢, = ¢, obtained from « with the function ¢;, obtained from a
second choice «’. The isomorphisms o and «’ differ by an automorphism § of the target,
a' = Sa. By definition, ¢, = (¢)*, where ¢ is the function (1.4.1) or (1.4.2) respectively
obtained from the conjugate group *T". Similarly, ¢/ = (¢')°* where ¢’ isobtained from the
conjugate group *'T", Hence it sufficesto compare ¢ and (¢')°.

Assumefirst that u isin®. Then § isarotationin € around 0, say 6z = ¢z with |¢| = 1.
The two functions ¢ and ¢’ are the same function z*¢«. Moreover, up to a complex sign,
the conjugate function ¢” isequal to ¢ (¢z) = (£)*“*¢ (z) and hence, up to sign, equal to ¢.
Therefore, the function ¢, is, up to sign, equal to ¢,,. It follows that the series (1.4.3) for a
point u € © iswell defined up to acomplex sign.

Assume next that u isaT'-parabolic point. Then § isaMabiustransformation in $) of the
form 8z = rz + b withr > 0 and area number b. The two functions ¢ and ¢’ are different:
¢ = e27ixz/h where h is defined from @T and ¢ = 27/ where i’ is defined from @',
Clearly, W’ = rh. Hence, up to the sign ¢Z7i<0/0') | the function (¢’)(8z) is equal to ¢ (z).
The weight-k conjugate ¢’ is obtained from ¢’ (8z) by dividing by J (8, z)*. The modulus of
J (8, 2)F isequal to r ~*/2, Hence ¢’ isequal to ¢ multiplied with anonzero complex number
(of modulus r*/2). Therefore, the function ¢,, 1S, up to multiplication by a nonzero number,
equal to ¢,,. It followsthat the series (1.4.3) for aI"-parabolic point « iswell defined only up
to multiplication by a non-zero number.

From (1.3.1) we obtain, for a general conjugation, the following equation up to multipli-
cation by a nonzero number:

G, j,u, k)% =GT%, j% a tu, ). (1.5.1)

(1.6) Example. Teke (D, T, j) = (9, I'(1), J¥) where k is an even integer. The cusp oo is
J¥-regular since k is even. Hence the Eisenstein series G, = G(I'(1), J¥, oo, 0) is defined.
Thegroup I' ishomogeneous and the i sotropy group at oo isdicyclic, generated by the matrix
t. Obviously, the map,

7 2] o

induces a bijection from I' oo \I" onto the set of pairs modulo +1 of relatively prime integers
(c, d). Thusthe Eisenstein series corresponding to the cusp co and « = 0 isthe following,

1

1
Gk(O0,0)(Z): = Z m

2
(c.d)=1

In other words, the seriesisthe normalized Eisenstein series G (z). Itisnormally convergent
in$ fork > 4.
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(1.7) Theorem G. Assume that the weight £ of the factor j is greater than 2. Let u be a
point of ® U ar®, and let « be a number congruent modulo Z to the parameter «, (j). Then,
in the setup of (1.4), the Poincaré series G = G(T', j, u, x) defines a (T, j)-automorphic
form. The function G (z) is holomorphic at all points of © that are not I"-equivalent to . In
addition, it vanishes at all I"-parabolic points that are not I"-equivalent to «. At the given
point u, the I"-order of G is nonnegative if k > O; if k < O, then the I"-order is equal to «.
Finally, if « = 0 and u is a I"'-parabolic point (necessarily j-regular), then G(z) does not
vanish at u.

Proof. By (1.5.1), we may, after conjugation, assume that the disk is the upper half plane
$. In general, we think of the Poincaré series (1.4.1) as indexed by a chosen system of
representatives y for the cosets I', \I". Theterm corresponding to y isthe function,

8y (2) = bui(¥2)/j(y, 2),

and the Poincaré seriesisthe series G(z) = ), gy (2).

The proof to the Theorem will be given in three parts below. In part |, we prove that the
seriesis normally convergent in $). It follows that the series defines a meromorphic (T, j)-
invariant function G(z) in $. By construction, the function ¢, is holomorphicin $), except
possibly whenu € $ and « < 0. In the exceptional case, theterm g, (z) in the series has a
pole of order —« at y ~Lu.

Therefore, to finish the proof of the Theorem, it remains to study the behavior of G(z)
at the I'-parabolic points. we have to prove that G(z) is exponentially bounded and that the
remaining assertions of the theorem about I'-parabolic points hold. Clearly, to study the
behavior of G(z) at a given I'-parabolic point we may, after conjugation, assume that the
given I'-parabolic point isthe point co. Thus, in parts 1l and I11, we assume that the point co
isT"-parabolic.

The possible poles for the terms g, (z) are the points in the orbit I'u (when u € § and
k < 0). Therefore, since oo is I'-parabolic, thereisanumber R > 0 so that al the terms
are holomorphic in the half plane Hz : 3z > R. Hence G(z) isholomorphicin . In part
I1, the series G (z) is broken up into partial sums G, (z) asfollows: The group I acts on the
right on theindex set I",\T". In particular, the subgroup I' o, acts. Hence, theindex set is split
into digoint I' . -orbits. Accordingly, the series G(z) issplitinto asum of partial series,

GR) =) Gu(), (1.7.1)

where the sumisover al I' oo-orbits w of ', \I', and G, (z) isthe series,

Gu(@) =) &),

where the sum is over those representatives y for which the right coset I,y belongs to the
orbit w. Asa partia sum of the series G(z), each series G, (z) is normally convergent in
$; in particular, the function G, (z) is holomorphic in $g. Moreover, the series (1.7.1) is
normally convergent. Asasum over al'-orbit, each function G, (z) is (I, j)-invariant.
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Consider the I'-0rbit w containing a given right coset I', 8 where g isin I". Clearly,
under the right action of I",, the isotropy group of ', 8 is the intersection,

Foo N BTy =Too NTy1,,.

A matrix in the intersection has co and g ~1u as fixed points. Hence, the intersection is the
trivial subgroup 1 or +1 unless oo = ~1u. Of course, the exceptional caseis only possible
if u isT"-parabolic and I'-equivalent to co. In the exceptional case, where foo = u, the orbit
w consists of the singleright coset ', B; the corresponding partial serieswill be denoted G ,.
It consists of asingle term,

Gu(z) = gp(z)  where foo = u. (1.7.2)

In al other cases, the partial series corresponding to the orbit w containing I', 8 is the follo-
wing:
Gu(@) = Y gpy(@. (1.7.3)

y€Pl'so

In part 1l we prove that each partial series G, (z), which is not the exceptional series
(1.7.2), convergesto O for Iz — oo. The latter result is then used to finish the proof of the
Theorem in part I11. I

(1.8) Part | of the proof. It will be convenient to consider the measure in $) defined by
a’,f’(z) = yk/2=2dxdy (where z = x + iy). The measure doﬁ(z) = y~2dxdy is SLo(R)-
invariant. It followsthat the measureal,fJ (z) respectsweight-k conjugation asfollows: if « is
amatrix of SL>(R) and g is continuous on the subset « M of §), then

flg“(z)ld;f’(Z):f 1g(2)|d (2). (1.8.1)
M aM

To prove that the Poincaré series converges normally, let K be a compact subset of §).
Choose § > 0 and a compact subset M of $ such that, for any w in K, the closed disk:
lz—w| < Siscontainedin M. Let C bethe constant defined by C := (82)~1 max(3z)2*/2
where the maximum is over z € M. For any function g(z) holomorphic in a neighborhood
of M we have, for w € K, the equation,

n8%g(w) = f g(2)dxdy. (1.8.2)

lz—w[<d
Indeed, inthe disk, g(z) isthe uniform limit of its power series expansion around w. Hence,
using polar coordinates to evauate the integral [(z — w)"dxdy, it suffices to note that

foz” e"de = 0forn > 0. Thus the equation (1.8.2) holds. From the eguation, we obtain
the estimate 782|g(w)| < [, Ig(2)ldxdy. Hence, by the definition of C,

lg(w)] < CfM g(2)ldf (2). (18.3)
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The term g, (z) in the Poincare seriesis equal to ¢ (yz)/j (v, z) where ¢ = ¢, . Hence
8y (2) isholomorphicin §y except possibly for apoleinthe point y “luifu € $. Thecompact
set M meets only a finite number of pointsin the orbit C'u. Therefore, except for a finite
number of terms, the term g,, (z) is holomorphic in a neighborhood of M. Theterm g, is
equal to ¢ -; v, andin particular, it isaweight-k conjugate of ¢ (z). Therefore, by (1.8.1) and
(1.8.3), we have, except for afinite number of termsin the series, the estimate for w € K,

g, (w)] < cf

|6 ()1 (2). (1.8.4)
yM

Hence, to prove that the Poincaré series converges normally, it sufficesto prove thefollowing
assertion: the sum of the integralsin (1.8.4), over the representatives y for whichu ¢ y M,
isfinite.

To the latter assertion will be proved for an arbitrary compact subset M of §). We may
assume that M is contained in a fundamental domain for I'. Indeed, if F is a fundamental
domain for I, then M meets only afinite number of transforms of F. Hence M decomposes
into afinite number of pieceseach of whichiscontained in afundamental domainand, clearly,
if the assertion holds for each piece, then it holdsfor M.

Since M iscontained in afundamental domain for I", the sum of theintegralsin (1.8.4) is
equal to the integral over the union,

M = Jym,

where the union is over the representatives y of the cosetsI',\I" for whichu ¢ y M. Thusit
suffices to prove that the following integral isfinite:

/ 6(2)1d2 ). (185)
M/

Assume first that u € $. A smal neighborhood of u meets only a finite number of
transforms of a fundamental domain, and hence only a finite number of transforms y M. It
followsthat the union M’ is contained in the subdomain $’ obtained from $ by cutting away
asmall neighborhood of u. Hence, it suffices to prove that the following integral is finite:

/ 16 (21 (2)-
yj/

The function ¢ is, by definition, the weight-k conjugate obtained from ¢, = z* by a
Mobiustransformationa: ($, u) — (€&, 0). Clearly, asuitable Mdbiustransformation isthe
map: «(z) = (z — u)/(z — ). Hence, up to a constant,

¢(2) = (z — i) *pox (@2).
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The function ¢o . isbounded in the complement of aneighborhood of 0, and so the function
¢(z) isbounded in $’. Hence, it suffices to prove that the following integral is finite:

Thefiniteness follows easily using polar coordinates: theintegral [ r—%+%/2=2qdr isfinite
because k > 0, and theintegral /7 (sin®)*/?~2d0 isfinite, because k > 2.

Assume next that u is I'-parabolic. Clearly, after a conjugation, we may assume that
u = oo. Let z — z + h be the Mdbius transformation associated to the canonical generator
Yoo. Theunion M’ is over a system of representatives for the cosets I'no\I'. Since M is
compact and oo is I'-parabolic, there isanumber R so that no transform y M intersects the
half plane: 3z > R. Consider the part of M’ inthe vertical strip: nh < %z < (n + 1)h. The
part is transformed, by the power ", into the vertical strip 0 < Mz < h. Moreover, since
¢ (z) is(I'y, j)-invariant, it follows from (1.8.1) that the integral over the part is unchanged
when the part isreplaced by itstransform. Therefore, we may assumethat M’ iscontained in
the part $’ of §) determined by the inequalities0 < 3z < R, 0 < Rz < h. Hence, it suffices
to prove that the following integral isfinite,

f |6 (2)|dP (2).
ISl

The function ¢ = ¢ « IS, by definition, the function
¢(Z) — eZJTiKZ/h.

It isbounded in the horizontal strip 0 < Iz < R. In particular, itisboundedin ’. Hence, it
suffices to prove that the following integral isfinite:

// yk/z_zdxdy.

The finitenessis obvious: theintegral [ y*/2~2dy isfinite, because k > 2.
Thusit has been proved in both casesthat the integral (1.8.5) isfinite. Hence the Poincaré
series converges normally in $, and part | of the proof is complete. I

(1.9) Part Il of the proof. By part | of the proof, we know that the Poincaré series G(z)
isa (T, j)-invariant meromorphic function in ). Hence Theorem G holds if there are no
I"-parabolic points. Inthe remaining parts of the proof we assumethat oo isI"-parabolic. Let
z + z + h be the Mdbius transformation associated to the canonical generator at co. Inthis
second part of the proof, we prove that the partia series G, (z) of (1.7.3), where 8 € T" and
Boo # u, convergesto O for Iz — oo.

The term gg, in the series (1.7.3) is equal to (¢« -j B) - ¥- The function ¢, , isa
weight-k conjugate of either ¢o . Of ¢oo, aNd ¢y, -j B is a weight-k conjugate of ¢, .
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Therefore, replacing u by ~1u, we may assumethat 8 = 1. Then u # oco. Therefore, for
the conjugation « defining ¢, = (¢)%, we havethat J (¢, z) = ¢z + d wherec # 0. In
fact, if u € H we may assumethat J(o,z) =z —uandif u € IrH wehavec andd in R.
Hence, dividing by a nonzero number, we may assume that J(«, z) = z + d, where d has
nonnegative imaginary part. It followsthat |¢, | = |z + d|~*|¢ (az). Thefunction ¢, («ez)
is equal to (az)“ if u € $ and equa to e27 @D/ jf y € dr$H. Sinceu # oo, it follows
in both cases that the function ¢, («z) isbounded in $z. Hence, with aconstant C > 0, we
have the estimate for z € Hr:
| ()] < Clz +d|7%.

Thetrandationz +— z-+h associated to y, generatesthegroup PI'w,. Moreover |J (Y2, 2)| =
1. Therefore, for z € $Hg,

1
Gu@I =€) i ar
n

Clearly, the sum on the right side converges to O uniformly as Jz — oc.
Thuswe haveprovedthat thepartial seriesG ,(z), except intheexceptional case, converges
to O uniformly as 3z — oo, and part 11 of the proof is complete. i

(1.10) Part 111 of the proof. Assume asin part Il that the point oo is I'-parabolic and that
Pl isgenerated by z — z + h. We have to study the behavior of G(z) near co. It suffices
to consider three cases:

(1) Thepointu isin $.

(2) The point u isT"-parabolic and not I'-equivalent to oco.

(3) The point u isequal to co.
We have to provein al cases that G(z) is exponentially bounded at co. In fact, we have to
proveinthe cases (1) and (2) that the order of G at oo ispositive; in case (3) we haveto prove
that the I"'-order is positiveif x > 0, and equal tox isx < 0.

By part |1 of theproof, thefunction G (z) isanormally convergent seriesG (z) = Y_ G (2)
of functions G, (z) holomorphic in a half plane $Hz. One of the functions G,,(z) may be
the exceptional function G, of (1.7.2). Denote by ! G, (z) the series of the remaining
functions. Each function G ,(z) is (I's, j)-invariant, and hence of the form,

Gu(z) = NGy (q), g =20,

where G (¢) asafunction of ¢ is meromorphic in the punctured unit disk: 0 < |¢| < 1. The
half plane $) g ismapped by g ontoapunctureddisk V —0where V isantheopendisk: |¢| < «.
Since G,,(z) is holomorphic in $ &, the function G, (¢) is holomorphic in the pointed disk
V —0. Moreover, since G, (z) — 0for Iz — oo by part Il andks, < 1,itfollowsthat G, (q)
is aso holomorphicfor ¢ = 0; in addition, G, (¢) vanishesfor ¢ = 0 when ko, = 0. Asthe
series >’ G, (z) converges normally in §, it follows that the series >’ G (g) converges
normally in the pointed disk V — 0. Moreover, each term G, (¢) in the seriesis holomorphic
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also at g = 0. Therefore, asiswell known, the series 3’ G, (¢) converges normally in the
whole disk V. In particular, thesum G(g) := ) _ G (q) isholomorphicin V; in addition, it
vanishesat g = 0if koo = 0. Therefore, since

Y Gu(z) = 2Tk G g),

it follows that the series Z;} G (z) has positive order at oo.
Now, in the cases (1) and (2), we have G(z) = ZZU G (z). Hence the assertions for the
cases (1) and (2) hold. In case (3), the function G (z) isthe sum of two functions,

G =Gu@+ Y Gul.

Asu = oo, thefirst function is ¢oe (z) = €27%%/"  and so its "-order at oo isequal to k. The
second function has positive I'-order. Clearly, the assertion for the case (3) isaconsequence.
Thus part 111 of the proof is complete, and Theorem G has been proved. I

(1.11) Note. Consider, in the assumptions of Theorem G, the series G(z) = G(T, j, u, k)
for k > 0. It follows from the Theorem that the form G(z) is an integral form. If u € D,
then G(z) isacuspformand if u € ar®, then G(z) isacusp formif anonly if k > 0. Note
however that the form G (z) may be the zero form. In fact, the examplesin (Autm.7) contain
several caseswhere S(T, j) = O (for k > 2). In these cases, necessarily G(z) = 0.

It follows from the Theorem that the Eisenstein series G(T', j, u, 0) associated with a j-
regular I"-parabolic point « is an integral non-vanishing form in G(T, j). It has order O at
the cusp defined by «, and it vanishes at al other cusps. It followsthat the evaluation map in
(Autm.6.13) issurjective. In particular, we recover the result that the codimension of S(T", j)
inG(T, j), for k > 2, isequal to the number of j-regular cusps.

(1.12) Note. It isaconsequence of Theorem G that there are non-zero (T", j)-automorphic
forms for a factor j of any weight k. Indeed, assume first that k > 2. Then the Poincaré
seriesG(z) = G(T', J, u, x) obtained from, say, aI"-ordinary point u and x < 0 hasI"-order
equal to «. In particular, G(z) isanonzero functionin M (T, j). For general k, choose an
even integer [ > 2 such that k + [ > 2. Then there are nonzero functions f € M(T, jJ!)
and g € M(T", J'). Whence the quotient f/g isanonzero functionin M(T", j).
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2. A Fourier expansion of an Eisenstein Series.

(2.1). Inthissection, the disk isassumed to be the upper half plane $) and & is assumed to be
an integer. We consider alevel-N subgroup I' of the modular group I'(1) = SL2(Z) and on
I" afactor on " of the following form,

.2 = I D5 x (), (2.1.0)

where x : ' — C* isaunitary character. We make a series of assumptions:

(i) By hypothesis, T is the preimage in I'(1), under the reduction map modulo N, of a
subgroup " of SL»(Z/N). We assume that x isalevel-N character on T, that is, x isthe
composition of the reduction map and a character x: I — C*.

(i) We assume that T" contains the subgroup of diagonal matrices in SL»(Z/N). Equ-
ivalently, since the subgroup of diagonal matrices corresponds to the subgroup F8(N ), we
assumethat I' 2 TY(N).

(iii) It follows from the assumptionin (i) that I" is homogeneous. In order that the factor
(2.1.1) is homogeneous, we assume that

x (=D = (D (2.1.2)

(iv) The I'-parabolic points consist of the rational numbers and the point oo, since I is
of finiteindex in I"'(1). Since I" is homogeneous, the canonical generator at oo is the matrix
ty, for some positive integer 2. We assume that the point oo is a j-regular cusp, that is, we
assume that

x(n) =1 (2.1.3)

(2.2). Denote by I', the unipotent subgroup of I', that is, I".. is the intersection of I" and
the subgroup of upper triangular matrices with 1 in the diagonal. Then I'_ is the cyclic
subgroup generated by y., and it isof index 2in I'y,. Clearly, theimageof I', in T isthe
unipotent subgroup T, of T'. By assumption (2.1)(iv), the character x: T — C* istrivial on
the subgroup T",..

For any 2 by 2 matrix 8, denote by >3 the second row of 8. Clearly, two matrices y1 and
y2 with determinant 1 have the same second row if and only if y1y, Lisunipotent. It follows
in particular that the map y — 2y defines an injection,

rA\T — 72

Theimage of the map will be denoted »T". It consistsof the pairs (c, d) of integersthat occur
as the second row of some matrix of I'. Similarly, there is an injection,

T.\T < (Z/N)2.

The image o' consists of pai rs of residue classes modulo N that occur as second row of a
matrix of I". The character x: ' — C* istrivial on the subgroup I' ,, and hence it induces a
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map from the set ', \T" to C*. Given the bijection above, the latter map may be viewed as a
map from oI to C*; we extend it with the value 0 to amap from (Z/N)? to C. The extended
map,

X1 (Z/N)*—C,

defines, by composition with the reduction map modulo N, amap x: Z? — C. Fora €
SL2(Z), denote by

.72 5 C

the map obtained by composition of x: Z2 — C and right multiplication by . Unwinding
the definition, the value *x (¢, d) for integers ¢ and d isdetermined asfollows: if there exists
amatrix y of I" such that (c, d) modulo N isthe second row of y«, then *x(c,d) = x(y);
otherwise *x (¢, d) isequal to 0.

By assumption (2.1)(ii), the group T' contains the subgroup of diagonal matrices of
SL,(Z/N). It followsthat the row (0, 72) belongsto ,T if and only if 7 isinvertiblein Z/N.
Moreover, the group (Z/N)* of invertible elements n isisomorphic to the group of diagonal
matrices of SL>(Z/N). Hence x defines, by restriction, a character x: (Z/N)* — C*, and
thefunction x (0, ) isobtained from the character by extending it with the value O on residue
classes that are not invertible.

The map x (n) := x (0, n) is aresidue character modulo N. From (2.1.2) we obtain the
equation,

x(=n) = (=Dfx ). (22.1)
In addition, for integers ¢ and d we have the equation,
“Y(nc,nd) = x(n)“x(c,d). (222
Indeed, if n is not prime to N, then clearly both sides are equal to 0. Assume that » is
primeto N, and let &, beamatrix of I" whose reduction modulo N isadiagonal matrix with
last row (0, 7). If y isamatrix of I' such that 2ya = (¢, d), then 6,y belongsto I' and
28, ya = (nc, nd); hence
“x(ne,nd) = x(Sny) = x ) x (v) = x(n) “x(c, d).

Thus the equation (2.2.2) holds if the right hand side is nhon-zero. It follows, replacing n by
itsinverse modulo N, that it holds if the left hand side is non-zero. Hence (2.2.2) holds.

(2.3). Consider, for k > 3, the Eisenstein series,
G(z) =G(T, j,00,0)(2),

where j isthefactor of (2.1.1). By Theorem G, the seriesisan integral j-automorphic form,
and its order at oo isequal to 0. It vanishes at all cusps different from oo. We will consider

146



Automorphic functions [Poinc] 13
16. februar 1995

the Fourier expansion of G(z) at any I'-parabolic point v. So, let « be a matrix of SL2(Z)
such that v = aoco. Consider the weight-k conjugate series, G*(z), that is,

“(z) = 1 _ _x»)
= 2. T 2)Fj(y.az) 2 T(ya, )F

yelo\I' Y€l \I'

where the last equation follows from the definition of j and the automorphy equations for
J (v, z). Each right coset modulo I' o, splitsinto two cosets modulo I' .. Hence, if we form
the sum over the cosets modulo I, each term is repeated twice, and we obtain the equation,

2G%(z) = Z X )

X
yermr J(ve2)

By definition of the function %y, the equation may be rewritten as follows,

oy (¢, d
26°@) = Y %. 23.1)
(c,d)esTa

The set of pairs (c, d) in 2" isequal to the set of pairs (¢, d) such that ¢ and d arerelatively
primeand %y (c, d) isnon-zero. Indeed, obvioudly, if apair (¢, d) belongsto thefirst set, then
it belongs to the second set. Conversely, assume that (¢, d) belongs to the second set. Since
¢ and d are prime, thereisamatrix g in SL2(Z) suchthat 28 = (¢, d). Since%x(c,d) # 0O,
thereisamatrix y inT" such that, modulo N, 2y a = (¢, d). Thetwo matrices 8 and y« have
modulo N the same second row. Therefore, modulo N, the quotient (y o)1 is a unipotent
matrix of SL2(Z/N). The latter matrix can be lifted to a unipotent matrix r of SL2(2).
Replace g by t8. The replacement does not change the second row, so (c, d) is the second
row of the new 8. Moreover, for the new 8, the quotient (y )81 ismodulo N equal to 1.
Therefore, the quotient belongsto I'(N). Since I'(N) is contained in T, it follows that the
quotient (ya)B~tisinT. Thus 8 = y’«a with amatrix y’ of . As(c,d) = 28, it follows
that (¢, d) belongsto thefirst set oINx.

Itfollowsthat inthesum (2.3.1) isunchanged if itisformed over all pairs(c, d) of relatively
prime integers. Consider the sum over all non-zero pairs (c, d) of integers. By grouping the
terms according to the greatest common divisor, we obtain by (2.2.2) the equation,

' “x(c, d) x(n) “x(c.d)
2 (cz +d)k nX:: 2 (cz +d)F

(c.d)=1

Thethird sumis, asnoted above, equal tothesumin (2.3.1). Therefore, thefollowing equation
holds,

P d) e X (1) o g
> L dE _; — —(2G*(2)). (2.3.2)
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By (2.2.1), theright hand side of (2.3.2) is unchanged if the factor 2 is omitted and the sum
over n > lisreplaced by the sum over n # 0. Whence,

x(n) o 1 % (c, d)
l; - G(@) = > v (2.3.3)

Note that the factor Zn;,éo x (m)n~* isnon-zero. Indeed, inthe sum over n > 1, thefirst term
isequal to 1, and the sum of the remaining termsis, in absolute value, at most ), -, nk <
[tk = 1/(k - D). -

It followsfrom (2.3.3) that the series G* (z), apart from the factor Zn?éo x (m)n~*, isequal
to the Eisenstein series EZX (z) considered in (App.2).

(2.4) Proposition. The Eisenstein series G(z) of (2.3) has at the cusp oo the Fourier expan-
sion, with g = e27i2/N,

GO =1+ )( ) Zok NGO (2.4.1)

The constant Ax () is the special number associated with the character x (n), and o,ﬁ‘_l(r)
is the weighted sum of (k — 1)’st powers of divisors,

ol =" x(r/d, a)e® e /Ngkt, (2.4.2)

d|r a mod N

At a cusp v = aoco Which is not I"-equivalent to oo, the Fourier expansion is the following,

G%(2) = Ak(X)< ) Zok Nora (2.4.3)

where the definition of a,ffl(r) is analogous to (2.4.2).
Proof. By (App.1.10.2), for the constant in (2.3.3), we have the equation,

A (— Dk

ol s A (2.4.4)

n#0

It follows from (2.1.2) that “x (—c, —d) = (—1)¥*x(c, d). Hence, in the notation of
(App.2), we have that (%)" = (—1)* %.

Now, the series G(z) is given by (2.3.3) with « = 1. By definition, x (n) = x (0, n).
Hence the equation (2.4.1) follows directly from Corollary (App.2.5).

Assumethat v = aooisnot I'-equivalentto co. If amatrix y« has (0, 1) asitssecond row,
then it has oo asfixed point; thus y v = ya(co) = co. Hence no matrix ya withy € T" has
(0, 1) asitssecond row. Therefore, “x (0, 1) = 0. It follows from (2.2.2) that “x (0, n) = 0
for al n. Consequently, the special number associated with the function %y is equal to O.

Hence the equation (2.4.3) follows from the expansion for the Eisenstein series EZX (z) in
Corollary (App.2.5) by dividing by the constant (2.4.4). I
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(2.5) Note. The Fourier expansion of the Eisenstein series G(z) in (2.4) isin terms of the
parameter gy = ¢?*1¢/N On the other hand, G(z) has period &, where 1;, is the canonical
generator of T at oo, and so G(z) has a Fourier expansionin termsof g;, = ¢27¢/", Clearly,
thematrix ¢y belongsI"(N). Henceit belongsto I'. Consequently, ¢ isapower of t;f, thatis,
N = [h. It followsthat the Fourier coefficient in (2.4.1) to ¢” vanishesunlessr isamultiple
of /.

(2.6) Note. TheEisenstein seriesisnot normally convergent for k = 2. However, theserieson
the right hand side of (2.3.3), when the summation is performed asin [App.2.2], isnormally
convergent, and if G(z) is defined by the equation (2.3.3) for k£ = 2, then the expansion of
(2.4) holds. However, the resulting function G*(z) can not be expected to be (T", j)-invariant
in general.

When k = 1, thesituationiseven morecomplicated. Inorder that the summation described
in [App.2.2] appliesto the right hand side of (2.3.3), it isrequired that the sum ), “x (c, d)
over d modulo N isequal to 0.
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3. Example: Eisenstein series for the theta group.

(3.1). Recal that the 6-group I'y is the subgroup of I"(1) formed by matrices that modulo 2
are congruent to either 1 or s. It is generated by the matrices 12 and s. The 6-factor jy isa
factor of weight % . It isdetermined on the generators by the equations,

. . Z
Jot22) =1,  jo(s,z) = \[—

Let k be an integer. Then the power j92k is afactor of integral weight k. In particular, the
square je2 isafactor of weight 1, and hence of the form,

JE, ) =J (. /%),

where xo: 'y — C* is a unitary character. The character is given on the generators as
follows:

x6(t?)=1  xo(s) =1i.

It follows that the character x4 isthe character g considered in Exercise (Mdlar.3.8). Itis
given asfollows,
1 ford=1 (mod 4),
[a b] )i forc =1 (mod 4),
Xlc a —1 ford = —1 (mod 4),
—i forc=—1 (mod 4).

The group I'y is a level-4 group, and it follows from the description the x4 is a level-4
character. Clearly, the setup of (2.1) applies. The character x4 (n) is a Dirichlet character
modulo 4, usually denoted x4(n). Thevalue y4(n) islifn = 1,itis—1ifn = —1, anditis
0if n iseven. The function xq(c, d) is determined by the expression above. On a nonzero
pair (¢, d), thevalueis given asfollows:

xa(d) ifcisevenandd isodd,
xo(c,d) =3 ixa(c) ifcisoddandd iseven,
0 otherwise.

(3.2). Assumethat k isat least 3. Thentheresultsof Sections 1 and 2 apply to the Eisenstein
series,

Gi(2) =Gy, J*/ x5, 00, 0).
It follows that G (z) isan integral formin G, (T, 7’5). Moreover, its Fourier expansion is
given by (2.4). Let usfix k and write x for ng . To determine the Fourier coefficients of the

Eisenstein series, we need the special number A () and the function o,f_l(r). Theresultis
the following.
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(3.3) Proposition. The Eisenstein series G (z) of (3.2), for k > 3, has the following Fourier
expansion, with ¢ = ¢%7i%/2,
Gi(2) =1+ ) B(r)q’,

r>1

where the coefficients S (r) are given by the formula,

4 /!
Bi(r) = k[zk Lol _1(r) + 01 (M)];
the Ay are the numbers of (App.1.3) and

ola) = Y xalr/dfd ol )= Y (DU

d|r d|r, d=k mod 2

Proof. The expansion is given by (2.4), however in terms of g4 = €?"'%/4. As Gi(z) is
periodic with period 2, we know apriori that the coefficients GkX_ 1(r) areonly non-zero when
riseven.

To determine the constant factor in the expansion (2.4.1), note that the function x (n) =
x4(n)* depends on the parity of k. Assumefirst that k isodd. Then x (n) = xa(n). Clearly,
x4 = 28 — x2 Where § (n) isthefunctionintroduced in Example (App.1.13). Hence, Ax(x) =
2A;(8) — Ar(x2). It follows from (App.1.13) and (App.1.12), for k odd, that 2A;(§) =
(—1)* A /2% and Ax(x2) = 0. Therefore,

Ar(x) = (=D Ay /2% (33.1)

If k is even, then x (n) isthe function x2(n) considered in Example (App.1.12); hence the
special number isgiven by theformula Ay (x) = Ax/2%. Therefore, theformula(3.3.1) holds
for al k.

From (3.3.1) we obtain, for the constant factor in the expansion (2.4.1), the equation,
(2/Ar(x))(2i /A% = 2(—i)*/Ay. Hence the expansion is the following,

4 1
Gi(a) =1+ — szok (1) 45

Therefore, we have to prove that o' ;(r) vanishes when r is odd and that o* ;(2r) =
2i% By (r).

The sum o |(r) is over divisors d of r and over @ modulo 4. Denote by o %2(r) the
sum of the terms corresponding to « = 0 and a = 2 and by o 1:3(r) the sum of the terms
correspondingtoa = 1 and a = 3. Clearly, for the first sum,

o®2(r) =Y [x(r/d,0) + x(r/d, (=)t = " i* xa(r/d) [1+ (=D)?]d*

d|r d|r
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Obviously, the termsin the sum corresponding to odd divisorsd vanish. In particular, when
r is odd, the sum is zero. For an argument of the form 2r, the nonzero terms are obtained
from the even divisors of 2r, that is, for divisors of the form 2d for d | r. Whence,

002(2r) = 2 Y " xa(r/d)* 2ttt = 2% 2oy (). (3.3.2)
d|r

For the second sum,

o3y =[x /d, Di* + x(r/d. 3) (=) ]a* = Y [1h! 4+ (—DF(—i)]a"

d|r d|r, 5 even

Evidently, the sumiszeroif r isodd. For an argument of the form 2r, the nonzero terms are
obtained from the divisorsd of . Hence,

ob32r) =) i1+ (D)) Jakt =20 Y i Ra Tt =2ty (). (333)
dlr d|r,d=k

Sincea! ((r) = 0%2(r) + o13(r), it followsthat o* ; (r) vanishesfor odd r, and it follows

from (3.3.2) and (3.3.3) that 0" ;(2r) = 2i*Bx(r). Hence Gi(z) has the asserted Fourier
expansion. I

(3.4) Note. Depending on the residue class of £k modulo 4, the expression for 8 (r) can be
simplified asfollows:

Assumefirst that k iseven. Then x4(n)* = x2(n). Henceo;_,(r) = Yy, d*~* wherethe
prime indicates a sum over those divisorsd for which r/d isodd. Clearly, o;”_;(r) vanishes
for odd r, and for even r,

of_1(r) = (=DMZ2 Y (—plah
d|s

The sum splitsinto a difference of two: Zf}\fg dk=1— ZZT'S d*=1, where the two sums are,

respectively, over the even and odd divisorsof r/2. It follows, for k even, that B, (r) isequal
to 2¢+1/ A, timesthe following expression,

Z/ A1 4 (—1)k/2 Ze" dF1 _(—pk/2 ZOdd a1, (3.4.1)

d|r d|5 d|%

If r isodd, then the last two sums vanish, and the first is equal to o_1(r). Assume that r
iseven. Clearly, the last sum is the sum over the odd divisors d of r. Thefirst sumisover
the (necessarily) even divisors d for which r/d is odd, and the second sum is over the even
divisorsd for which r/d iseven. Thusevery divisor d of r contributes with a non-zero term
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in exactly one of the three sumsin the expression. It follows that the expression, for k = 0
(mod 4), isequal to o, (r) — a2%(r). Hence, for k = 0 (mod 4),

2k+1 { ok—1(r) if r isodd,

PO =00 Vo) — o™ () if r iseven.

Similarly, for r even and k = 2 (mod 4), the expression (3.4.1) is equal to the difference
ok_1(r) — 2 ij% d*~1. Now the even divisors of % are of the form 24 where d is a divisor

of 7. Therefore, for k = 2 (mod 4),

2k+1 or—1(1) if  isodd,
Br(r) = A_ X { X .
k ox—1(r) — 201 _1(r/4) if r iseven.

Thedifferencein thelast expression equals (1+ 281,24 (r) + (41 — 26) o3 _1 (). Indeed,
if r iseven, then adivisor in r is either odd, or it is of the form 24 where d is an odd divisor
inr, oritisof theform 4d where d isadivisor of 4. Hence, ox_1(r) = (1+2*"1He M (r) +
410y _1(%), and we obtain the alternative expression for the difference.

Assumethat k isodd. Then x4(n)* = xa(n). Thesumin o, _4(r) isover the odd divisors
d of r. If d isodd, then i4=* = (—=1)@=D/2(_1)*=D/2 Moreover, x4(d) = (—1)@-D/2,
Therefore, for odd k,

4
ﬁk(r)::i;;‘}{j[zk_1X4(r/d)-F(——lﬂk_lsz4(d)]dk_l-
d|r

(3.5). The#-function is (essentially) given by its Fourier expansion at the cusp oo, that is,
0(z) =), ¢"" Where ¢ = ¢277/2, The g-function belongs to G(T'y, jg), and it vanishes at
the second cusp represented by —1. Hence the power 6(z)/, for a positiveinteger , belongs
to G(Iy, jgl) and it vanishesat —1. Clearly, the power has the Fourier expansion at oo,

0() =14 bi(r)q’,

r>1

where b;(r) isthe number of solutions (n1, . .., n;) in Z! to the equation,

Assumethat  iseven, say | = 2k, where k isapositiveinteger. Then j & = (j A = J/xk.
Hence 6(z)% belongs to the space G(I'y, J¥/x /) and it vanishes at —1. The Eisenstein
series G (z), for k > 3, has the same properties. Moreover, both forms have at oo aFourier
expansion with constant term 1. It follows that the difference 6 (z)% — G (z) isacusp form.
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(3.6) Proposition. Let by (r) be the number of solutions (n1, . . ., na) in Z?* to the equation,
r=n{+--+n. (36.1)
Then, for k > 3, the following asymptotic formulas holds:
bok(r) — Bi(r) = OG/?).

Moreover, the equality b (r) = Bi(r), holds for k = 2, 3, 4, that is,

ba(r) = 8 { o(r) when r is odd,
= X
d 35%9d() when r is even.
be(r) =4 [4xa(r/d) — xa(d)]d®.
d|r
be(r) — 16 { o3(r) when r is odd,
r) =16 x
8 o' (r) — o29(r) when r is even.

Finally, for k = 1, we have the equation, b(r) = %,81(1’) = 4Zd|r xa(d).

Proof. Thedifferenceby (r)— Br(r), for k > r,isther’th Fourier coefficient inthecusp form
0(z)% — Gy (z). The asymptotic formula, for k > 3, follows from Theorem F (Autm.6.16)
since the difference 6(z)% — G (z) isacusp form.

Moreover, for k < 4, the space S (T'y, j92k) of cusp forms is equal to O by Example
(Autm.7.8). Therefore, the equation bo, (r) = B (r) holdsfor 3 < k < 4. It holds also for
k = 2, becauseitispossibleto provethat the Poincaré series G 2(z) with asuitable summation
does define an automorphic form. The proof is not easy, and it is not covered in these notes.

Finally, the explicit formula, ba(r) = 3 3", x4(r) is elementary. It can be proved using
unique prime factorization in thering Z[i] of Gaussian integers. i

(3.7) Exercise. Study Gy (z) at thecusp —1 using conjugation by thetransformationu = sz 1.

Prove that _
i x4(—d) if c and d are odd,

“Yo(c,d) =} ixa(c —d) ifcisoddandd iseven,
0 otherwise.

Deduce from (2.4.3) and (Autm.5.2) aformulafor the number bg,‘jd (r) of decompositions of
r into 2k odd squares.
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Appendix

1. Bernoulli and Euler numbers.

(1.1) Setup. Asiswell known, two important sequences of numbers, the Bernoulli numbers
Bo, B1, ... and the Euler numbers Eg, E1, ... are defined by the Taylor expansions,

2e* b
ez_l—z f— e22+1=ZEkH. (1.1.1)
k>0

k>0

Thefirst function has poles at the non-zero integral multiplesof 2i. Hencethefirst seriesis
convergent in the open disk: |z| < 2. Similarly, the second series convergeswhen |z| < 7.
Obviously, B = Eg = 1.

The numbers appear in the Taylor expansion of many important functions. The second
functionin (1.1.2) isequal to 1/ coshz. In particular, it is an even function of z. Hence all
Euler numbers of odd index vanish. Moreover, evaluation at i z yields the expansion,

= (- 1)’</2E R (1.1.2)

COSz
k even

In the first equation of (1.1.1), divide by z and add % to obtain the following equation:

1041 2k
_ — — B —.
2 et —1 +(1+2)+k§k+1 1

In the equation, the left side is an odd function of z. Therefore, the equation implies that
B = —% and that al other Bernoulli numbers of odd index vanish. The equation is the

expansion of the function %coth 5. Evaluation at 2iz yieldsthe equation,

1 —1)k+1)/20k+1 k
cotz= 24 3 ¢ )k : Bk+1i—| . (1.1.3)
' kodd T '
Finally, from cot z — 2 cot 2z = tan z, we obtain the expansion,
_1)(k=D/20k+1ok+1 _ 1 k
tanz =Y (=1 ( ) Bein (1.1.4)

I
et k+1 k!
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(1.2) Definition. It will be convenient to introduce athird sequence of numbers A1, Ao, .. ..
They are defined by the expansion,

1+sinz Z*
=> A (1.2.1)

Obviously, A1 = 1. Theleft hand side of (1.2.1) isthe sum of the even function 1/ cosz and
the odd function tan z. Hence (1.2.1) implies the expansions,

Zk Zk
— = Z Ak+1ﬁ , tanz = Z Ak+1ﬁ . (1.2.2)
k even k odd

Accordingly, the A; with odd k are called secant numbers, and the A with even k are called
tangent numbers.

By comparing (1.2.2) with the expansions (1.1.2) and (1.1.4) we obtain the following
relationsfor k > 1:

B { (~H*=D/2E, 4 if k is odd,
“T (—pM212k 2k — 1B, /k if k iseven.

(1.3) Lemma. The numbers A, are positive integers. Moreover, if k is even, then kA is
divisible by 2=1; in particular, then Ay is divisible by 2¢/2=1, Furthermore, the numbers are
given by A1 = 1 and the following recursion formula for £ > 0:

Ao =A —|—kA kA +kA +
k+2 = Ak+1 o )k 4) k=2 6) k4 .

Proof. Denote by «a(z) the fraction on the left side of (1.2.1). It is the sum of secz =
1/ cosz and tanz. To obtain the derivatives of a(z), note that (secz)’ = secztanz and
(tanz)’ = 1+ tan®z. It followsby induction that there are polynomials Fo(t), Fi(1), ... and
G1(t), G2(t), ... and an equation,

a®(z) = secz Fr(tanz) + Gyya(tanz).

The polynomialsare given recursively: Fy = t Fx_1+ (1+t?)F]_; and Gy1 = (1+ 2G|,
(and Fo = 1, G1 = t). It follows easily that each of Fj, and G isapolynomial of degree k,
with positiveinteger coefficientsindegreesk, k—2, k—4, . . . and zero coefficientsotherwise.
In particular, Ay = F;_1(0) + G (0) isapositiveinteger. Hence the first part of the Lemma
holds.

To prove the second part, note that by (1.2.2) we have the Taylor expansion,

k
Z
ztanz = Z kAkﬁ.

k even

158



Automorphic functions [App] 3
16. marts 2006

Hence it suffices to prove for t(z) := 2ztanz = ), Crz¥/ k! that the Taylor coefficient Cy,
isdivisibleby 2%,
Clearly, 7/(z) = 2tanz + 2z(1 + tan? z). Multiplication by 2z yields:

271'(z) — 2t(2) = 42° + 1(2)°.

It follows, by comparing the coefficients of z¥/k!, that

k
k
20k —DCr =Y (,)Cick_,-, fork > 2. (1.3.2)
i—0 \'
Obvioudy, Cy = 0if k isodd, or if k = 0. Moreover, C2 = 4. Proceed by induction, and
assumethat k > 2iseven, k = 2/. Inthe sum (1.3.2), the extreme terms vanish, because
Co = 0. Inthemiddleterm, thebinomial coefficient (}) iseven, (¥) = 2(*~7). Theremaining

terms comein equal pairs, since (£) = (,.*.). Therefore, division by 2in (1.3.2) yields:

k=DCr= Y (f) CiCr_i + (]; B 11) cr. (1.3.3)

O<i<l,i even

By the induction hypothesis, each product C; Ci_; isdivisible by 2¢. So the sum is divisble
by 2. Hence, so0is Cy, because the factor k — 1 isodd.

To provetherecursion formula, notethat a(z) = «’(z) cosz. Insert theexpansionsa(z) =
S App1zf/k and o' (z) = 3 Ary2z%/k! and the well known expansion of cosz. The
recursion formulafollows by comparing the coefficients of zX. I

(1.4). A simple computation using the recursion formula gives the following table:
k |1|2|3|4|5|6]7| 8 | 9 | 10 | 11 | 12
Ay | 1]1]1]2]5|2*|61]2% 17| 1385 | 25.31 | 50521 | 2°- 691

(1.5) Note. Theleft hand side of (1.2.1) isequal to cosz/(1 — sinz) and hence equal to the
logarithmic derivative of the following function,

A(z) = . 1.5.1
@ 1-sinz ( )
In other words, we can think of the numbers A as defined by the expansion,
k
z
a(2) =log — = constant+ZAkH. (15.2)

k>1

Ontheleft, thelogarithmisamulti valued function. The denominator of the fraction vanishes
atthepointsz = /24 2pm for p € Z. In particular, theleft hand side has determinationsin
theopendisk: |z| < %, and different determinations differ by aconstant. Hence the equation
(1.5.2) defines the numbers A, for k > 1.

(1.6) Definition. Let y : Z — C beaperiodicfunction, say x (n+ N) = x (n) for al integers
n. Associate with x the sequence of numbers A, () for k > 1 defined by the expansion,
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0 1 k
x0 = Y x@oot = > A0 (1.6.1)

< a mod N k>0

z+ma

where the index a ranges over a system of representatives for the residue classes modulo N.
The left hand side has poles at the integer multiples of . In the sum on the left side, the
termsfora £ 0 (mod N) are holomorphic a z = 0. Moreover, the pole at O of the term for
a = Oiscanceled by x(0)/z. Hence the left hand side has no pole at z = 0. Therefore, the
left side isholomorphic inthedisk |z| < 7. Consequently, the coefficients are well defined,
and the series on the right convergesfor |z| < 7. Thenumbers Ay (x) fork =1,2,... are
called the special numbers associated to the periodic map x: Z — C. Their relation to the
generalized Bernoulli numbers are described in Note (1.16).

(1.7) Note. Consider the two functions,

1
F(z) = Fﬂzﬂ f(z) =log F(z).

The function F(z) is meromorphicin C with simple poles at the integral multiplesof x. Its
logarithm f(z) isamulti valued function. The derivative f’(z) issingle valued, equal to the
logarithmic derivative F'(z)/ F (z) = — cot z of F. Asthe polesareonthereal axis, thereare
determinationsof f(z) inthe upper half plane and in the lower half plane. To define specific
determinations, note that
—iel? ie”iz
FQ =1 =12

If z isin the upper half plane §, then |e%?| < 1. Hence, in the upper half plane we obtain a
determination £ of f defined by,

fT () =—in/2+iz+log

T >0 (17.2)

wherethelogarithm ontheright sideistheprincipal determination, defined by the power series
logl/(1—w) = Zdzl(l/d)wd. Similarly, in the lower half plane there is a determination,

1
f_(Z):iﬂ/z—iZ‘f‘lOgm, %Z<0.

Consider in the setup of Definition (1.6) the following function,

: Z+ma\x@ 1 e
Fy(z) = H F( N ) - H (25in((z+7m)/N)> '

a mod N a mod N

The exponents y (a) are not assumed to be integers, so F, (z) isamulti valued function. Most
easily, we may think of F, as defined in terms of itslogarithm,

z+7ta)

f@ =Y r@f(
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Thefunction f, (z) isamulti valued function: two determinationsof itinan open connected
subset of C differ by a constant. Its derivativeis single valued,

1
fr@ =22 (—x(a) cot +Na”> . (17.2)

a

As a consequence, the special numbers could have been defined by the equation,

k
fx@) = =x(O)logz + (constant) + Y A0 7 (L7.3)
k>1
(leaving Ao(x) undefined).

(1.8) Note. The starting point of the following computationsis the well known formula,

1‘+Z( ! + 1 ):ncotjrz. (1.8.1)

Z Z+n Z—n
n>1

The series on the left is normally convergent, and so it defines ameromorphic functionin C.
To provethe formula, note that the function on the left hand side has the following properties:
it has poles exactly at the integers, with principal part around z = n equal to 1/(z — n), itis
periodic with period 1, and it isbounded in any domain |Jz| > ¢. Clearly, thefunction onthe
right has the same properties. It follows that the difference of the two functionsis bounded
in C, and hence constant. As the two functions are odd functions, the difference is zero.

We shall rewrite the formula as follows:

+ 1
Z =mcotmz,
Z+n

where the summation sign 3" indicates the symmetric summation over all integers n, that
is, the sum with the terms ordered asindicated in (1.8.1). Notethat thesum Y (z +n)~* is
absolutely convergent when k > 2.

(1.9) Lemma. Let x: Z — C be a periodic map. Then the following formula holds:

+ x(n) ,
Xn: s —f; (mz). (1.9.1)

Proof. Fix a system of representatives a for the residue classes modulo a period N. Then
the symmetric summation on the left side of (1.9.1) can be replaced by the sum over a of
the symmetric summation over n of the terms x (a)/(z + a + Nn). By (1.8.1), the latter
summation yields (1/N) x (a)m cot w(z + a)/N. Now, by (1.7.2), summation over a yields
-7 f)’( (r2). i

161



[App] 6 Automorphic functions
16. februar 1995

(1.10) Proposition. Let x: Z — C be a periodic map. Then, for k > 1,

+ x(n) (—1)krk
2. Py fP(rz). (1.10.1)

n

As a consequence,

Nk k
3 xm _ Do, (1.10.2)

kK _
pr Sl (k — 1)!

Proof. The first formula s obtained from (1.9.1) by applying the operator d¥~1/dz*~1 and
multiplying the result by (—1)*~1/(k — 1)!. By (1.7.3), the special numbers A;(x) are
the values at O of the k'th derivative of the function f, (z) + x (0) logz. Hence the second
formulaisobtained from thefirst by subtracting x (0) /z* and eval uating the resulting equation
az=0. 0

(1.11) Example. Let x = x1 be the constant function x1(n) = 1. The special numbers
Ay (x) are determined from the function F1(z) := 1/(2sinz). Obvioudly,

PR Ry Yy Yy

F(z) COSz

Hence we obtain, up to addition of a constant, the following equation for the logarithms,

1
f1(22) = f1(z) = E(a(z) +a(-2)).

Comparing the coefficients, it followsthat (25 — 1) Ax(x1) = 3(1+ (—D¥) A, that is,

Ay = { A/(2* —1) ifkiseven,
S I if k is odd.
As a consequence, if k > 2iseven, then 27 (k) = Y-, on % = 7% A /(2" — Dk — D).
Equivalently,
1 1 1 kA

wrxtE Tt T s e

(1.12) Example. Let x = xev be the parity character defined by xey(n) = 1 when n
isodd and xe,(n) = O if n is even. The special numbers A;(x) are determined from
Fey :=1/(2sin(z 4+ 7)/2). Obviously,

—2Fe(—22) = ! S VA@)A(=2).

Sn(@/2—z)  cosz
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Taking the logarithm, it follows that, up to a constant, fe,(—2z) = %(a(z) +a(—z)). Hence
we obtain that

Ap(res) = { Ar/2F if kiseven,
0 if kisodd.
Asaconsequence, if k > 2iseven, then Y, jqq 7 X = 7€ A /28 (k — 1)!. Equivalently,
1 1 1 kA
T tE T T g

(1.13) Example. Let x = 6 bethefunctiondefinedby §(n) = 1ifn =1 (mod 4) and§(n) =
0 otherwise. The special numbers A;(x) are determined from Fs = 1/(2sin(z + 7)/4).
Obviousdly,

1 1
2sin(z/24+ /42 1—cos(z+7m/2)
Taking the logarithm, it follows that up to a constant, 2f5(2z) = a(—z). Hence we obtain
that

2F5(27)% =

A(—2).

Ar(8) = (=D)k A 25+,

As a consequence, for all k > 1, we have that Z*n?éoa(n)/nk = 7k Ay /25 — D). 1Tk
is odd, we obtain that

1 1 1 7k Ay

—_————t =t ===

1k 3k Bk 21k — 1)
and if k iseven, we obtain the result from Example (1.12).
(1.14) Exercise. Provefor S(z) = 2sinz theformula,

N-1
S(Nz) = [ [ S+ jm/N).
j=0
[Hint: use XV —1 = ]_[]].\':_Ol(X — ¢2"ii/N) ] Deduce that the special numbers A (x) are
independent of the choice of period N entering in their definition.
(1.15) Exercise. Prove that Ay, is equal to the number of up-down permutations of
(1,...,k), that is, permutations (o1, ..., 0r) Withoy <02 > 03 <04 > 05 < ---.
Hint: From the equation 2o/ (z) = a(z)? + 1, deduce the recursion formula,
=1 g
2Ap+1 = Z ( . )Ai+1Ak—i, Ap=A1=1
i—o \ !
Prove for the number a; of up-down permutations the following formulas (for & > 2):
k—1

k-1
k—1 k—1
ag = Z ( ; )aiak—i—l = Z ( ; )aiak—i—l-

i=0 i=0
i odd i even

The i’th termsin the two sums count the numbers of up-down permutations having, respec-
tively, the biggest element k at positioni + 1 and the smallest element 1 at positioni + 1.
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(1.16) Note. Thespecia numbers A, (x ) introduced hereare closely related to the generalized
Bernoulli numbers By (x) of Leopoldt defined by

Zx()Nz —Z k(x)

when x isaprimitivecharacterx. (Z/N)* — C*,extendedwnhx(a) = Owhen(a, N) > 1.
Indeed, the special numbers A () are defined in terms of the generating function o X (z):

1 k
=1 Y @t k@) =X - Y kA0S

a mod N k>1

The numbers By (x) (k = 0,1,...) of Leopoldt may be defined (when x is a primitive
character modulo N) in terms of the generating function g% (z):

P2 =) Bk(X)

k>0

N eaz
B1@) =) x@——
a=1
Compare o (Nz/2) and BX(iz). Setq = q(z) = e and ¢ = /N, Clearly,
Bx(iz) = YN 1 x(@)q®/(g" — 1). For z inthe upper half plane, we have that |¢| < 1. So,
using the geometric seriesfor 1/(1 — ¢%), it follows that

Brizn)=—>_ x(dq". @)

Inthe function a* (Nz/2), the term with the cotangent is cot(3 + 7a/N). Since cot w =
—i —2ie®" /(1 — e?™), we havethat cot(3 + ma/N) = —i — 2i¢%q /(1 — ¢%g). So, using
the geometric seriesfor 1/(1 — §“q) it follows that

BaX (B2 Zx(a)—lZZx(aM“d . 2
a d>1
Proposition. Assume that x is a primitive character modulo N, for N > 2. Then
SaX (%2) =it(x)B (i2).
where () is the Gauss sum, t(x) = Y, mog v X (@)¢¢. In particular, for k£ > 1,
—(N/2)*kAr(x) = (0" Bi ().

Proof. The first equation follows from (1) and (2) by using the formula }_, x(a)cde =
X (d)t(x) inthelast (double) sumin (2). Multiply by z to obtain the equations of Bernoulli
numbers. I

(1.17) Exercise. Prove for k even that kAz /21 is odd. [Hint: Induction. Use (1.3.3)
divided by 2*. Rewrite the sum using the equation (¥) = (*21) + (*;1). The resuiting

1

expression should not depend on the parity of I. Deduce modulo 2 that the sum equals
d1<j< (k;l) =22-1]
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2. Fourier expansion of Eisenstein series.

(2.1) Setup. Fix anatural number N. Let ¢ = ¢y bethe N’th root of unity, ¢ := ¢Zi/N,
Let g = gy bethefunction of z defined by ¢ (z) = e?™#/V,

In (1.7) weintroduced thefunction F(z) = 1/(2sinz) and itslogarithm f(z) = log F (z).
Thelogarithm £ (z) had a specific determination in the upper half plane, denoted £+ in (1.7):

Tl 1
flo)= _7+lz+|091—e2i1’

3z > 0. (2.1.1)

where the logarithm on the right side is the principal determination, log1l/(1 — w) =
> o1 (L/dyw? when |w| < 1.

Leta beaninteger. Then (2.1.1) appliesto (z +a)/N. Ase? @HO/N — rag weobtain
the equation,

f(NZ;na):Ni(—%+Z;a)+Z§add_lqd'
d>1

Assumethat x : Z — C hasperiod N. Thelogarithm f, = log F, wasdefinedin (1.7) as
thesum ), x(a) f((z + wa)/N) where the sum is over a system of representatives modulo

N. Using the above determination, we obtain in the upper half plane an expression for the
function f, (rz). More precisely, let [, (z) be the linear function,

) =Y x(@mi(-1/2+ (z +a)/N).

In addition, let 7 (x, ¢) bethe Gauss sum, defined for any N’th root of unity ¢ asthe sum,

T(x, 0) =) x(@¢”. (2.1.3)

Then the function f, (rz) is givenin the upper half plane § by the formula,

@) =1+ ) t(x.¢Hd q? whereg = /N, (2.1.4)
d=1

Theformulaz+ x(n)/(z+n) = —nf)/( (7 z) for al non-integer z was proved in Lemma
(1.9). Intheupper half plane, theright side of theformulaisthederivative of (2.1.4) multiplied
by —1. Asq’(z) = (2ri/N)q(z), we obtain the formula,

A — Y x@) = == Y e e (2.1.5)
a d=1

Z+n
n
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By applying the operator d¥—1/dz*~1 and multiplying by (—1)*~1/(k — 1)!, we obtain, for
k > 2andz € $, theformula,

x(n) (_l)k 2miNk dy gk—1 d
= ,CNd ) 2.1.6
Xn:(Z-I—n)k (k—l)!<N) ;T(XC) q ( )
(2.2) Definition. Let x: Z x Z — C beafunction of 2 integer variables, and set x,, (n) :=
x (m,n). Assume that the function x is bounded. In addition, assume for all m in Z that
xm(n), asafunction of n, has period N. Definefor k > 1 the associated Eisenstein series,

El@=Y" _x{m.n)_ (2.2.1)

(mz +n)k’

where the sum is over (m,n) # (0,0). The seriesis normally convergent for k > 3 and
defines a holomorphic function in the upper half plane $). If the summation is arranged as

follows: (0 ) ( )
El@=Y 2= oy LA (2.2.2)
‘ n#0 w0 (mz+mt

then the series is normally convergent also for k = 2 and defines a holomorphic function
E%‘ (z). Infact, aswe shall show below, if thefunction x satisfiesthat ), oq v X (1, a) =0
for all m, andif thesummationsover n in (2.2.2) areinterpreted asthe symmetric summations,
then the right hand side of (2.2.2) is even convergent for k£ = 1.

For every natural number r, consider thefollowing linear combination of (k — 1)’st powers
of the divisors of r:

ka_l(”) — Z Z X(r/d, a)eZJTiad/Ndk—].’

d|r amod N

where the inner sum is over a system of representatives for the residue classesmodulo N. In
terms of the Gauss sums of (2.1),

ol () =) tGtryar ¢Hd .
d|r

Finally, denoteby A () thek’th special number of (1.6) associated tothefunction yo(n) =
x (0, n).

(2.3) Observation. Obvioudy, for al k > 1, it follows by a change of summation order
in (2.2.2) that E,f (z+1 = E,’f(z) where v (m, n) ;= x(m,n — 1); in particular, E,f (z +
N) = E,f (z). If kK > 3, then it follows by a change of summation order in (2.2.1) that
E,f(—l/z) = zkE,‘f(z),Wherew(m, n) := x(—n, m). Theargument does not work for k = 2
ork =1.
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(2.4) Proposition. In the setup of (2.2), assume either that k > 2, or that ¥ = 1 and
>, x(m,a) = Ofor all m. Then, with g = ¢27/2/N,

x (m,n) (=D /2mik & )
,,; Z (mz + n)k - (k — 1)!< N ) ;‘715_1(”4 . (24.1)

1 n

On the left, the sum over n is the symmetric summation when k£ = 1.

Proof. Assumethat m > 1. Theng(mz) = q(z)™. Hence, by (2.1.6) applied to mz,

, —DF 2mink & B
2 Ojiini Z;" N (li—)l)!< zj\T/l> Yt £Had g™, (2.4.2)

On the right side, the Gauss sum is bounded as a function of m, n since x is assumed to be
bounded. Obviously, the double series >°,, , d*~1¢™“ is normally convergent when g isin
the unit disk. Hence the sum over m > 1 of the functionsin (2.4.2) converges normally. In
the resulting equation, rearrange the summation on the right side according to the value of
r :=md. Clearly (2.4.1) results. I

(2.5) Corollary. Assume either that k > 2, orthatk = 1and )_, x (m, a) = O for all m.
Define x*(m, n) := x(—m, —n). Then the Fourier expansion of E,f (z) in $ is the following,
with g = 2 /2/N,

w, o (=DFxk (=D /2mi
@ = B0+ o= (7 )Zbrq,

where b, = o' ;(r)+ (—1)k0]§(_*1(r). If Ax(x) # O, then the normalized series G} obtained
by dividing E,f by its constant term has the following expansion,

Gi(x) =1+ AL()@) Y big".

r>1

Proof. Theleft sideisequal to the sum of the two seriesin (2.2.2). Thefirst (constant) series
is, by (1.10.2), equal to the constant termin the asserted Fourier expansion. The second series
is separated into two: the sum of terms for m > 1 and the sum of terms for m < —1. For
the first sum, use the equation (2.4.1). In the second sum, replace m by —m to obtain the

following sum:

Z Z x(=m,n)

k-

ol (—mz +n)
Replace n by —n in the inner sum and multiply by (—1)%. The result isthe left hand side of
(2.4.1) with x replaced by x*. Thus(2.4.1) appliesto the second sum as well, and we obtain
for the Fourier coefficient b, the asserted sum.

The expression for the normalized series follows immediately from the expression for

Ef (2). 0
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(2.6) Example. Assumethat x isthe constant function x (m,n) = 1. Then N = 1, and the
corresponding function Ej isthe Eisenstein series considered in (Autm.2.1) for k > 3,

’ 1
Ex@) =) ol

The divisor sum is the sum,
op_1(r) = de_l.

d|r

The series vanisheswhen k isodd. Assumethat k > 2 iseven. Then b, = 204_1(r). Hence
we obtain the Fourier expansion,

—Dk/22(2m)* :
Er(z) = 2{(’6) + ( ()k — ;)!n) ;Ul{—l(i’)qr, g = eZmz' (2.6.1)

The normalized series Gy is obtained by dividing by 2¢ (k). In the notation of Section 1,
2¢ (k) = wF A /(2¥ — 1)(k — 1)!. Hence we obtain for G the Fourier series,

-1 k/22k+1 2k -1
Gr(z) =1+ =D A ( ) ZUk—l(f’)qr- (26.2)
r>1

In particular, the constant term is equal to 1 and all the Fourier coefficients are rational
numbers. In particular,

Go(z) =1— 24201(r)qr,

r>1
Ga(z) =1+240) o03(r)q’. (2.6.3)
r>1
Ge(z) =1-504) os5(r)q".
r>1

The number Ay is given by (1.2). It follows that the factor in (2.6.2) is equal to —2k/ By,
where By, isthe usual Bernoulli number.
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3. The function of Weierstrass.

(3.1) Setup. FixinC alattice 2, say 2 = Zw1 + Zw, where the complex numbers w, and
wy are linearly independent over R. Denote by M (€2) the field of meromorphic 2-periodic
functions, that is, afunction f belongsto M () if and only if f is meromorphicin C and
has any w in Q as period:

fz+w) = f(2).

Thegroup €2 actson C by trandl ations, and the 2-periodic functions are the functionsinvariant
under theaction. Obviously, afundamental domain for the actionisany lattice parallelogram,

R={z0+nhwi+nrw|0=<t <1}.

The equivalence on the boundary of R identifies the opposite sides of the parallelogram.
It follows that the quotient X := C/Q isatorus. In particular, the quotient is a compact
connected Riemann surface of genus 1, and M (2) isthe field of meromorphic functions on
X.

(3.2) Lemma. Let f be a non-zero function in M (€2). Then the following two formulas hold:

> ord, f=0 Y (ord, flu=0 (mod Q). (3.2.1)

u mod Q u mod

Proof. The boundary of the fundamental domain R is formed by four line segments: the
segment L1 from zg to zg + w2, the segment L, from zg to zg + w1, and the two translated
segments L} = Lj + w; for j = 1,2. We may assume that the angle from > to w; is
positive, that is, the quotient w1 /w7 has positive imaginary part. Then the boundary of R, as
an oriented path, isthe sum

3R:L1+L,2—L§L—L2.

Clearly, we may choose zg such that f has no zeros or poles on the boundary of R. Consider
the path integral,
1 /(@)

2rti Jyr f(2)

Itsvalueis, by the residue formula, equal to the left hand side of thefirst formulain (3.2.1).
On the other hand, since f'/f is Q-periodic, it follows that [, (f'/f)dz = ij (f'/f)dz.
J

Hence the path integral (3.2.2) isequal to 0. Therefore, the first formulain (3.2.1) holds.
To prove the second formula, consider the path integral,

1 z2f'(z)
dz. 3.2.3
2ri /aR @« (323

The poles of the integrand are the poles and the zeros of f(z). At apoint u which is either
azeroor apoleof f,theresidueof zf'(z)/f(z) isequa to ku, where k = ord, f. Hence,

dz. (3.2.2)
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by the residue formula, the path integral is equal to the left hand side of the second formula
in (3.2.1). On the other hand, since f'/f is Q-periodic, it follows that [, (zf'/f)dz =
J

ij zf'/f)dz + o; ij (f'/f)dz. Hence the path integral (3.2.3) is equal to the following
sum,
w1 1) w2 1)
-5 dz + —; dz.
2mi Jp, f(2) 2ri Ji, f(2)
By the transformation formula for integrals, the path integral |, L (f'/f)dz is equal to the
integral fij (1/w)dw. Moreover, the image path fL; is a closed path in C*. Therefore,
theintegral (27i)~! ij (f'/f)dz isaninteger. It follows that the sum (3.2.4) is an integral

linear combination of w1 and w». Hence the sum belongs to 2. Thus the second formula of
(3.2.1) holds. I

(3.3) Remark. The two formulas of (3.2) are trivial if f is constant. Assumethat f isa
non-constant function in M (£2). Then the formulas apply to f(z) — A for any A in C. It
followsfrom the first formulathat the number of times f (), for u« modulo €2, takesthe value
A isequal to the number of poles; in particular, the number isindependent of A. Similarly, by
the second formula, again modul o €2, the sum of the complex numbersu for which f (1) = A
is congruent to the sum of the polesof f; in particular, the sumis modulo €2 independent of
A.

Asaspecial caseg, it followsthat if afunction f in M (2) hasno poles, then f isconstant.

(3.2.4)

(3.4). TheWeierstrass gp-function isthe function o (1) = g (u) defined by the series,
1 1 1
o) = Y + ;(W — ;), (34.1)

where the sum is over non-zero w in Q. The series is normally convergent in C and the
function g (u) isameromorphic function with poles of order 2 at the points of 2. Obviously,
itisan even function: p (—u) = o (u).

It is not hard to see directly that o (1) is Q-periodic. Alternatively, we may proceed as
follows. consider the derivative:

, _—2 -2 B -2
p(u)_$+cuzﬂ)7(u—w)3 —;7@_0))3.

Clearly, the derivative o' (1) is Q-periodic. Therefore, for wp € 2, there is an equation,
o (u+ wo) — o (u) = C withaconstant C = C(wp). Takeu := —u — wg in the equation.
Since g (1) isan even function, it followsthat C = 0. Hence g (u) is Q2-periodic.

To obtain the Laurent expansion of g () at theorigin, consider thedifference p (1) —1/u?.
It follows from (3.4.1) that the difference is holomorphic at the origin with the value 0.
Moreover, by applying the operator (d /du)* for k > 1 to the difference, we obtain the series,

(—Dk(k + D!
Z -

_ k+2
s (u — w)
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Clearly, the value of the series at the origin is equal to the number (k + 1)! E;2 where
Ey = Ex () = Zw?éow_k as defined in (Autm.2.1). Hence g (1) has at the origin the
Laurent expansion,

1
)=+ > (k+ D Eiou*. (3.4.2)
k>1

From the expansions for g (1) and o' (u),
o =u"2+3Eu’+5Eu*+---, o =—2u"3+6FEwu+ 20Egu’+ ---,
we obtain easily the equation,
(9% — 43 + 60E4p = —140Eg + - - - .

The left hand side is Q2-periodic and its possible poles belong to 2. The right hand side is
holomorphic at 0. Therefore, the left hand side has no poles. It follows that the left hand
sideis constant, equal to —140E. Hence, the gp-function satisfies the following differential
equation:

(9)? = 4p° — g2 — g3, (34.3)
where g = ¢2(22) = 60E4(R2) and g3 = g3(2) = 140E6().

(3.5). Modulo w, the originisthe only pole of g’(u), and it isa pole of order 3. Therefore,
by (3.2), e (u) has 3 zeros. Consider the three numbers u1 = w1/2, up = w»/2, and
uz := (w1 + wp)/2. They areinequivalent modulo Q, and u; = —u; (mod 2). Since ' (1)
isan odd function, the numbers u ; are zeros of p’(u). Hencethe u; are exactly the zeros of
o' (u).

Thethreevalues A; = g (u;) are different. Indeed, for A € C, the function o (1) — X has
apole of order 2 at the origin. Hence, again by (3.2), the function g (1) — A has two zeros.
For A = A;, the point u; is a zero for o (1) — A, and of multiplicity 2, since ' (u;) = 0.
Hence u; isthe only zero of o (1) — A;.

By (3.4.3), thevalues A; = g (u;) are roots of the polynomial 4X 3 _ g2X — g3, and they
aredifferent. Thelatter polynomial has, for arbitrary g, g3in C, threeroots A; in C, and the
discriminant of the polynomial isthe number,

D = 16(r1 — 22)2(A1 — 23)2(h2 — A3)% = g5 — 27g2.

Hence, for go = g2(Q) and g3 = g3(R), it followsthat the discriminant D(Q) = g5 — 27g7
IS non-zero.

(3.6) Proposition. Let go = g2(R2) and gz = g3(2). Then the discriminant D(2) =
g3 — 27gZ is non-zero. Moreover, the map u > (g (u), g’ (1)) induces a bijection from the
set of points u in C —  modulo 2 to the set of pairs (x, y) € C? satisfying the equation

y2 = 4x3 — gox — g3 (3.6.2)
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Proof. Thefirst assertion was proved in (3.5). To provethe second, notefirst that, by (3.4.3),
the pair (x, y) := (p (), ' (u)) satisfies the equation (3.6.1).

Consider conversely apair (xo, yo) satisfying the equation (3.6.1). Thefunction g (1) — xg
has, counted with multiplicity, two zeros. If ug isa zero, then so is —ug. If yg = 0, then
xo is one of the three roots A ; in the polynomial 4x§‘ — g2 — g3 and ug is, modulo 2, the
corresponding unique zero u; of o (u) — A;. If yo # 0, then ug is not one of the numbers
uj. Hence the two numbers uo and —ug are different modulo ©2. Moreover, the two values
' (up) and g’ (—ug) = —g’(up) are non-zero and hence different. Hence exactly one of the
valuesis equa to yg and the other value is equal to —yo.

Therefore, in both cases, there is a unique up modulo €2 such that (g (uo), g’ (ug)) =
(x0, y0)- I

(3.7) Note. Let z be apoint in the upper half plane §. Consider the lattice 2, := Zz + Z.
Then there is an associated p-function pq, (w). Moreover, the numbers E(2;), for k > 3,
and g2(2;) and g3(£2,), are functions of z. In fact, they are the functions E(z) of Example
(Autm.2.1), and g2(z) and g3(z) of Example (Autm.2.5).

By Example(2.5), Ex(z) = 2¢ (k)G (z) and2¢ (k) = ¥ Ax /(2K —1)(k—1)!. Inparticular,
asAg = 2and Ag = 24,

2m)* 2m)°®
G, g3(2) = M0E4(D) = 5 Gel).

g2(2) = 60E4(z) =

As a consequence,

Ga(2)® — Ge(2)?

D(2) = g2(2)° — 27g3(2)% = (2m)2 . —

Hence, except for the factor (27)12, the discriminant of (3.6), as afunction D(z) of z € $,
is equal to the discriminant A(z) of Example (Autm.2.3), cf. (Autm.7.1). Thus the non-
vanishing of D(2) impliesthe non-vanishing of A(z). Similarly,

g2(2)° B Ga(2)®
g2(2)% — 27g3(2)?  Ga(2)® — 27Ge(2)?

(3.7.2)

It follows that the left hand side of (3.7.1) multiplied by 123 isequal to Klein'sfunction j (z)
defined in (Autm.2.5).
Ingeneral, for apair (a2, az) of complex numberssuchthat a3 — 27a2 # 0, wewill write

123c123

(az, a3) ‘== —w———=—.
/ a23 — 27c132

If (a5, a3) is a second pair, then j(aj, a3) = j(az, a3) if and only if, for some non-zero
number A,
as = A ao, as = 284as. (3.7.2
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Indeed, the “if” part is obvious. Assume conversely the equality of the two numbers ;.
Clearly, if a, = 0, then a5 = 0, and so (3.7.2) holds with 6 possible values of 1. Assume
that ap # 0. Then thefirst equation of (3.7.2) can be solved with 4 values of A. For any such
A, it follows from the equality of thetwo j'sthat a2 = 112a}?. Therefore, if az # 0 thenthe
two equations (3.7.2) hold for 4 values of 1, and if az = 0 then the equations (3.7.2) hold for
2 valuesof A.

(3.8) Proposition. Given two complex numbers a2 and a3 such that a23 — 27a32 =# 0. Then
there exists a unique lattice 2 in C such that ax = g2(2) and az = g3(2).

Proof. Notefirst that any lattice 2 is of the form,
Q=AQ,, (3.8.2)

forsomex € C*andz € $). Indeed, 2 = Zw1+Zwy, wherewemay assumethat w1 /ws € 9;
hence it sufficestotake A := wp and z := w1/w2. Moreover, z is uniquely determined up to
multiplication by amatrix in SL2(Z).
Next, note that the functions g>(£2) and g3(£2) are homogeneous, respectively of degree
—4and —6:
220.Q) =1""g2(Q), £3(AQ) = 1 %g3(). (382)

Indeed, more generally, it isobviousthat E (£2) is homogeneous of degree —k.

Now, by (3.7), Klein's j-invariant isthe function j (z) = j(g2(z), g3(z)). The j-invariant
is, by (Autm.7.4), an isomorphism $/I'(1) — C. In particular, there is a unique orbit
I'(1)z in $ such that j(az, a3) = j(z). It follows, as noted in (3.7), that ax = A %g2(z)
and a3 = A~ 8g3(z). Therefore, by (3.8.2), if Q is defined by (3.8.1), then a = g2() and
az = g3(£2).

To prove that 2 is unique, assume for a second lattice Q' the following two equations:

82(Q) = g2(Q),  g3(Q) = ga(). (38.3)

The equations are preserved if 2 and " are multiplied by the same factor. Hence we may
assume that
Q=1Q, Q= (3.8.4)

foranon-zerox and z, 7 € 9. Infact we may assumethat z and 7z’ belong to a given system
of representatives in the standard fundamental domain F for the action of SL2(Z) on $).
From the equations (3.8.4), it follows that j(z) = j(z'). Therefore, since z and 7’ are
assumed to belong to a system of representatives, it followsthat z = z’. Hence,
Q=1., Q=q. (3.8.5)
Therefore, by (3.8.2), (3.8.3), and (3.8.5),
g2(2) =M%g2(2),  g3(2) = 2%3(2). (3.8.6)
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If g2(z) and g3(z) are non-zero, it follows that A = +1; in particular, then Q, is invariant
under multiplication by 1. If g2(z) = 0, then it follows from the second equation that A is
a sixth root of unity. Moreover, since z is a zero of go, it is a zero of G4, and hence, by
(Autm.7.3), z = p. Therefore, the lattice 2, isinvariant under multiplication by A. Finaly,
if g3(z) isequal to 0, it follows similarly that A is a fourth root of unity and that z = i;
hence 2 isinvariant under multiplication by A. Thus, in all cases, the lattice €2, isinvariant
under multiplication by 1. Therefore, by (3.8.5), 2 = Q’, and the proof of the Propositionis
complete. I
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4. Notes on elliptic curves.

(4.1) Note. By definition, anelliptic curveisapair (X, o) consisting of a(compact, connected)
Riemann surface X and a distinguished point o of X. For instance, the torus X := C/Q
associated with alattice 2 in (3.1), with the image of O as distinguished point, is an elliptic
curve. As a second example, let g> and g3 be complex numbers such the g23 — 27g32 = 0.
Consider the equation,

v =4x3 — gox — ga. (4.1.1)

The equation defines an affine algebraic curve in the affine plane C2. The affine plane C?
is an open subset of the projective plane IP2(C). In fact, the points of IP2(C) are defined
by homogeneous non-zero sets of coordinates (x, y, z) up to multiplication by a (non-zero)
scalar. Among these sets of coordinates are the equivalence classes of coordinates (x, y, z)
for which z # 0. Clearly, the latter equivalence classes are represented by coordinates of
the form (x, y, 1), and hence by points (x, y) of C2. The projective curve corresponding to
the equation (4.1.1) isthe set of pointsin IP%(C) whose homogeneous coordinates (x, y, z)
satisfy the homogenized equation,

yzz =453 — gzxzz — g3z3. (4.1.2)

Clearly, the homogenized equation (4.1.2) is satisfied for (x, y, z) with z # 1 if and only
if (4.1.1) is satisfied for (x/z, y/z). In addition, the homogeneous equation is satisfied for
(x,y,0)if and only if x = 0. Hence the projective curve consists of the points of the affine
curve and the point represented by (0, 1, 0).

The projective curve defined by (4.1.2) will be denoted X (g2, g3). It isnot hard to prove
that X (g2, g3) isaRiemann surface.

By Proposition (3.8), there is a lattice 2 such that go = ¢2(R2) and g3 = g3(2). Let
e (u) = po(u) bethefunction of Weierstrass. It followsfrom Proposition (3.6) that the map
ur> (p), ' (w),l)foru ¢ Qandu — (0,1, 0) for u € Q induces abijection,

C/Q— X(g2, g3).

Clearly, the map is a map of Riemann surfaces. Hence it is an isomorphism. In particular,
therefore X (g2, g3) isaRiemann surface of genus 1, and with o := (0, 1, 0) asdistinguished
point, it isan elliptic curve.

(4.2) Note. Let X beaRiemann surface. Thedivisorson X, see (Autm.8.3), form an abelian
group, freely generated by the points of X. Two linearly equivalent divisors have the same
degree. Thegroup of linear equivalence classes of divisorsisthePicard group PicX. Denote
by Pic" X the set of equivalence classes of degree n. Then each Pic" X is a coset modulo the
subgroup PicYX.

For any divisor D of X, denote by cl(D) the equivalence class of D inPic(X). A point p
of X definesadivisor 1.p of degree 1; itsclass cl(1.p) belongsto PiclX.
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Lemma l. Let X be a Riemann surface of genus 1. Then the map p — cl(1.p) is a bijection,

X = Pictx.

Proof. Since the genusis equal to 1, it follows from Riemann-Roch’s Theorem that
dim H°(D) = deg D if degD > O. (4.2.1)

We have to prove the following assertion: for any divisor D of degree 1, there is a unique
point p of X suchthat D and 1.p are linearly equivalent, that is, there isa unique point p of
X such that, for some non-zero ¢ € M(X),

dive+D=1p. (4.2.2)

Now, the left hand side div ¢ + D isadivisor of degree 1. Henceitisof theform 1.p if and
only if it is positive: divp + D > 0. By (4.2.1), the functions ¢ for whichdivp + D > 0
form a one-dimensional subspace of M (X). Therefore, the assertion holds. 0

(4.3) Note. Consider an dlliptic curve (X, 0). Clearly, the map D +— D + l.o induces
a bijection Pic’X —> PiclX. By composing with the bijection of Lemma |, we obtain a
bijection from X to the commutative group Pic®X. Hence there is a unique structure as an
abelian group on the points of X such that the bijection is an isomorphism of groups. The
structure will be called the elliptic addition on X, and it will be denoted additively. Clearly,
under the bijection, the distinguished point o of X corresponds to the zero element of Pic®X.
Hence o is the zero element of the elliptic addition.

Unwinding the definition, the elliptic addition of two points p and ¢ on X is the unique
point r = p + ¢ of X such that we have the linear equivalence of divisors,

1lp—-1o)+(1g—1o)=1lr—1o,

or, equivalently,
lp+1lg=1lr+1lo. (4.2.3)

Lemma Il. The elliptic addition, as a group structure on (X, o), is characterized by the
following property: Let ¢ be a non-zero meromorphic function on X. Then the sum,
Zpgx(ordp @) p, with respect to the elliptic addition, is equal o.

Proof. Let usfirst prove that the property characterizes the elliptic addition. Clearly, by the
property applied to aconstant function, the element o isthe zero element. If p and ¢ are points
of X, let r be the (unique) point defined by therelation (4.2.3). Thelatter relation meansthat
for some non-zero function ¢ we havethat divy = 1.r + 1.0 — 1.p — 1.q. Therefore, by the
property, the equationr + o0 — p — g = o holdsin the group X. It followsthat r = p + ¢.
Next we prove that the property holds: By construction of the elliptic addition, the map
p — cl(1.p — 1.o) isagroup isomorphism from X to Pic’X. Thusis suffices to prove that
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thesum, > pex (0rd, @) p, with respect to the elliptic addition, under thisisomorphism goes
to the zero class of PicPX. Clearly, the sum goes to the class of the divisor,

Z(Ordp ¢)(L.p—1lo) =divp — (degdivy).o.

peX

The divisor div ¢ is principal and its degree is equal zero. Hence the class of the divisor is
equal to the zero class. Thusthe elliptic addition has the property. I

(4.4) Note. Consider the elliptic curve X = C/Q of (4.1). It has a natural group structure
as a quotient of the additive group of C modulo the subgroup €2. It follows from Lemma |
above and Lemma (3.2) that the addition induced on X by the addition of C is equal to the
elliptic addition.

Consider the elliptic curve X (g2, g3) of (4.1). It hasagroup structure defined by the well
known addition on a smooth cubic. The latter addition is defined as follows: consider, to
simplify, two different points p = (x1, y1) and ¢ = (x2, y2) on the affine part of the curve.
Let L = 0 betheequation of thelinethrough p and ¢. Itintersectsthe curvein athird point s
onthecurve. Let M = 0 be the equation of the line through o and s (it issimply the vertical
line through s). By definition, the third point » of intersection of M = 0 and the curveisthe
composition of p and g. Now, the quotient L /M may be viewed as a meromorphic function
of the curve. It isnot hard to see that

dv(L/M)=1p+1lg+1ls—Qo+1ls+1lr)=1lp+1lg—1o—1r.

Therefore, the point r isalso the eliptic sum of p and ¢.

(4.5) Note. Let (X, o) beané€lliptic curve. Wewill sketch the proof that (X, o) isisomorphic
to acurve of theform X (g2, g3) (the Weierstrass normal form).

First, since X is of genus 1, it follows from the Theorem of Riemann-Roch that H9(12.0)
isof dimension n for n > 0. In particular, the following relations hold:

H®(0.0) = HY(1.0) c H°2.0) c H°@3.0) c H°4.0) c H°(5.0) c H°(6.0).

(Thefirst equality holds because H°(0) isthe 1-dimensional space of constant functions and
contained in the 1-dimensional space H%(1.0).)

Now choose a function x in H%(2.0) and not in H%(1.0) and a function y in H°(3.0)
and not in H%(2.0). The functions x and y are holomorphic except at o; at o they have,
respectively, a pole of order at most 2 and at most 3. Since x ¢ H%(1.0), it follows that
ord, x = —2. Similarly, ord, y = —3. Clearly, the function x? belongs to H°(4.0) and
since ord, x2 = —4 it does not belong to H%(3.0). Similarly, xy belongsto H%(5.0) and it
does not belong to H9(4.0), and the two functions x2 and y2 belong to H%(6.0) and not to
HO(5.0). It follows that the 5 functions 1, x, y, x2, xy, form abasis for H%(5.0), and that
they supplemented with any of the two functions y? or x3 form abasis of H%(6.0). Hence,
thereisarelation,

y2:ax3—|—bxy+cx2—|—dy—|—ex—|—f,
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witha # 0. Now, in the choice of x and y, we could replace x by ax + 8 for « # 0, and we
couldreplace y by yy+38x +e¢ fory # 0. Itisnot hard to seethat with suitabl e replacements,
we can obtain an equation in the Weierstrass normal form,

y2 — 4x3 — g2x — g3, (45.1)

and, moreover, the coefficients g> and g3 are uniquely determined up to a choice of the form
g2 — Agoand g3 — 18g3. Thetwo functions x and y are holomorphic on the complement
of 0. Hence they define a map from X — {0} into the subset of C? defined by the equation
(4.5.1).

Thefunction y hasapole of order 3 at 0 and no more poles. Therefore, the function y has
three zeros p1, p2, p3, not necessarily different. By the property of Lemmall, in the group
of X,

p1+p2+p3=o. (4.5.2)

Consider the polynomial on the right side of Equation (4.5.1). It follows from the equation
that the value A1 := x(p1) isaroot of the polynomial. The function x — A1 has a pole of
order 2 at o and no more poles. Hence it has two zeros, one of which is of course p1. Let pj
be the other zero (not necessarily different form p1). Then, by the property of Lemmall,

pi+pl=o0. (4.5.3)

By comparing (4.5.3) and (4.5.2), it followsthat p] isdifferent from p, and p3. On the other
hand, since A1 = x(p7) isroot of the polynomial, it follows from (4.5.2) that p; is a zero
of y. Thus p] isone of the points p1, p2, p3 and since p] is different from p, and p3, we
have necessarily p; = p1. Hence p; is different from p, and p3. We conclude that the 3
points p1, p2 and p3 are different and that the function x takes 3 different values on these
three points. Asthe latter values are roots of the polynomial, it follows that the discriminant
g3 — 27g2 of the polynomial is non-zero.

Hence the elliptic curve X (g2, g3) is defined, and we have obtained a map from X to
X (g2, g3). It follows as in the proof of (3.6) that the map is bijective. Hence it is an
isomorphism of Riemann surfaces and of elliptic curves.

(4.6) Note. Givenané€lipticcurve (X, o). By (4.5), (X, o) isisomorphicto theélliptic curve
X (g2, g3). Moreover, (g2, g3) are unique up to the transformation defined in (4.5). It follows
that the following complex number,

(X,0) = /7.
Jj (X, 0) 32152
isawell defined invariant of the elliptic curve. Theinvariant characterizes the elliptic curve,
that is, two curves (X, o) and (X', o) are isomorphic if and only if j(X,0) = j(X’, o).
Indeed, assumethat the two invariants are the same. Then, by (3.7), with an obviousnotation,
we have the equations g5, = A4go and g5 = 18¢3 with a non-zero scalar . Hence the two
curves are isomorphic.

Asnoted in (4.1), every dliptic curve X (g2, g3) has a parameterization x = o (u), y =
' (1) with a Welerstrass gp-function defined by a suitable lattice 2. Therefore, it follows
from (4.5) that every abstract elliptic curve (X, o) isisomorphic to torusC/ 2.
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(4.7) Exercise. Prove the addition formula for the p-function: Let u, v and w be complex
numbers in the complement of 2. Assumethat u + v + w belongsto 2. Then,

P W 1
p) ' 1
pw) p'(w) 1

=0.
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. Index.

angle, Discr.3.3

angular sectors, Discr.3.3
anti-transformation, Mob.1.11
automorphic action, Autm.1.1
automorphic factor, Autm.1.1
automorphic form, Autm.4.8
automorphic function, Autm.4.8
automorphy equation, Autm.1.1
axis, M6b.3.13

balanced, M6b.1.3

Bernoulli numbers, App.1.1
Bernoulli numbers, App.1.16
boundary segments, Discr.3.2

boundary transformation, Discr.3.4

canonical divisor, Autm.8.3
canonical domain, Discr.4.1
canonical generator, Discr.1.3
canonical generator, Discr.1.4
Cayley transformation, M6b.1.5
chain, Autm.8.1

congruence subgroup, Mdlar.3.1
conjugate, Autm.3.10
conjugate, Autm.3.16
conjugation, M6b.2.6
crossratio, Mdb.1.6

cusp form, Autm.4.8

cusp, Discr.1.4

cusp, Discr.3.2

cuspidal divisor, Autm.8.6
degree, Autm.8.3
determination, Autm.1.8
discriminant, Autm.2.3

disk, M6b.1.8

divisor, Autm.8.3

dual factor, Autm.8.10
n-factor, Autm.2.3
n-function, Autm.2.3
Eisenstein series, App.2.2
Eisenstein series, Autm.2.1
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Eisenstein series, Poinc.1.4
elliptic addition, App.4.3

elliptic curve, App.4.1

elliptic matrix, M6b.2.1

eliptic orbit, Discr.1.4

eliptic point, Discr.2.8

elliptic point, M6b.2.7

elliptic side, Discr.5.1

Euler characteristic, Discr.5.1
Euler characteristic, Discr.5.2
Euler numbers, App.1.1
exponentially bounded, Autm.4.1
exponentially bounded, Autm.4.4
factor, Autm.1.9

finite disk, Autm.1.7

finite domain, Discr.3.2

first kind, Discr.3.15

Fourier coefficients, Autm.5.2
Fourier expansion, Autm.5.2
Fuchsian group, Discr.3.15
fundamental domain, Discr.3.1
fundamental neighborhood, Discr.2.8
I"-order, Autm.4.5

Gauss sum, App.2.1

genus, Autm.8.3

genus, Discr.5.1

geodesic circle, M6b.3.6

half turn, M6b.3.15
homogeneous factors, Autm.1.11
homogeneous, Mdb.1.4
homogenized group, Mdlar.3.1
horo cycle, Discr.2.8

hyperbolic matrix, M6b.2.1
inhomogeneous, Mdb.1.4

integral form, Autm.4.8
invariant, Autm.1.9

irregular cusp, Discr.1.4
Jj-automorphic function, Autm.4.8
j-regular cusp, Autm.6.10
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j-invariant, Autm.2.5

Klein's j-invariant, Autm.2.5
level-N subgroup, Mdlar.3.1
[imit point, M6b.3.2

limit rotation, M6b.3.13
linein®, M6b.3.2

linearly equivalent, Autm.8.3
local parameter, Autm.5.2
loxodromic, Mdb.2.1

Mobius transformation, M6b.1.1
modular group, Mdlar.1.1
nearest point, Discr.4.4
non-euclidean circle, M6b.3.6
non-euclidean distance, M©b.3.3
normal domain, Discr.3.10
order, Autm.4.1

order, Discr.1.4

ordinary point, Mdb.2.7
ordinary point, Discr.2.8
parabolic matrix, M6b.2.1
parabolic orbit, Discr.1.4
parabolic point, M6b.2.7
parameter, Autm.3.3

periodic, App.3.1

Picard group, App.4.2

Poincaré series, Poinc.1.2
principal determination, Autm.1.8
principal divisor, Autm.8.3
projective curve, App.4.1
projective line, Mdlar.1.1

proper map, M6b.4.1

properly discontinuous, Discr.2.3
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Ramanujan’s t-function, Autm.7.1
reflection, M6b.3.13
regular cusp, Discr.1.4
representatives, Mob.1.1
rotation, M6b.3.13
semi-direct product, Autm.1.3
side, Discr.3.4

side, Discr.4.3

sign, Autm.3.3

special number, App.1.6
surface, Discr.5.1
o-factor, Autm.2.6
o-function, Autm.2.6
6-group, Mdlar.3.3
r-function, Autm.7.1
Theorem A, Autm.6.2
Theorem B, Autm.6.3
Theorem C, Autm.6.7
Theorem D, Autm.6.11
Theorem E, Autm.6.15
Theorem F, Autm.6.16
Theorem G, Poinc.1.7
Theorem H, Autm.8.9
trandation, M6b.3.13
value, Autm.1.8

vertex, Discr.3.2

vertex, Discr.4.3
Weierstrass g-function, App.3.4
weight-k, Autm.3.16
width, Discr.3.16

width, Discr.4.4
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Specia symbols:

Ay, specia numbers, App.1.2

Ar(x) , specia numbers, App.1.6

By , Bernoulli number, App.1.1

B (x) , Bernoullli numbers, App.1.16
D/ T, closed orbit space, Discr.2.8
A(z), discriminant, Autm.2.3

or(®), Discr.1.1

deg D, degree of divisor, Autm.8.3

8p , haf turn, M6b.3.15

div ¢, principal divisor, Autm.8.3

df (u, v, w, z), crossratio, Mob.1.6
dist, non-euclidean distance, M©b.3.3
¢, unit disk, M6b.1.8

n(z) , Dedekind eta-function, Autm.2.3
Ey , Euler number, App.1.1

Er(z), Eisenstein series, Autm.2.1
Ef(z), Eisenstein series, App.2.2

ey , order of elliptic point, Discr.1.4

g, genus, Discr.5.1

Gg(T, j),integral forms, Autm.4.8
I"(N), congruence subgroup, Mdlar.3.1
I"(1) , the modular group, Mdlar.3.1

G (z) , Eisenstein series, App.2.2

G} (z) , Eisenstein series, App.2.5

Yu , canonical generator, Discr.1.4

I'y , theta group, Mdlar.3.3

I"'o(N) , congruence subgroup, Mdlar.3.1
£, upper half plane, M6b.1.8
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h(x) , invariant of matrix, M6b.2.2
Ic(f), pathintegral, Autm.8.1

J(y, z) , denominator, M6b.1.1

j(z), Klein'sinvariant, Autm.2.5

Jn(y, 2) , the n-factor, Autm.2.3

Jo (v, z) , the 6-factor, Autm.2.6

Ky , parameter, Autm.3.3

w(I), invariant of I, Discr.5.6

W , group of nth roots of unity, Mdlar.1.1
M(T, j), meromorphic forms, Autm.4.8
ve(I") , number of orbits, Discr.5.6
ord!, the I"-order, Autm.4.5

wy , Sign, Autm.3.3

e (u) , Welerstrass function, App.3.4
PicX , Picard group, App.4.2

g = €72/ ocal parameter, Autm.5.2
o1, reflection, Mob.3.15

s, speciel matrix, M6b.1.1

o' (r) , divisor sum, App.2.2

ST, j), cusp forms, Autm.4.8

SL (D), stabilizer of disk, M6b.1.8

t, specia matrix, M6b.1.1

0(z), thetafunction, Autm.2.6

7(x, ¢), Gausssum, App.2.1

t;, , trandation matrix, Discr.1.2

Top , trandation, M6b.3.15

u , special matrix, M6b.1.1

x (X), Euler characteristic, Discr.5.1
x4 , Dirichlet character, Poinc.3.1
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