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Möbius transformations

1. Möbius transformations.

(1.1) Setup. The general linear group GL2(C) consists of all 2 × 2 matrices with complex
entries and non-zero determinant,

α =
[
a b

c d

]
where ad − bc �= 0. (1.1.1)

The special linear group SL2(C) is the subgroup formed by matrices (1.1.1) for which the
determinant, det α = ad − bc, is equal to 1. For a matrix α of the form (1.1.1) and a point z
of the Riemann Sphere (the extended complex plane C = C ∪ {∞}), we define the product,

α · z := az + b

cz + d
. (1.1.2)

The transformation z �→ α · z of the Riemann sphere is called the Möbius transformation
associated to the matrix α. The denominator of the fraction (1.1.2) will play an important
role; we define, as a function of the matrix α and the complex number z,

J (α, z) := cz + d. (1.1.3)

Denote by C2 the 2-dimensional vector space of columns, and by (C2)∗ the subset of
non-zero columns. Then there is a surjective map (C2)∗ → C defined by

[z1

z2

]
�→ z1/z2.

The non-zero columns that are mapped to a given point z of C are called the representatives of
z. Clearly, the representatives of a given point form the non-zero columns in a 1-dimensional
vector subspace of C2.

Three matrices deserve a special notation:

s :=
[ 0 −1

1 0

]
, t :=

[ 1 1
0 1

]
, u :=

[ −1 −1
1 0

]
.

Note that s = tu.
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(1.2) Example. The translation z �→ z + b and the multiplication z �→ az for a �= 0 are
Möbius transformations, associated to the matrices,

[ 1 b

0 1

]
,

[
a 0
0 1

]
.

The point ∞ is fixed. On the other hand, if d is given complex number, then d is mapped to
∞ under the Möbius transformation associated to the matrix,

[ 0 1
−1 d

]
.

(1.3) Proposition. (1) Two matrices α and β define the same Möbius transformation, if and
only if they are proportional.

(2) The following equations hold for the product defined in (1.1.2):

α · (β · z) = (αβ) · z, 1 · z = z.

(3) Given in C two sets of 3 different points, (u, v, w) and (u′, v′, w′). Then there is a
Möbius transformation z �→ α · z under which (u, v, w) �→ (u′, v′, w′), and the matrix α is
unique up to multiplication by a non-zero scalar. In particular, the Möbius transformation
z �→ α · z is unique.

(4) If a column z̃ represents the point z, then the column αz̃ represents the image point
α · z.
Proof. Clearly (4) holds, and (2) is an immediate consequence. In (1), obviously, if the matri-
ces α and β are proportional, then they define the same Möbius transformation. Conversely,
it follows from (3) that if two matrices define the same Möbius transformation, then they are
proportional.

To prove (3), consider a set of 3 columns (ũ, ṽ, w̃) representing 3 different points (u, v, w)
in C. Say that the set of representatives is balanced, if

w̃ = ũ+ ṽ. (1.3.1)

When a representative w̃ of w is given, there is a unique choice of representatives of u and v,
such that the resulting set of representatives is balanced. Indeed, the vectors representing a
given point form the non-zero vectors in a 1-dimensional vector subspace of C2. Therefore,
since C2 is a 2-dimensional vector space, the decomposition (1.3.1) is the unique decompo-
sition of the vector w̃ into a sum of two vectors lying in two given different 1-dimensional
subspaces of C2. It follows in particular that a balanced set of representatives is unique up to
multiplication by a non-zero scalar.

Choose two balanced sets of representatives, (ũ, ṽ, w̃) for (u, v, w), and (ũ′, ṽ′, w̃′) for
(u′, v′, w′). If (u, v, w) is mapped to (u′, v′, w′) under a Möbius transformation z �→ α · z,
then, by (4), (αũ, αṽ, αw̃) is a set of representatives for (u′, v′, w′), and it is a balanced set,
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because (ũ, ṽ, w̃) is balanced. Therefore, by uniqueness of balanced sets, the set (αũ, αṽ, αw̃)
is proportional to the set (ũ′, ṽ′, w̃′). Hence we obtain the matrix relation,

α(ũ, ṽ, w̃) ∼ (ũ′, ṽ′, w̃′). (1.3.2)

In particular, extracting the equations of the first two columns, we obtain that

α ∼ (ũ′, ṽ′)(ũ, ṽ)−1. (1.3.3)

Conversely, if α is defined by equality in (1.3.3), then equality holds in (1.3.2), since, on both
sides, the third column is the sum of the first and the second. Therefore, by (4), the Möbius
transformation associated to α maps (u, v, w) �→ (u′, v′, w′).

Thus (3) has been proved, and the proof is complete.

(1.4) Definition. Usually we writeαz for the productα·z. It follows from Proposition (1.3)(2)
that the product (α, z) �→ αz defines an action of the group GL2(C) on the Riemann sphere
C. Clearly, the Möbius transformations are analytic automorphisms. Hence the associated
representation is a homomorphism of groups,

GL2(C) → Autan(C).

It is well known that the homomorphism is surjective, that is, every analytic automorphism
of the Riemann sphere is a Möbius transformation. It follows from Proposition (1.3)(1) that
the kernel of the homomorphism is the subgroup C∗ of non-zero scalar matrices. For any
subgroup G of GL2(C), we denote by PG the quotient of G modulo the subgroup of scalar
matrices contained in G, or equivalently, PG is the image of G in the group of Möbius
transformations. The subgroupG is called inhomogeneous if it contains no non-trivial scalar
matrix, that is, if G = PG.

Note that PGL2(C) is the group of all Möbius transformations. The group PSL2(C) is the
quotient,

PSL2(C) = SL2(C)/± 1.

Every matrix in GL2(C) is proportional to a matrix in SL2(C), as it follows by dividing by
a square root of the determinant. Hence PSL2(C) = PGL2(C), and every Möbius transfor-
mation is associated to a matrix in SL2(C). A subgroupG of SL2(C) is homogeneous if and
only if it contains the matrix −1.

(1.5) Example. To determine the Möbius transformation under which (∞, 0, i) is mapped
to (1,−1, 0), consider these two sets of balanced representatives for the two sets of points:[

i 0 i

0 1 1

]
,

[ 1 −1 0
1 1 2

]
.

It follows from (1.3)(3) that the Möbius transformation is associated to the matrix,[ 1 −1
1 1

][
i 0
0 1

]−1 ∼
[ 1 −i

1 i

]
.

Hence the transformation is the map z �→ (z−i)/(z+i). It is called the Cayley transformation.
To obtain a matrix in SL2(C), divide the matrix by the square root of its determinant 2i, that
is, divide the matrix by 1 + i.
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(1.6) Corollary. Any Möbius transformation preserves the cross ratio,

df(u, v, w, z) := u− w

v − w

/u− z

v − z
. (1.6.1)

In particular, a Möbius transformation preserves angles, it maps a circle to a circle and the
interior of an oriented circle to the interior of the image circle.

Proof. The cross ratio of four different points in C is the complex number defined by (1.6.1).
It is easy to extend the definition to the case when one of the four points is equal to ∞. Clearly,
for any set of four columns (ũ, ṽ, w̃, z̃) representing (u, v, w, z), we have the equation,

df(u, v, w, z) = det(ũ, w̃)

det(ṽ, w̃)

/det(ũ, z̃)

det(ṽ, z̃)
. (1.6.2)

The first assertion of the Corollary is the equation df(αu, αv, αw, αz) = df(u, v, w, z) for
any Möbius transformation z �→ αz. By (1.3)(4), the first assertion follows from (1.6.2),
since det(αũ, αṽ) = det α det(ũ, ṽ).

To prove the remaining assertions, fix a point v in C and, in C, a point u �= v. For any
point w in C different from u and v, consider the circle Cw through u, v, and w, oriented by
the order uvw. Let tw be the oriented tangent in the point v to the circle Cw. If z is a fourth
point, and tz is defined similarly from the circle Cz, then the following equation holds for the
angle from tw to tz:

� (tw, tz) = arg df(u, v, w, z). (1.6.3)

To prove Equation (1.6.3), consider first the case when u = ∞. Then tw and tz are the two
oriented straight lines from v to w and z, and the left hand side is the angle between them.
On the other side, the cross ratio reduces to the ratio (v − z)/(v − w). Hence the argument
of the cross ratio is equal to the left hand side. Assume next that u �= ∞, and consider the
oriented (straight) line t = −→uv from u to v. It is the common chord to the two circles Cw
and Cz. It follows from elementary plane geometry properties of the circle Cw, that the angle
from −→wv to −→wu is equal to the angle from tw to t ,

� (tw, t) = � (−→wv,−→wu).

Moreover, the angle on the right hand side is equal to the argument of (u−w)/(v−w). Now,
the equation (1.6.3) follows from the additivity � (tw, t)+ � (t, tz) = � (tw, tz).

As a consequence of (1.6.3), the cross ratio df(u, v, w, z) belongs to R+ if and only if z is
on the arc vu of the circle Cw, it belongs to R− if and only if z is on the arc uv of the circle,
it belongs to the upper half plane if and only if z is an inner point of the circle Cw, and it
belongs to the lower half plane if and only if z is exterior to the circle.

Therefore, as a Möbius transformation preserves the cross ratio, it follows that circles and
interiors of circles are preserved, and it follows from (1.6.3) that angles between circles are
preserved.
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(1.7) Remark. In the proof of (1.6) we obtained information on the argument of the cross
ratio df(u, v, w, z) by writing the cross ratio as a quotient of two fractions,

u− w

v − w
,

u− z

v − z
. (1.7.1)

Similarly, we can obtain information on the modulus of the cross ratio. Assume for simplicity
that the three points u, v, and w are not on a straight line (in particular, they are different
from ∞), and consider the (ordinary) triangle defined by them. Denote byW the angle at w
and by Uw and Vw the angles at u and v. The two lengths |u − w| and |v − w| are sides of
the triangle, and hence the quotient |u− w|/|v − w| is equal to the quotient sinVw/ sinUw.
Hence, as the sum of the three angles is equal to π , we obtain for the modulus of the first
fraction (1.7.1) the equation,

∣∣∣u− w

v − w

∣∣∣ = sinVw
sinUw

= cosW + cotUw sinW. (1.7.2)

Thus the modulus of the cross ratio df(u, v, w, z) is the quotient of the expression (1.7.2) and
the expression obtained similarly replacing w by z.

Fix u and v and an oriented circle C through u and v. Consider the expression (1.7.2) as
a function dC(w) defined for points w different from u and v on the circle C. The angle W
is constant, say equal to θ , on the arc from v to u, and on the arc from u to v the angle W
is equal to π − θ . Consider points on the arc from v to u. Then, as w runs from v to u, the
angle Uw increases from 0 to π − θ , and consequently, the function dC(w) decreases from
+∞ to 0.

Consider, for 4 different points (u, v, w, z) on C, the cross ratio df(u, v, w, z). It follows
from the proof of Corollary (1.6), that the cross ratio is real and positive if and only ifw and z
belong to the same of the two arcs determined by u and v. In particular, whenw and z belong
to the same arc, then the cross ratio is equal to its modulus, and hence equal to dC(w)/dC(z).
As a consequence, when z is on the arc from v to u containingw, the cross ratio df(u, v, w, z)
increases from 0 to 1 as z runs from v to w, and it increases from 1 to +∞ as z runs from w

to u.
It is easy to prove that the latter assertion holds also when the circle is a straight line.

(1.8) Definition. An open disk in C will simply be called a disk. Thus a disk is either an
open half plane in C, or the interior of a usual circle in C, or the exterior (including ∞) of
a usual circle. The boundary ∂D of a disk D is a circle, always oriented counter clockwise
around the disk. If D is a disk, we denote by SL(D) the stabilizer of D in SL2(C), that is,
the subgroup of SL2(C) consisting of matrices α for which αD = D.

Throughout, we denote by H the upper half plane: 	z > 0, and by E the open unit disk:
|z| < 1. The boundary (in C) of H is the extended real line R, and the boundary of E is the
unit circle: |z| = 1.

(1.9) Corollary. Given two triples (D, w, u) and (D′, w′, u′), each consisting of a disk, a
point in the disk, and a point on the boundary of the disk. Then there is a unique Möbius
transformation mapping the first triple to the second.
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Proof. The point w is in D and the point u is on the boundary ∂D. Clearly, there is a unique
circle C orthogonal to ∂D, and passing through w and u. The circles C and ∂D intersect
in two points, one of which is u. Denote by v the second point of intersection. Define C ′
and v′ similarly from the second triple. Clearly, for a Möbius transformation as required, the
boundary of D is mapped to the boundary of D′. Hence the circleC is mapped to the circleC ′,
and consequently, v is mapped to v ′. Thus, by Proposition (1.3), the Möbius transformation
is the unique transformation under which

(u, v, w) �→ (u′, v′, w′). (1)

Conversely, under the transformation determined by (1), the circle C is mapped to the circle
C ′. Hence the boundary of D, which is orthogonal to C, is mapped to the boundary of D ′,
and hence D is mapped to D′. Thus the Möbius transformation determined by (1) has the
required properties.

(1.10) Example. Clearly, the Cayley transformation of (1.5) is the unique Möbius transfor-
mation mapping (H, i,∞) onto (E, 0, 1).

(1.11) Remark. Let α be a matrix of GL2(C). The transformation z �→ αz, where z denotes
the complex conjugate of z, is called the anti-transformation associated to α. Note that
an anti-transformations is not a Möbius transformation. However, the composition of anti-
transformations, associated to matrices α and β, is a Möbius transformation, associated to
the product αβ.

Clearly, under an anti-transformation, the cross ratio of four points is changed into the
complex conjugate. As a consequence, an anti-transformation preserves circles, but angles
between circles are reversed. The interior of an oriented circle is mapped to the exterior of
the image circle (when the image circle is given the image orientation).

(1.12) Example. Complex conjugation is the anti-transformation associated to the identity
matrix. Under complex conjugation, the unit disk E is mapped to itself, but the orientation
of the boundary is reversed.

(1.13) Exercise. Prove for z ∈ H and σ ∈ SL2(R) that 	(σz) = |J (σ, z)|−2	z.
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2. Fixed points.

(2.1) Definition. Let α be a matrix in GL2(C), and consider the associated Möbius transfor-
mation z �→ αz. Clearly, a point z of C is a fixed point of the transformation, if and only
if the representatives of z in (C2)∗ are eigenvectors of α. Therefore we get the following
classification of transformations:

Case 1. The matrixα has one eigenvalue and the corresponding eigenspace is of dimension
2. In this case, the matrix α is a scalar matrix,

[
λ 0
0 λ

]
.

The associated transformation is the identity, and every point in C is fixed.
Case 2. The matrix α has exactly one eigenvalue λ, and the eigenspace is of dimension

1. In this case, the transformation has exactly one fixed point. The transformation (and the
matrix) is called parabolic. The matrix is similar to a matrix of the form,

[
λ b

0 λ

]
,

where b �= 0.
Case 3. The matrix α has two different eigenvalues λ1 and λ2 (necessarily both with a one

dimensional eigenspace). In this case, the transformation has two fixed points. The matrix α
is similar to a matrix for the form, [

λ1 0
0 λ2

]
.

Of particular geometric interest is the quotient λ1/λ2 of the two eigenvalues (changed to its
inverse when the two eigenvalues are interchanged). The matrix α is called hyperbolic, if
the quotient is real and positive, and elliptic, if the quotient is of modulus 1. It is called
loxodromic if it is neither elliptic nor hyperbolic.

Note that the quotient of the two eigenvalues of a matrix α is equal to 1, if and only the
matrix is either a scalar or a parabolic matrix.

(2.2) Example. Obviously, under the action of SL2(C) on C, the isotropy group of the point
∞ is the subgroup formed by the following matrices:

[
a b

0 a−1

]
. (2.2.1)

Clearly, among the matrices in (2.2.1) the parabolic matrices are the following:

±
[ 1 b

0 1

]
;

their associated transformations are translations z �→ z + b for b �= 0.
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Consider the matrices in (2.2.1) that fix in addition the point 0. Of these matrices, the
hyperbolic matrices are the following:

±
[
r 0
0 r−1

]
,

where r ∈ R+ − {1}; their associated transformations are multiplications z �→ r 2z. The
elliptic matrices are the following: [

eiθ 0
0 e−iθ

]
,

where θ ∈ R − Zπ ; their associated transformations are rotations z �→ e2iθ z.
An invariant closely related to the geometric properties of Möbius transformations is the

following, defined for any matrix α ∈ GL2(C):

h(α) := 1

2

tr(α2)

det α
.

By Proposition (1.3)(1), the invariant h(α) depends on the associated Möbius transformation
z �→ αz only. Moreover, the invariant is unchanged if α is replaced by a conjugate σασ−1.
Expressed by the eigenvalues in (2.1), we have that h(α) = 1

2 (λ1/λ2 + λ2/λ1). Thus the
quotient λ1/λ2 and its inverse λ2/λ1 are the two roots of the quadratic polynomial,

λ2 − 2 h(α)λ+ 1.

In particular, if α is not a scalar matrix, then α is parabolic, if and only if h(α) = 1, α is
hyperbolic if and only if h(α) is real and in the interval 1 < h < +∞, and α is elliptic, if
and only if h(α) is real and in the interval −1 ≤ h < 1.

(2.3) Lemma. (1) The stabilizer SL(H) of the upper half plane H is the subgroup SL2(R)
consisting of matrices,

[
a b

c d

]
where a, b, c, d ∈ R and ad − bc = 1.

The isotropy group SL(H)∞ of the point ∞ on the boundary of H is the subgroup consisting
of matrices, [

a b

0 a−1

]
for a ∈ R∗, b ∈ R. (2.3.1)

In particular, the isotropy group SL(H)∞ is non-compact and non-commutative. The follo-
wing relation holds,

[
a b

0 a−1

][ 1 h

0 1

][
a b

0 a−1

]−1 =
[ 1 a2h

0 1

]
. (2.3.2)
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Moreover, the subset of SL(H)∞ consisting of matrices that are either parabolic or ±1 is a
subgroup, isomorphic to {±1} × R.

(2) The stabilizer SL(E) of the unit disk E is the subgroup SU1,1(C) consisting of matrices,[
a b

b a

]
for a, b ∈ C and |a|2 − |b|2 = 1.

The isotropy group SL(E)0 of the point 0 in E is the subgroup consisting of matrices,[
a 0
0 a

]
for a ∈ C, |a| = 1. (2.3.3)

In particular, the isotropy group is compact and commutative (and isomorphic to the unit
circle U1(C)).

Proof. (1) Let α be a matrix in SL(H). The Möbius transformation z �→ αz maps the disk
H onto itself and, consequently, it maps the boundary R onto itself. Therefore, by Section
1, the Möbius transformation is associated to a matrix α ′ with real entries. Since α′ has real
entries, the imaginary part of α′ · i is equal to a positive scalar times the determinant of α ′.
It follows that the determinant is positive, and dividing the matrix by a square root of the
determinant, we may assume that α ′ has determinant 1. As α and α′ define the same Möbius
transformation, it follows that α = ±α ′. Hence α belongs to SL2(R). Conversely, it is
obvious that any matrix in SL2(R) belongs to SL(H).

The remaining assertions of (1) and the similar assertions of (2) are left as an exercise.

(2.4) Exercise. (1) Prove that the subgroup SL(H)i of matrices in SL(H) having i as fixed
point is the subgroup SO2(R) of matrices,[

a b

−b a

]
for a, b ∈ R and a2 + b2 = 1.

Prove that the subgroup SL(H)1,−1 of matrices in SL(H) having 1 and −1 as fixed points is
the subgroup SO1,1(R) of matrices,[

a b

b a

]
for a, b ∈ R and a2 − b2 = 1.

(2.5) Corollary. Consider a disk D in C. No matrix in SL(D) is loxodromic. Let σ �= ±1
be a matrix in SL(D). If σ is parabolic, then the fixed point of σ belongs to the boundary
∂D. If σ is elliptic, then σ has one fixed point in D and the other fixed point belongs to the
complement of the closure of D. Finally, if σ is hyperbolic, then the two fixed points of σ
belongs to the boundary of D.

Proof. After conjugation, we may assume that the disk is the upper half plane H. Then, by
Proposition (2.3), the matrix σ has real entries. Hence, the eigenvalues of σ are either real
or a pair of complex conjugate numbers. Clearly, in the first case there are real eigenvectors
and, consequently, either σ is parabolic with a fixed point in R or σ is hyperbolic with
two fixed points in R. In the second case, if a column is an eigenvector corresponding to
one eigenvalue, then the conjugate column is an eigenvector corresponding to the complex
conjugate eigenvalue. Hence, in the second case, σ has one fixed point in the upper half plane
H and the complex conjugate fixed point in the lower half plane.

Thus the assertions hold.
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(2.6) Note. By Corollary (1.9), for any two disks D and D′ there is a Möbius transformation
z �→ αz defining an isomorphism,

α : D′ → D,

of D′ onto D. In addition, for a given pair of points u ∈ D and u′ ∈ D′ (or u ∈ ∂D and
u′ ∈ ∂D′), we may choose α such that αu′ = u.

Under the isomorphism α, points z ∈ D correspond to points zα := α−1z in D′, functions
f defined on D correspond to functions f α := f α on D′, and automorphisms σ of D
correspond to automorphisms σ α := α−1σα on D′. The latter correspondence extends
to matrices: matrices σ in SL(D) correspond to matrices σ α := α−1σα in SL(D′). The
correspondence is called conjugation. In particular,

SL(D′) = SL(D)α,

is the conjugate subgroup of SL(D). Clearly, the property of being a fixed point is preserved
under conjugation, and for the isotropy groups we obtain the equation,

SL(D′)u′ = SL(D) αu ,

when u′ = uα .
Usually, of the two disks in (1.8), we take (E, 0) as the model of a disk D and a point

u ∈ D, and we take (H,∞) as the model of a disk D and a point u ∈ ∂D.
A property of points u ∈ D ∪ ∂D will often be defined by first defining the property for

0 ∈ E and ∞ ∈ ∂H and then in general by choosing an isomorphism σ from (D, u) to one of
the standard models. In these cases, the property will be said to be defined by conjugation.
In each case, the definition has to be justified by proving that the property is independent of
the choice of conjugation σ .

(2.7) Definition. Let D be a disk, and let G be a subgroup of SL(D). By definition, a
G-elliptic point is a point u in D which is fixed under some nontrivial (necessarily elliptic)
matrix in G, and a G-parabolic point is a point u of the boundary ∂D which is fixed under
some parabolic matrix inG. A point of D which is notG-elliptic may be called aG-ordinary
point.

As a subgroup of SL(D), the group G acts on D and on the boundary ∂D. Clearly, a
point u of D isG-elliptic if and only if the isotropy groupGu is non-trivial (that is, contains
a matrix different from ±1), and a point u of ∂D is G-parabolic, if and only if the isotropy
group Gu contains a parabolic matrix.

Note that the properties are preserved under conjugation. If D′ = αD, thenG′ := αGα−1

is a subgroup of SL(D′), and for points u and u′ := αu, where u is in D or ∂D, we have that
G′
u′ = αGuα

−1. Moreover, the point u isG-parabolic or G-elliptic respectively, if and only
if u′ is G′-parabolic or G′-elliptic.
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3. Non-Euclidean plane geometry.

(3.1) Lemma. Let C be an ordinary circle in C, with its center on the positive real axis
and such that C is orthogonal to the unit circle around 0. Let r < r ′ be the two points of
intersection of C and the real axis. Let l be a straight line through 0 intersecting the circle
C in two points z and z′ with �z ≤ �z′. Denote by A the angle between l and the real axis
and denote by B the angle between l and the tangent in z to the circle C. Then,

cosA = |z|−1 + |z|
r−1 + r

, sinB = |z|−1 − |z|
r−1 − r

. (3.1.1)

Proof. Let z0 denote the midpoint of the chord zz′. Then z0 = (z′ + z)/2. In particular,
r0 = (r ′ + r)/2 is the center of the circle C. Clearly, the straight line from r0 to z0 is
orthogonal to the line l. Moreover, the angle at r0 between the lines r0z and r0z0 is equal to
B. Hence we have the equations,

cosA = |z0|
r0

, sinB = |z0 − z|
r0 − r

. (3.1.2)

As is well known, the product of distances, |z||z′|, is independent of l. By hypothesis, if l
is the tangent to the circle C, then z = z′ is on the unit circle, and hence |z||z′| = 1. Hence
|z||z′| = 1 for an arbitrary line l intersecting the circle. In particular, rr ′ = 1. Therefore, the
equations (3.1.2) imply the equations (3.1.1)

(3.2) Setup. Consider for the rest of this section a disk D. By definition, a line in D is (the part
in D of) a circle orthogonal to the boundary of D. The circle will intersect the boundary of D
in two points, called the limit points of the line. By Corollary (1.6), a Möbius transformation
α : D → D′ maps lines of D to lines of D′. As a consequence, assertions about points, lines,
and limit points in D hold in general, if they hold for one of the two standard disks, H and
E. For instance, in the unit disk E, the lines through the point 0 are the diameters of the unit
circle. Hence, for every point z �= 0 in E there is a unique line of E passing through 0 and
z. As a consequence, for any two different points z and w in D, there is a unique line of D
passing through z and w. Similarly, for any point w in D and any line l not passing through
w, there is a unique point z on l such that the line through w and z is orthogonal to l.

(3.3) Definition. Consider the line in D passing through two different points w and z of D.
The line has two limit points u, v on the boundary of D; we may choose the notation such
that the open arc wzu of the line is contained in D. It follows from Remark (1.7) that the
cross ratio df(u, v, w, z) is real and greater than 1. The number,

distD(w, z) := log df(u, v, w, z),

which is positive, is called the non-euclidean distance between w and z. Note that if w = z,
then the cross ratio on the right hand side is equal to 1 for any pair of different points u and
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v on the boundary of D. Accordingly, as might be expected, the distance is defined to be 0
when w = z.

The non-euclidean distance is a metric in D, that is, the triangle inequality holds for any 3
points w, x, z in D. This fact, and the fundamental trigonometric formulas of non-euclidean
plane geometry will be proved in the following.

Note that any Möbius transformation α : D → D′ is an isometry with respect to the
distances of D and D′. In particular, the matrices in SL(D) define isometries of the disk D.

(3.4) Remark. If an oriented line l is given in D then there is a signed distance dist l (w, z)
defined for points w and z on l as follows: Let u and v be the limit points of l, chosen such
that the arc from v to u is the part of l in D. Then distl (w, z) := log df(u, v, w, z). Clearly,
for any 5 different points in C we have the equation,

df(u, v, w, z) = df(u, v, w, x) df(u, v, x, z).

Hence, for 3 points w, x, z on a line l, we have the additivity for the signed distance,

distl(w, z) = distl (w, x)+ distl(x, z).

In particular, distl(w, z) = − distl (z, w).

(3.5) Example. In the unit disk E, the distance from 0 to a point z in E is given by the formula,

dist(0, z) = log
1 + |z|
1 − |z| . (3.5.1)

Indeed, the two sides of the formula are unchanged under a rotation around 0. Hence we may
assume that the point z is real and 0 < z < 1. Then the line through 0 and z is the real axis,
and the limit points are u = 1 and v = −1. The formula is now obvious.

(3.6) Remark. It follows from the formula (3.5.1) for the unit disk E that a non-euclidean
circle (also called a geodesic circle) with center 0, that is, the set of points in E of a fixed
(non-euclidean) distance to 0, is an ordinary circle. Moreover, the line in E from the center 0
to a point on a geodesic circle around 0 is orthogonal to the circle. Similarly, an open geodesic
disk around 0, that is, a set of points in E whose distance from 0 is strictly less than a given
positive number, is an ordinary disk contained in E, and the system of geodesic disks around
0 form a basis for the system of neighborhoods of 0. As a consequence, for any point w in
an arbitrary disk D, the geodesic circles in D around w are (ordinary) circles, and the line
in D from w to a point on a geodesic circle around w is orthogonal to the circle. Similarly,
geodesic disks in D are ordinary disks contained in D, and the system of geodesic disks
around w is a basis for the system of neighborhoods of w. In other words, the non-euclidean
distance induces a topology in D equal to the ordinary topology of D as a subspace of C.

(3.7) Example. Consider the upper half plane H, and two points z and w in H. Then the
distance from w to z is given by the formula,

cosh dist(w, z) = 1 + |w − z|2
2	z	w . (3.7.1)
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Indeed, assume first that the two points have different real part. Then the line in H from w

to z is a circle orthogonal to the real axis. The circle intersects the real axis in two points,
labeled u, v in the usual order, see (3.3). Let r be the radius of the circle, and o its center. Let
θw be the angle vuw and θz the angle vuz. Then, clearly,

tan θw = |v − w|
|u− w| and tan θz = |v − z|

|u− z| .

As the cross ratio df(u, v, w, z) is positive real, it is equal to tan θz/ tan θw. Therefore, the
left hand side of (3.7.1), is equal to the expression,

1

2

( tan θz
tan θw

+ tan θw
tan θz

)
. (3.7.2)

On the other side, the angles vow and voz are, respectively, 2θw and 2θz. Hence, the angle
woz is equal to 2(θz − θw). Therefore,

sin 2θw = 	w
r
, sin 2θz = 	z

r
, sin(θz − θw) =

1
2 |z − w|

r
.

From these equations it follows that the right hand side of (3.7.1) is equal to the expression,

1 + 2 sin2(θz − θw)

sin 2θw sin 2θz
. (3.7.3)

By elementary trigonometric formulas, the expressions (3.7.2) and (3.7.3) are equal. Hence
(3.7.1) holds.

The equation (3.7.1) is easily seen to hold when z and w have the same real part. Hence
the equation holds in general.

(3.8) Exercise. Consider the non-euclidean distance in H. Prove for two pointsw and z with
the same real part that

dist(w, z) = | log(	z/	w)|. (3.8.1)

Prove for h positive and real that

dist(z, z+ h) = 2 log

(
h

2	z +
√( h

2	z
)2 + 1

)
. (3.8.2)

Note in particular that the distance converges to zero for 	z → ∞.

(3.9) Setup. Consider in D a triangle A,B,C, that is, A, B and C are three different points
of D, in general assumed to be not on the same line of D. Denote by a, b, and c the sides of
the triangle, that is, a is the line through B and C, b is the line through A and C, and c is the
line through A and B. It is customary to denote by the same symbols also the lengths of the
sides of the triangle, that is, a is the distance distD(B, C) etc. Similarly, A will also denote
the (unoriented) angle at A, that is, the angle between the lines b and c, etc.
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(3.10) Proposition. Assume in the setup of (3.9) that the angle at C is a right angle. Then
the following formulas hold:

cosA = tanh b

tanh c
, sinA = sinh a

sinh c
, cosh c = cosh a cosh b. (3.10.1)

Proof. To prove the first formula, we may after conjugation assume that D is the unit disk
E and A is the point 0. Moreover, after a rotation around 0 we may assume that C is a real
point r with 0 < r < 1. Then the line a is an ordinary circle with center on the positive real
axis and orthogonal to the unit circle, and B is a point z on the line a. The distances b and c
from 0 to C and from 0 to B are, by Example (3.5), given by exp b = (1 + r)/(1 − r) and
exp c = (1 + |z|)/(1 − |z|). Therefore, the first formula of (3.10.1) follows from the first
formula of (3.1.1).

Similarly, the second formula, in the symmetric form sinB = sinh b/ sinh c, follows from
the second formula of (3.1.1). Finally, the third formula of (3.10.1) follows from the first two
by using the relation cos2 A+ sin2A = 1.

(3.11) Proposition. In the setup of (3.9), we have for an arbitrary triangle ABC in D the
cosine relation:

cosh c = cosh a cosh b − sinh a sinh b cosC,

and the sine relations:
sinA

sinh a
= sinB

sinh b
= sinC

sinh c
.

Proof. Denote byH the point on the side a such that the line from A toH is orthogonal to a.
Then the triangles ACH and ABH have a right angle at H and they have as common side
the line h from A to H . Denote by x the side CH of ACH and by y the side BH of ABH .

By the third formula of (3.10.1), applied to ACH and ABH , we obtain that cosh h =
cosh b/ cosh x = cosh c/ cosh y. Hence,

cosh c = cosh b
cosh y

cosh x
. (1)

Assume that the pointH on a lies between B and C (the two alternative cases are left to the
reader). Then y = a − x by (3.4). Hence, by the addition formula for the hyperbolic cosine,
we obtain from (1) that,

cosh c = cosh a cosh x − sinh a sinh x

cosh x
cosh b = cosh a cosh b − sinh a cosh b tanh x. (2)

Moreover, by the first equation of (3.10.1), we have that tanh x = tanh b cosC. Hence the
equation (2) implies the cosine relation.

To prove the sine relation, note that the second formula of (3.10.1) implies the equations
sinC sinh b = sinh h = sinB sinh c. Hence the second sine relation holds, and by symmetry
they all hold.
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(3.12) Remark. The triangle inequality for the non-euclidean distance follows from the
cosine relation. Indeed, the right hand side of the relation is at most equal to cosh a cosh b+
sinh a sinh b = cosh(a + b), and consequently c ≤ a + b. Moreover, equality holds if and
only if the angle C is equal to π , that is, if and only if C belongs to the line segment from A

to B.

(3.13) Setup. In the geometric language, the elliptic transformations of D are called rotations,
the hyperbolic transformations are called translations, and the parabolic transformations are
called limit rotations. A translation has two limit point as fixed points; the line between them
is called the axis.

We will study these maps in more detail in the following. In addition we will need the
reflections: Let l be a line in D. Choose a Möbius transformation z �→ αz mapping the unit
disk E onto the given disk D and mapping the real axis of E to the given line l of D. Then
the reflection in l is the transformation

ρl := α( )cα−1,

where ( )c denotes complex conjugation. Note that the resulting transformation of D is
independent of the choice of α. A different choice of α would be of the form αβ where β is
a matrix in SL(E) leaving invariant the real axis. Thus β has real entries, and consequently
β commutes with complex conjugation ( )c.

(3.14) Lemma. (1) Let z �→ σz be a rotation in D with fixed point w. Then every line t
through w is mapped to a line through w, and the angle from t to σ t is a constant, given by
the formula,

cos � (t, σ t) = h(σ ).

Moreover, if t and t ′ are oriented lines through a given pointw, then there is a unique rotation
around w that maps t to t ′. (2) Let z �→ σz be a translation in D with axis l. Then every
point z in l is mapped to a point in l, and the distance from z to σz is a constant, given by the
formula,

cosh dist(z, σz) = h(σ ).

Moreover, if z and z′ are given points on a line l, then there is a unique translation with axis
l that maps z to z′.

Proof. (1) After conjugation, we may assume that D is the unit disk E and that w = 0. Then
σ is a matrix,

σ =
[
eiθ 0
0 e−iθ

]
,

and the associated Möbius transformation is the ordinary rotation z �→ e2iθ z. Hence the
first and the last assertions of (1) hold, and the angle from t to σ t is equal to 2θ . Moreover,
h(σ ) = 1

2 tr(σ 2) = cos(2θ), and hence the formula of (1) holds.
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(2) After conjugation, we may assume that D is the upper half plane H and that the axis l
is the imaginary axis. Then σ is a matrix,

σ =
[
r 0
0 r−1

]
,

and the associated Möbius transformation is the multiplication z �→ r 2z. Hence a point iy on
the line l is mapped to the point ir 2y on l, and the distance from iy to ir2y is, by (3.8.1), equal
to | log(r2y/y)| = | log r2|. Hence the first and the last assertions of (2) hold. Moreover,
h(σ ) = 1

2 tr(σ 2) = (r2 + r−2)/2, and hence the formula of (2) holds.

(3.15) Definition. For a point P in D, denote by δP the half turn around P , that is, the
non-euclidean rotation with angle π around P . For a line l in D, denote by ρl the reflection
in l (Note that ρl is not a Möbius transformation, it is an anti-analytic automorphism of C).
Moreover, for two different points P and Q, denote by τQP the translation along the line
through P and Q that maps P to Q. Finally, for two different oriented lines l and m that
intersect at a point P , denote by δml the rotation around P that maps l to m.

(3.16) Lemma. (1) If P and Q are different points of D, then the we have the equation,

τ 2
QP = δQδP . (3.16.1)

(2) If l and m are different oriented lines that intersect at a point P in D, then we have the
equation,

δ 2
ml = ρmρl. (3.16.2)

(3) Ifm and l are two different lines with no point of intersection in D or in ∂D, then we have
the equation,

τ 2
QP = ρmρl, (3.16.3)

where P and Q are the unique points of l and m such that the line through P and Q is
orthogonal to l and m.

Proof. (1) Let l be the oriented line from P toQ and let u and v be its limit points. Clearly u
and v are interchanged by any of the half turns δP and δQ. Therefore u and v are fixed points
for the composition δQδP . Hence the composition is a translation with axis l. Obviously the
square τ 2

QP is a translation with axis l. Hence, to prove Equation (3.16.1), it suffices to show
that there is one point at which the two sides of the equation takes the same value. Let R be
the point on the line l for which the pointQ is the midpoint of the line segment PR. Clearly,
the pointQ is mapped to R by the translation τQP , and P is mapped to R by the half turn δQ.
It follows that the point P is mapped to R by any of the two sides of the equation (3.16.1).
Therefore, the equation holds.

(2) The composition ρmρl of anti-transformations is a Möbius transformation, and it has
obviously the pointP as fixed point. Hence the composition is a rotation aroundP . Obviously,
under the composition, the line l is mapped to the line l ′ = ρml through P for which the
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angle from l to m is equal to the angle from m to l ′. Clearly, the latter line is also the image
of l under the composition δ 2

ml . Therefore, equation (3.16.2) holds.
(3) As in (2), the composition ρmρl is a Möbius transformation. Let n be the line through

P and Q, and let u and v be its limit points. As n is orthogonal to the lines l and m, the
limit points u and v are interchanged by any of the reflections ρm and ρl . Hence u and v are
fixed points of the composition ρmρl . Therefore, the composition is a translation with axis n.
Moreover, the point P is, by any of the two sides of equation (3.16.3), mapped to the point R
on n for whichQ is the midpoint of the line segment PR. Therefore, the equation holds.

(3.17) Corollary. In the setup of (3.9), the following equations hold:

τ 2
ACτ

2
CBτ

2
BA = 1, (3.17.1)

δ 2
acδ

2
cbδ

2
ba = 1. (3.17.2)

In addition, consider the line h through A orthogonal to a, let H be the point of intersection
of h and a, and let a ′ be the line through A orthogonal to h. Then,

τ 2
AH = δ 2

a′cδ
2
ca. (3.17.3)

Proof. Note that, depending on a choice of orientations of the sides a and c, there are two
rotations δac. If one is by the angle θ , then the other is by the angle θ − π . Hence the square
δ 2
ac is well defined.

Obviously, the first formula follows from (3.16.1) since the half turns are involutions.
Similarly, the second formula follows from (3.16.2), and the third from (3.16.2) and (3.16.3).

(3.18) Lemma. Consider two matrices σ and τ in SL(D). Assume that τ is a translation in
D, and assume that σ is either a rotation around a point on the axis of τ or a translation
along an axis orthogonal to the axis of τ . Then,

2 tr(στ) = tr(σ )tr(τ ). (3.18.1)

Proof. By conjugation we may assume that D is the upper half plane H, that the axis of τ is
the imaginary axis iR, and that either σ is a rotation around the point i or a translation along
the line through i orthogonal to the imaginary axis.

Now τ and σ belong to SL2(R). The matrix τ fixes 0 and ∞; hence it is of the form,
[
a 0
0 d

]
where ad = 1.

The matrix of σ is either a rotation or a translation. Accordingly, by (2.4), it is of one of the
following two forms, [

c b

−b c

]
or

[
c b

b c

]
,

where c2 + b2 = 1 or c2 − b2 = 1. Clearly, in both cases the left hand side of (3.18.1) is
equal to 2c(a + d) and hence equal to the right hand side.
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(3.19) Proposition. In the setup of (3.9), assume for the triangle ABC that the angle C is a
right angle. Then,

cosh c = cosh a cosh b, cosB = cosh b sinA. (3.19.1)

Proof. Clearly, the two equations are equivalent to the equations of (3.10.1). To give an
alternative proof, note that the first equation of (3.17) implies the following:

τ 2
AB = τ 2

ACτ
2
CB.

Moreover, as the angle at C is a right angle, Lemma (3.18) applies with σ := τ 2
AC and

τ := τ 2
CB . As a consequence, we obtain the equation,

2 tr(τ 2
AB) = tr(τ 2

AC)tr(τ
2
CB).

Dividing by 4 we obtain an equation for the invariants h(σ ) which, by Lemma (3.14)(2) is
the first asserted equation (3.19.1).

To prove the second equation, consider the last equation in (3.17). As the angle at C is a
right angle, we have that H = C. Thus we obtain the equation,

δ 2
ca′τ 2

AC = δ 2
ca.

Again Lemma (3.18) applies, and we obtain the equation,

2 tr(δ 2
ca) = tr(δ 2

ca′)tr(τ 2
AC).

Divide by 4 to obtain an equation for the invariants h(σ ). By construction of a ′, the angle
from c to a′ is equal to π/2 −A. Hence, by Lemma (3.14)(1) and (2), the equation obtained
is the second equation of (3.19.1).

(3.20) Exercise. Consider two lines l and l ′ of D, with limit points u, v and u′, v′. Assume
that the four points u, v, u′, v′ on the boundary of D are different. In addition, assume that
v and v′ belong to the same of the two arcs in which the boundary ∂D is divided by u, u ′.
Prove that the cross ratio df(u, v, u′, v′) is negative, if and only if the lines l and l ′ intersect.
If the cross ratio is negative, then the angle θ between the lines l and l ′ is determined by the
formula,

tan2(θ/2) = − df(u, v, u′, v′).

If the cross ratio is positive, then the (non-euclidean) distance θ between the lines is determined
by the formula,

tanh2(θ/2) = df(u, v, u′, v′).
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4. Proper actions.

(4.1) Proposition. Let G := SL(D) be the stabilizer of a disk D in C. Then the action of G
on D is proper, that is, the map (α, w) �→ (αw,w) is a proper map,

G× D → D × D. (4.1.1)

Proof. Recall that a continuous map between locally compact (Hausdorff) spaces is a proper
map if the preimage of any compact subset of the target is a compact subset of the source.

The map (4.1.1) is an obvious composition of two maps,

G× D → PG× D → D × D. (1)

Of the two maps, the first is proper, becauseG → PG is the homomorphism with kernel ±1.
Thus is suffices to show that the second map is proper.

Fix a point u on the boundary ∂D. Then there is a map,

PG× D → ∂D × D × D,

defined by
(α, w) �→ (αu, αw,w).

It is bijective by Corollary (1.9), and obviously continuous. It is in fact a homeomorphism, that
is, the inverse map is continuous. In other words, if we consider for (u′, w′, w) ∈ ∂D×D×D
the unique Möbius transformation z �→ αz under which (D, w, u) is mapped to (D, w ′, u′),
then the Möbius transformation depends continuously on (u ′, w′, w). The latter fact is easily
proved using the explicit determination of the Möbius transformation given in Section 1.

Clearly, when the source of the second map in (1) is replaced by the homeomorphic space
∂D × D × D, then the map is simply the projection,

∂D × D × D → D × D.

Hence the map is proper, because ∂D is compact.
Thus the Proposition has been proved.

(4.2) Corollary. LetK1 andK2 be compact subsets of the disk D. Then the following subset
of G := SL(D) is compact:

{α | K1 ∩ αK2 �= ∅}.

Proof. The product set K1 × K2 is a compact subset of D × D. Hence its preimage under
the map in (4.1) is a compact subset of G× D. Clearly, the preimage is the following set:

{(α, z) | αz ∈ K1 and z ∈ K2}.
Hence the latter set is compact. Consequently, its image inGunder the projectionG×D → G

is a compact subset of G. The latter image is the set in question. Hence it is compact.
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(4.3) Corollary. For any point z ∈ D, the map α �→ αz is a proper map,

G → D.

In particular, the isotropy groupGz is a compact subgroup of G.

Proof. The first assertion of the Corollary is the special case of (4.2) obtained by taking K1
arbitrary compact and K2 = {z}. The second assertion is a consequence, since the isotropy
group is the preimage of the compact set {z} under the map G → D.

(4.4) Note. In Section 2 we proved that the isotropy group Gz is in fact conjugated to the
compact group SO2(R), and in particular, the isotropy group is isomorphic to the unit circle
U1(C). Note also that we proved in Section 2 that the isotropy group SL(D)u of a point u on
the boundary ∂D is non-compact. In particular, the action of SL(D) on the closure of D is
not proper.

(4.5) Exercise. Several topological facts were used in the proof of Proposition (4.1). The
Riemann sphere C is the one point compactification of C. Hence the disk D as an open subset
of C is locally compact. The surjection of (1.1), (C2)∗ → C, is continuous and open. As a
consequence, C is equal to the quotient (C2)∗/C∗.

The group SL2(C) is locally compact: it is a closed subset of the space C4 of 2×2 matrices.
It is a topological group. The group SL(D) is a closed subgroup, since it is conjugated to
SL(H) = SL2(R).

The group PSL(D) has two topologies: the quotient topology induced by the surjection
SL(D) → PSL(D) and the subset topology induced by the inclusion PSL(D) ↪→ Autcont(D)
(where the automorphism group is given the compact–open topology). The two topologies
are equal, and PSL(D) is a locally compact topological group.

Prove these topological facts. In addition, prove (or find a reference for) the following
general facts: If K is compact and X is locally compact, then the projection K ×X → X is
proper. If K is a compact subgroup of a locally compact group G, then the canonical map
G → G/K is proper.
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Discrete subgroups

1. Isotropy groups and their generators.

(1.1) Setup. Fix a disk D and a discrete subgroup � of SL(D). Recall that a subset � of a
topological space is said to be discrete in the given topological space, if it is a closed subset
and the induced topology is discrete. Equivalently, when the topological space is locally
compact, the condition is that the intersection of � and any compact subset is finite. In
particular, a subgroup � of SL2(C) is discrete, if and only if, for every positive real number
R, there is only a finite number of matrices in � for which all four entries have modulus at
most equal to R.

Recall that a point u is called �-parabolic if it is a fixed point of some parabolic matrix in
�. The set of �-parabolic points is denoted ∂�D. It is a subset of the boundary ∂D. A point
is �-elliptic if it belongs to D and is fixed under some non-trivial (necessarily elliptic) matrix
of �. A �-ordinary point is a point of D which is not �-elliptic.

(1.2) Lemma. (1) Assume that � is a discrete subgroup of SL(E). Then the isotropy group
�0 of the point 0 in E is a finite cyclic group generated by the matrix,

d2π/N :=
[
e2πi/N 0

0 e−2πi/N

]
,

where N = |�0| is the order of the isotropy group. In particular, the point 0 is �-elliptic,
if and only if |�0| > 2. The group � is homogeneous, if and only if N is even. The group
P�0 of associated Möbius transformations is cyclic, generated by the rotation z �→ e2πi/dz,
where d = |P�0|.

(2) Assume that � is a discrete subgroup of SL(H). Assume that the point ∞ on the
boundary of H is �-parabolic. Then the isotropy group �∞ is infinite, and all its matrices
different from ±1 are parabolic. The isotropy group it is either cyclic or dicyclic (that is,
isomorphic to {±1} × Z). The group � is homogeneous, if and only if the isotropy group �∞
is dicyclic. In the dicyclic case, the isotropy group consists of all matrices of the form ±t nh
(for a unique h > 0) where th is the matrix,

th :=
[ 1 h

0 1

]
.

In the cyclic case, �∞ consists either of all powers t nh [the ‘regular’ case] or of all powers
(−th)n [the ‘irregular’ case] (for a unique h > 0). In all cases, the group P�∞ of associated
Möbius transformations is the infinite cyclic group generated by the translation z �→ z+ h.
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Proof. Assertion (1) follows immediately from Lemma (Möb.2.3)(2) since �0 is a discrete
subgroup of SL(E)0, and SL(E)0 is isomorphic to the unit circle U1(C).

To prove Assertion (2), note that the matrices of�∞ are of the form (Möb.2.3.1). Therefore,
since the point ∞ is assumed to be �-parabolic, there exists a matrix of the form ±th in �.
Moreover, since � is discrete, we can choose in �∞ a matrix ±th with h > 0 minimal.
Then, again using that � is discrete, it follows from the relation (Möb.2.3.2) that no matrix
(Möb.2.3.1) with a �= ±1 can belong to �∞. Thus all matrices different from ±1 in �∞ are
parabolic. Again, since � is discrete and h is minimal, it follows that all matrices of �∞ are,
up to multiplication by ±1, powers of th. The remaining assertions of (2) follow easily.

(1.3) Definition. In (1), the generator z �→ e2πi/dz of P�0 is the Möbius transformation
associated to the following matrix:

γ0 :=
[−eπi/d 0

0 −e−πi/d
]
. (1.3.1)

The matrix γ0 belongs to �0. Indeed, assume first that N is even. Then −1 ∈ �0 and
d = N/2. As γ0 = −d2πi/N , it follows that γ0 ∈ �0. Assume next that N is odd. Then

d = N . As γ0 = d
(N+1)/2
2πi/N , it follows again that γ0 ∈ �0.

The matrix γ0 is called the canonical generator at the point 0. It generates the group �0
if N is odd or if N ≡ 0 (mod 4). If N ≡ 2 (mod 4), then γ0 generates an inhomogeneous
subgroup of index 2 in �0.

case, and the matrix γ∞ := th in the other cases, will be called the canonical generator at
the point ∞. The transformation associated to the canonical generator is map z �→ z+h, and
h is the minimal possible step length of the transformations in P�∞. The canonical generator
γ∞ generates a cyclic inhomogeneous subgroup of �∞ that is mapped isomorphically onto
P�∞.

(1.4) Definition. For a general disk D and a point u in D ∪ ∂�D we obtain, by conjugation,
assertions corresponding to those of Lemma (1.2).

If u is in D, choose a conjugation α : D → E such that αu = 0. Then � is conjugate to the
discrete subgroup α�α−1 of SL(E), and u is conjugate to 0. Hence the isotropy group �u is
conjugate to the isotropy group (α�α−1)0. It follows from (1.2)(1) that �u is a finite cyclic
group, and hence its quotient P�u is a finite cyclic group. The quotient P�u is non-trivial if
and only if u is �-elliptic. In any case, the order eu := |P�u| is called the order of u with
respect to �. The isotropy groups for the points in the orbit �u are conjugate. In particular,
all points in the orbit �u have the same order. Moreover, if u is �-elliptic, then all points in
the orbit �u are �-elliptic. In this case, the orbit is said to be a �-elliptic orbit.

If u is in ∂�D, choose a conjugation α : D → H such that αu = ∞. It follows similarly
that the isotropy group �u is infinite cyclic or dicyclic, and that its quotient P�u is an infinite
cyclic group. Moreover, all non-trivial matrices in �u are parabolic. Clearly, all points in the
orbit �u are �-parabolic. The orbit is said to be a �-parabolic orbit or to be a cusp for �.

Foru ∈ D∪∂�D, define the canonical generator of� atu as the following matrix γu ∈ �u:
If u is in D, choose a conjugation α : (D, u) → (E, 0). Then � is conjugate to the discrete
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subgroupα�α−1 of SL(E), andu is conjugate to 0. Define γu as the conjugate of the canonical
generator γ0 in (1.3). Similarly, if u is in ∂�D, choose a conjugation α : (D, u) → (H,∞),
and define γu as the conjugate of γ∞.

In both cases, it has to be verified that the matrix obtained is independent of the choice of
α. However, two different choices α1 and α2 differ by a matrix α := α1α

−1
2 that stabilizes

the image disk and the image point α1u = α2u. We may assume that α has determinant 1.
Thus is has to be proved, in the two cases (D, u) = (E, 0) and (D, u) = (H,∞) respectively,
that if α ∈ SL(D)u, then, for the canonical generators considered in (1.3), conjugation by α
maps the canonical generator of (α�α−1)u onto the canonical generator of �u.

The latter assertion is obvious for (E, 0), since the isotropy SL(E)0 is commutative and
hence conjugation byα is in fact the identity. For (H,∞), the assertion follows from Equation
(Möb.2.3.2) describing conjugation of a canonical generator under a matrix in SL(H)∞.

In the parabolic case, the cusp represented by u is said to be a regular cusp if the canonical
generator γu is conjugate to th and to be an irregular cusp if γu is conjugate to −th. Note that
the width h of th is not canonical. A different choice of conjugation changes th to ta2h, see
(Möb.2.3.2).

(1.5) Example. The Cayley transformation z �→ (z − i)/(z + i) of (Möb.1.5) is associated
to the matrix,

α := 1

1 + i

[ 1 −i
1 i

]
.

The Cayley transformation maps (H, i) onto (E, 0). Consequently, under conjugation by α,
the stabilizer group SL(E) = SU1,1(C) is mapped onto the stabilizer group SL(H) = SL2(R),
and the isotropy group SL(E)0 = U1(C) is mapped onto the isotropy group SL(H)i =
SO2(R). Under the conjugation, the following matrices correspond:

[
eiθ 0
0 e−iθ

]
and

[ cos θ sin θ
− sin θ cos θ

]
.

Consider the discrete subgroup � := SL2(Z) of SL(H). It is homogeneous. Clearly, the
point ∞ is �-parabolic, and the canonical generator at ∞ is the matrix,

t :=
[ 1 1

0 1

]
. (1.5.1)

The point i = e2πi/4 is elliptic: the isotropy group�i is of order 4 and the canonical generator
at i is the matrix of order 4,

s :=
[ 0 −1

1 0

]
. (1.5.2)

Indeed, the isotropy group �i consists of the matrices with integer entries in SO2(R), and
clearly, the latter matrices are the four matrices ±1, ±s. It follows from the correspondence
above that −s is conjugate to the matrix d2π/4. Hence s is the canonical generator.
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The point ρ = e2πi/3 is elliptic: the isotropy group �ρ is of order 6 and the canonical
generator at ρ is the matrix of order 3,

u = t−1s =
[−1 −1

1 0

]
. (1.5.3)

Indeed, since ρ2 + ρ + 1 = 0, it is easy to describe the isotropy group SL(H)ρ . It follows
easily that the isotropy group �ρ consists of the following 6 matrices ±1, ±u, ±u2. The
matrix u is of order 3. Hence �ρ is generated by the two matrices −u and −u2 of order 6.
The Möbius transformation associated to ±u is the rotation by the angle 2π/3 since the half
ray from ρ to ∞ is mapped to the half ray from ρ to −1. Hence −u is conjugate to the matrix
d2π/6, and u is the canonical generator.

(1.6) Proposition. Assume that � is the discrete subgroup SL2(Z) of SL(H). Let F be the
closed subset of H defined by the inequalities,

F : |z| ≥ 1, −1

2
≤ �z ≤ 1

2
.

Denote by F0 the subset obtained from F by omitting from the boundary the points z where
either �z = 1/2 or |z| = 1, �z > 0. Then the set F0 is a complete set of representatives
for the set of orbits H/�. Moreover, the points i and ρ are the only �-elliptic points in
F0. Finally, there is only one cusp, namely the orbit �∞ consisting of ∞ and the rational
numbers.

Proof. In addition to the subsets F and F0, denote byG the vertical strip of H defined by the
inequalities: − 1

2 ≤ �z < 1
2 . We proceed in a series of steps.

Step 1. For any point z of H there is only a finite number of matrices σ in �,

σ =
[
a b

c d

]
, (1)

such that
	(σz) ≥ 	z, σz ∈ G. (2)

Indeed, for a fixed pair of integers (c, d), consider the matrices (1). They correspond to the
integer solutions (a, b) of the equation ad − bc = 1. Hence, for the fixed pair of prime
integers (c, d), there are matrices σ of the form (1), and if σ0 is any such matrix, then the
matrices of the form (1) are exactly the matrices t kσ0 for k ∈ Z. The matrix t defines the
translation tz = z + 1 and the vertical stripG is of width 1. Therefore, when (c, d) is fixed,
there is only one matrix σ of the form (1) such that σz ∈ G. Now, for any matrix (1) in
SL2(R), we have that 	(σz) = (	z)/|cz + d|2. Hence the inequality in (2) is equivalent to
the following:

|cz + d|2 ≤ 1. (3)

The latter inequality has only a finite number of integer solutions (c, d). Therefore, the
assertion of Step 1 holds.
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Step 2. If |z| < 1, then 	(sz) > 	z. This is just a simple observation.
Step 3. Any point z in H is �-equivalent to a point in F0. Indeed, for any point z there is a

unique point z1 inG of the form t kz. If |z1| < 1, consider z2 := (sz1)1. Define, inductively,
zn+1 := (szn)1 as long as |zn| < 1. By construction, the points zj belong to G, and they
are �-equivalent to z. By Step 2 we have that 	z1 < 	z2 < · · · . Therefore, by Step 1, the
sequence z1, z2, . . . is finite. It stops with a point zn in G such that |zn| ≥ 1. If |zn| > 1,
then zn belongs to F0. If |zn| = 1, then either zn or szn belongs to F0. Hence, in all cases,
the point z is �-equivalent to a point of F0.

Step 4. By Step 3, the setF0 contains a complete set of representatives for H/�. Therefore,
to show that F0 is a complete set of representatives and that i and ρ are the only �-elliptic
points in F0, it suffices to prove the following assertion: Let σ �= ±1 be a matrix in �, and
let w and w′ be points of F0. Then the equation σw = w′ implies that

(s) either w′ = w = i and σ = ±s,
(u) or w′ = w = ρ and σ = ±u,±u2.

To prove the assertion, we may assume that 	w′ ≥ 	w. Then 1 ≥ |cw+ d|2. Hence the first
of the following four inequalities holds:

1 ≥ c2|w|2 + cd(w+w)+d2 ≥ c2 + cd(w+w)+d2 ≥ c2 −|cd|+d2 ≥ (|c|− |d|)2. (4)

The second inequality holds because |w| ≥ 1. The third holds because |�w| ≤ 1
2 , and the

last is trivial. Moreover, the last inequality is strict if cd �= 0.
Since c and d are integers, the two last expressions in (4) are non-negative integers.

Moreover c and d are prime. Hence the inequalities leave the three possibilities: c =
0, |d| = 1, or |c| = 1, d = 0, or |c| = |d| = 1.

Assume first that c = 0, |d| = 1. Replacing σ by −σ we may assume that d = 1. Then
the matrix σ is of the form,

σ =
[ 1 b

0 1

]
,

and w′ = σw = w + b. As w′ and w belong to F0 by hypothesis, it follows that b = 0,
contradicting that σ �= ±1. Thus the first possibility is excluded.

Assume next that |c| = 1, d = 0. We may assume that c = 1. Then the matrix σ is of the
form,

σ =
[
a −1
1 0

]
,

andw′ = σw = sw+a. Clearly, in (4) the second inequality is an equality, and consequently
|w| = 1. Asw′ andw belong toF0 by hypothesis, it follows that either a = 0 andw = w ′ = i,
or a = −1 and w′ = w = ρ. In the first case, σ = s and hence (s) holds, in the second case,
σ = u and hence (u) holds.

Finally, assume that |c| = |d| = 1. We may assume that d = 1 and c = ±1. Then
the fourth inequality in (4) is strict. Consequently, the first three inequalities are equalities.
Now, the second inequality is strict unless |w| = 1 and the third inequality is strict unless
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�w = − 1
2 and cd = 1. Therefore, it follows that w = ρ and that c = d = 1, that is, σ has

the form
σ =

[
a a − 1
1 1

]
.

Then w′ = σw = (−1)/(w + 1) + a = ρ + a. As w′ is in F0 by hypothesis, it follows
that a = 0. Thus w′ = w = ρ and σ = −u2. Hence (u) holds. Thus the proof of Step 4 is
completed.

Step 5. To prove the final assertion of the Proposition, note that the point ∞ is�-parabolic.
Clearly, the orbit �∞ is equal to Q := Q ∪ {∞}. Conversely, let u ∈ R be a �-parabolic
point. Then u is a fixed point of a non-trivial matrix γ in � with eigenvalue ±1. Therefore
J (γ, u) = ±1. Hence u ∈ Q, because J (σ, u) has the form cu+ d, with c, d ∈ Z and c �= 0.

Thus all assertion of the Proposition have been proved.

(1.7) Remark. The group � = SL2(Z) is the modular group. It is generated by the matrices
s and t . Indeed, let �1 be the subgroup generated by s and t , and fix a point w in the interior
of F0. Let γ be a matrix of �. It follows from the proof of (1.6) applied to z := γw that
there is a matrix γ1 in �1 such that γ1γw belongs to F0. As w and γ1γw both belong to F0,
it follows that γ1γ = ±1. Hence γ = ±γ−1

1 belongs to �1.

(1.8) Lemma. Let� be a subgroup of finite index in�. Then every �-orbit splits into at most
the number |�:�| of �-orbits. Moreover, every �-elliptic point is �-elliptic, and a point is
�-parabolic if and only if it is �-parabolic. Finally, the canonical generator of � at a point
u is up to a sign equal to γ duu , where du is the index, du := |P�u:P�u|.
Proof. Set d := |�:�|, and let γj be a system of representatives for the right cosets modulo�.
Consider a point u of D ∪ ∂D. Then the orbit �u is the union, �u = �(γ1u)∪ · · · ∪�(γdu)
of the number d of�-orbits. Of these, at most d are different. Hence the first assertion holds.

Clearly, a�-elliptic (resp.�-parabolic) point u is �-elliptic (resp. �-parabolic). To prove
that the converse holds for a �-parabolic point u, note that the isotropy group�u is of finite
index (at most d) in �u. Hence�u is infinite, because �u is infinite. Moreover, all nontrivial
matrices in �u are parabolic. Therefore �u contains a parabolic matrix.

The final assertion is left to the reader.
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2. Properly discontinuous actions.

(2.1) Setup. Consider, as in Section 1, a disk D and a discrete subgroup � of SL(D).

(2.2) Lemma. Let K1 and K2 be compact subsets of the disk D. Then there is only a finite
number of elements γ in � for which the following condition holds:

K1 ∩ γK2 �= ∅.

Proof. The set of elements γ for which the condition holds is the intersection of � and the
subset of SL(D) described in (Möb.4.2). As the latter set is compact, and � is discrete, the
intersection is finite.

(2.3) Remark. An action of a group on a locally compact space is said to be properly
discontinuous if it has the property of Lemma (2.2).

(2.4) Corollary. For every point u of D, the stabilizer �u is a finite group and the orbit �u
is discrete in D.

Proof. For every compact subsetK of D, the condition γ u ∈ K holds for only a finite number
of elements γ in �. In particular, the intersection �u ∩ K is finite. Therefore the orbit �u
is discrete in D. The first assertion of the Corollary was proved in Section 1; alternatively, it
follows from (2.2) by taking K1 = K2 := {u}.
(2.5) Corollary. For any two points u and u′ in D, there are neighborhoods U of u and U ′
of u′, such that for any matrix γ in �, if γU ∩ U ′ �= ∅, then γ u = u′. In particular, every
point u of D has a neighborhood U such that for any matrix γ in �, if γU ∩ U �= ∅, then
γ ∈ �u.

Proof. Choose open neighborhoods V of u and V ′ of u′ whose closures relative to D are
compact. Obviously, the condition,

γV ∩ V ′ �= ∅, (1)

holds for the matrices γ in � for which γ u = u′. By Proposition (2.2), applied to the
closures of V and V ′, the condition (1) can hold only for a finite number of elements of �. In
particular, there is only a finite number of elements γ1, . . . , γN in � such that (1) holds and
γiu �= u′. For each i = 1, . . . , N , the point γiu is different from u′. Accordingly, there are
open neighborhoods Ui of u and U ′

i of u′ such that γiUi ∩ U ′
i = ∅. Now, clearly, the two

open sets,
U := V∩U1∩ · · · ∩UN, U ′ := V ′∩U ′

1∩ · · · ∩U ′
N,

have the required properties.
When u′ = u, the asserted special case is obtained by replacing U by U ∩ U ′.
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(2.6) Corollary. The set of �-elliptic points is a discrete subset of D.

Proof. Otherwise there would be a point u in D which is an accumulation point of the set
of �-elliptic points. Then every neighborhood U of u contains an infinity of �-elliptic
points ui . For each ui there is an elliptic transformation γi in � with ui as fixed point. The
transformations γi are different, because every elliptic transformation has only one fixed point
in D. In particular, there is an infinite number of elements γi in � for which γiU ∩ U �= ∅.
Thus we have obtained a contradiction to the assertion in (2.5).

(2.7) Lemma. Consider the group G = SL2(R) acting on the upper half plane H. Let
ll :G → R be the map defined by [

a b

c d

]
�→ c .

Let� be a discrete subgroup ofG. Assume that the point ∞ is�-parabolic. Then the image
ll(�) is discrete in R.

Proof. Since the point ∞ is�-parabolic, there is in � a matrix of the form,

τ =
[ 1 h

0 1

]
where h > 0.

We have to prove, for any given positive real number R, that the intersection ll(�) and
[−R,R] is finite.

For 0 < ε < 1, denote by Kε the set of all matrices δ in G for which the following
inequalities hold:

ε ≤ 	(δi) ≤ 1, 0 ≤ �(δi) ≤ h. (1)

The setKε is a compact subset ofG. Indeed, the inequalities above, for the real and imaginary
parts of complex numbers, describe a compact rectangle in H, and the setKε is the preimage
of the rectangle under the map δ �→ δi. As the map δ �→ δi is proper by Corollary (Möb.4.3),
the preimage is compact.

The intersection�∩Kε is finite, because� is discrete inG andKε is compact. Therefore,
to prove that the intersection ll(�) ∩ [−R,R] is finite, it suffices to prove that when ε is
chosen sufficiently small, then the intersection ll(�) ∩ [−R,R] is contained in the image
ll(�∩Kε). We prove that the latter inclusion holds when ε ≤ 1/

(
R2 + (1 + hR)2

)
.

Let c be a value in the intersection ll(�)∩ [−R,R]. If c = 0, then c = ll(1), and clearly
the identity matrix 1 belongs to�∩Kε for any ε. Assume that c �= 0. Then 0 < |c| ≤ R and
there exists in� a matrix,

δ =
[
a b

c d

]
, (2)

whose lower left entry is the given value c. If δ is replaced by δτ , the c is unchanged and the
d is replaced by d + hc. Therefore, by replacing δ by a product δτ n for a suitable n, we may
assume in (2) that 1 ≤ d ≤ 1 + h|c|. Then,

1 ≤ c2 + d2 ≤ 1/ε. (3)
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Indeed, the first inequality holds because 1 ≤ d, and the second holds by the choice of ε since
d ≤ 1 + h|c|.

As the matrix δ has determinant 1, the imaginary part 	(δi) is equal to 1/(c2 +d2). Hence
the first two inequalities of (1) hold by (3). When δ is replaced by τδ, then the c and the d
are unchanged, but the value δi is replaced by δi + h. Therefore, by replacing δ by τmδ for
a suitable m, we may assume that the last two inequalities of (1) hold. Hence δ belongs to
� ∩Kε and, consequently, c belongs to ll(�∩Kε).

Thus the required inclusion has been proved.

(2.8) Definition. Let u be a point on the boundary ∂D. Then, by definition, a fundamental
neighborhood of u is the union of the point u and an open disk (strictly) contained in D and
tangent to ∂D at the point u. The boundary of the disk, excluding the point u, is called a horo
cycle.

Clearly, the topology on D is the trace of a topology on the closed disk,

D ∪ ∂D,

in which a neighborhood of a point u of ∂D is a subset of D ∪ ∂D containing a fundamental
neighborhood of u. By convenience, a fundamental neighborhood of a point u in D is a
geodesic disk around u, that is, an open ball centered at u with respect to the non-euclidean
distance on D.

Clearly, a Möbius transformation z �→ αzmaps a fundamental neighborhoodU of a point
u of D ∪ ∂D onto a fundamental neighborhood of the image point αu in αD ∪ ∂αD. In
particular, any matrix in SL(D) defines a topological automorphism of D ∪ ∂D.

Clearly, the subset ∂�D of �-parabolic points is invariant under the action of �. Hence �
acts on the topological space D ∪ ∂�D. We denote by D/� the corresponding orbit space,
with its quotient topology. Note that D/� contains the quotient D/� as an open subspace.
In addition, it contains one point for each orbit of �-parabolic points. A point in D/� is
called parabolic, elliptic, or ordinary respectively, if it corresponds to an orbit of �-parabolic
points, an orbit of �-elliptic points, or an orbit of �-ordinary points.

(2.9) Example. In the topology of the closed disk H ∪ R, the fundamental neighborhoods
of the point ∞ on the boundary are the subsets containing ∞ and a half plane HR : 	z > R

for some positive real number R. The horo cycles around ∞ are the horizontal straight lines
contained in H.

(2.10) Lemma. Let K be a compact subset of D. Then, for every �-parabolic point u, there
exists a neighborhood U of u such that for all matrices γ ∈ �,

γU ∩K = ∅.

Proof. After a conjugation, we may assume that D is the upper half plane H and that u = ∞.
From Lemma (2.7), it follows in particular that the exists a positive real number r with the
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property that if γ is a matrix in � and |ll(γ )| < r , then ll(γ ) = 0. As K is a compact subset
of H, it is contained in a horizontal strip,

K ⊆ {z ∈ H | r1 < 	z < r2} (1)

Now choose R such that R ≥ r2 and R ≥ 1/(r1r2). LetU be the corresponding fundamental
neighborhood, HR : 	z > R, of ∞. We have to prove for any point z of U and any matrix γ
in �,

γ =
[
a b

c d

]
,

that γ z /∈ K .
Now, since R ≥ r2, the half plane U is disjoint from the strip in (1), and in particular

disjoint fromK . Assume first that |c| < r . Then c = ll(γ ) = 0, and hence the transformation
z �→ γ z is of the form z �→ z+ h. Consequently, if z ∈ U , then γ z ∈ U , and it follows that
γ z /∈ K . Assume next that |c| ≥ r . Then,

	(γ z) = 1

|cz + d|2 	z ≤ 1

(|c|	z)2 	z ≤ 1

r2	z .

If z ∈ U , then the right hand side is less than 1/(r 2R), and hence, by the choice of R, the
right hand side is less than r1. Consequently, γ z /∈ K .

(2.11) Lemma. Consider an orbitB = �w0, wherew0 is a point of D. IfU is a fundamental
neighborhood of a point u in D, then U contains only a finite number of points in B. If U is
a fundamental neighborhood of a point in ∂�D, then of the horo cycles contained in U , only
a finite number contain points of B.

Proof. The orbitB is discrete by (2.4). Hence the assertion for a pointu ∈ D follows, because
a fundamental neighborhood U has compact closure.

Assume that u is �-parabolic, and let U be any fundamental neighborhood u. After
conjugation, we may assume that (D, u) = (H,∞). Then U is a half plane HR : 	z > R,
and the horo cycles are the straight horizontal lines. By (2.10) applied with K = {w0}, the
half plane HR for R � 0 contains no points of B. Consider the canonical generator γ∞ of
�∞. It is a translation z �→ z+h. Then every point in B ∩Hr is mapped by a suitable power
of γ∞ in the rectangle of H:

0 ≤ �z ≤ h, r ≤ 	z ≤ R.

The rectangle is compact. Hence, by (2.4), it contains only a finite number of points of B.
Thus every point of B ∩ U is one of the horo cycles through these finitely many points.

(2.12) Theorem. For any two points u1 and u2 in D ∪ ∂�D, there are neighborhoods U1
of u1 and U2 of u2, such that for any matrix γ in �, if γU1 ∩ U2 �= ∅, then γ u1 = u2. In
particular, every point u of D ∪ ∂�D has a neighborhoodU such that for any matrix γ in �,
if γU ∩ U �= ∅, then γ ∈ �u.
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Proof. If u1 and u2 belong to D, the assertion is the content of Corollary (2.5). If u1 is �-
parabolic and u2 ∈ D, the assertion follows from Lemma (2.10) by taking asU2 any compact
neighborhood of u2.

Assume that u1 and u2 are �-parabolic. After a conjugation, we may assume that D is the
upper half plane H and that u2 = ∞. Let ±τh be the canonical generator of �∞. Choose in
H any straight horizontal line L, and on L any horizontal line segment K of length at least
equal to h. Then K is a compact subset of H, and so Lemma (2.10) applies with u := u1.
Accordingly, there is a fundamental neighborhood U1 of u1 such that γU1 ∩K = ∅ for all γ
in �. Choose as neighborhood U2 of u2 = ∞ any fundamental neighborhood HR : 	z > R

lying above the line L, that is, such that R is at least equal to the imaginary part of points on
L.

We claim that if γU1 ∩ U2 �= ∅, then γ u1 = ∞. Indeed, the image γ u1 is a point on the
boundary of H. Assume that γ u1 �= ∞. Then γ u1 is a point on the real axis, and γU1 is a
(usual) disk in H tangent to the real axis. By assumption, the disk contains a point inU2, that
is, a point with imaginary part greater thanR. Therefore, the disk γU1 contains a point on the
line L. A suitable power τ nh will move the latter point into the set K . Thus τ nh γU1 ∩K �= ∅,
contradicting the property of U1.

Thus the Theorem has been proved.

(2.13) Corollary. The quotient D/� is a Hausdorff space. Moreover, it is locally compact.
In fact, for any point u in D∪∂�D, ifU is a sufficiently small fundamental neighborhood of u,
then every point different from u inU is ordinary and the image ofU in D/� is topologically
isomorphic to an open disk: {q ∈ C : |q| < ε}. In particular, the sets of �-parabolic points
and �-elliptic points are discrete in D/�.

Proof. It follows from Theorem (2.12) that the topology on the quotient space D/� is Haus-
dorff. Indeed, let u1 and u2 represent two given different points of the quotient space. Then
u1 and u2 are not �-equivalent. Therefore, by (2.12) there are open neighborhoods U1 of u1
and U2 of u2 such that γU1 ∩U2 = ∅ for all γ in �. Consequently, the images of U1 and U2
in the quotient are disjoint. As the quotient map is an open map, the two images are disjoint
neighborhoods of the two given points.

Consider next a given point in the quotient space, represented by a point u. By (2.12), for
a sufficiently small fundamental neighborhood U of u, the following condition holds:

γU ∩ U �= ∅ �⇒ γ ∈ �u. (1)

Except possibly for u, all the points of U are in D, and hence not parabolic. Moreover, no
pointw different from u inU can be elliptic. Indeed, ifw inU is elliptic, sayw = γw where
γ �= ±1, then it follows from (1) that also u is a fixed point of γ , and then w = u because an
elliptic Möbius transformation has its other fixed point in the disc exterior to D. Hence all
points different from u in U are ordinary.

As the quotient map is an open map, the image of U in D/� is an open neighborhood of
the given point, and topology on the image as a subset is equal to the quotient topology on
the image. It follows from (1) that two points in U are equivalent under � if and only if they
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are equivalent under �u. Moreover, since U is a fundamental neighborhood of u, it is stable
under �u. Therefore, the image of U in D/� is isomorphic to the quotient U/�u.

Assume first thatu is�-parabolic. After conjugation we may assume that (D, u) is (H,∞).
Then U , as a fundamental neighborhood of ∞, is a half plane 	z > R. Moreover, the group
P�∞ is the infinite cyclic group generated by z �→ z+ h. Consider the exponential,

q(z) := e2πiz/h.

It defines a continuous map q from H to the pointed unit disk {w : 0 < |w| < 1}, and the
induced equivalence relation on H is precisely the equivalence relation defined by the action
of �∞ on H. Moreover, the map q defines a continuous open map from U onto an open disk
{w : |w| < ε}. Therefore q induces a topological isomorphism,

U/�∞ ∼−→{w : |w| < ε}.

Assume next thatu is a point inD. After conjugation, we may assume that (D, u) = (E, 0).
Then U , as a fundamental neighborhood of 0 in the unit disk, is an ordinary disk: |z| < ε.
Moreover, the group P�0 is a finite cyclic group of order d, generated by the map z �→ ζ z

for some d-th root of unity ζ . Consider the d’th power map,

q(z) = zd.

It defines a continuous map q from E onto itself, and the induced equivalence relation on E
is precisely the equivalence relation defined by the action of �0 on E. Moreover, the map q
defines a continuous open map from the diskU onto itself. Therefore q induces a topological
isomorphism,

U/�0
∼−→{w : |w| < ε}.

Hence we have proved in both cases that the image of U in D/� is isomorphic to an open
disk as asserted.

Hence all assertions of the Corollary have been proved.

(2.14) Corollary. If the quotient D/� is compact, then the numbers of �-parabolic points
and �-elliptic points in D/� are finite. If the quotient D/� is compact, then there are no
�-parabolic points.

Proof. Clearly, the first assertion follows from Corollary (2.13). The quotient D/� is an
open subset of D/�, and it is dense by (2.13). Therefore, the second assertion holds.
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3. Finite normal fundamental domains.

(3.1) Setup. Fix a disk D and a discrete subgroup � of SL(D). A subset F of D is called a
fundamental domain for the action of � on D if the following three conditions are satisfied:

(1) The transforms γF for γ in � cover D.
(2) The set F is the closure in D of its subset U of interior points.
(3) For any γ �= ±1 in �, the transform γU is disjoint from U .

It follows from (2) that a fundamental domain F is a closed subset of D and that any
neighborhood of a point in the boundary F − U contains points from U and points from the
complement of F . It follows from (1) that F contains a system of representatives for the orbit
space D/�. It follows from (3) that if an orbit has a representative in the interior U , then it
has no other representatives in F . However, some orbits might have several representatives
belonging to the boundary F −U . The orbit space D/� is equal to the quotient of F modulo
the identification of �-equivalent points on the boundary.

We will show in the next section that any discrete subgroup� of SL(D) has a fundamental
domain. In this section we fix a fundamental domainF , and we consider additional conditions
on F . At a minimum we assume the following condition:

(4) The boundary F − U is the union of a finite number of line segments.

(3.2) Definition. The line segments forming the boundary of F will be called the boundary
segments. Note that a boundary segment can be infinite: one or both of its end points may be
limit points, that is, they may belong to the boundary ∂D. If two of the boundary segments
lie on the same line and have points in common, we may replace the two by their union, and
conversely, any boundary segment can be divided into two by an interior point. Thus we may
assume that if two of the boundary segments meet, then they meet at a common end point.
The end points of the boundary segments are called the vertices of F . The finite vertices,
that is, the vertices in D, belong to F , the infinite vertices are limit points of F . An infinite
vertex which is isolated among the limit points of F is said to be a cusp of F . The domain
F is called a finite domain if all of its infinite vertices are cusps. Equivalently, F is finite if it
has only a finite number of limit points.

(3.3) Observation. Take any point v ofF , and a sufficiently small fundamental neighborhood
V of v. If v is an interior point of F , then V is contained in U . If v is a boundary point of F ,
and not a vertex, then there is a boundary segment through v such that F ∩ V is one of the
two sectors into which V is divided by the line determined by the boundary segment. Finally,
if v is a vertex, then F ∩ V consists of one or more angular sectors of V , each bounded two
half rays through v. In the latter case, the sum of the angles of the angular sectors is called
the angle of F at v. In the two former cases, the angle at v is, respectively, 2π and π .

Take similarly a limit point v of F and a sufficiently small fundamental neighborhood V
of v. If v is not a vertex, then (except for v) all point of V are contained in U . If v is a cusp,
then F ∩V is a union of finitely many cuspidal sectors each bounded by two half rays through
v. Finally, if v is a vertex and not a cusp, then F ∩ V consists of a finite number (possibly
none) of cuspidal sectors and one or two sectors bounded by a single half ray through v.
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It follows from Condition (3) that if a point of F is �-elliptic, then it lies on the boundary
of F . Moreover, if the order of the point is at least 3, then it is even a vertex of F . Similarly,
if a limit point of F is �-parabolic, then it is a cusp of F .

(3.4) Definition. A line segment L in D is called a side of F if it is the intersection of a
boundary segment of F and a boundary segment of γF for some γ �= ±1 in �. The points
of L are then common boundary points of F and γF , and each end point of L is a vertex of
either F or γF . In particular, an end point of a side is �-equivalent to a vertex of F . Clearly,
the transformation γ is unique. The inverse γ −1 is called the boundary transformation
corresponding to the side L, and it is denoted γL. It maps the side L onto a side γLL of F .

By Condition (3), the intersection F ∩ γF is contained in the boundary of F and in the
boundary of γF . Each of the two boundaries is a finite union of boundary segments. It
follows that the intersection is a union of a finite number of points and a finite number of
sides of F .

(3.5) Example. Consider the subset F = F(1) of H introduced in Proposition (1.6). It
follows from the Proposition that F is a finite fundamental domain for the action of SL2(Z)
on H. The boundary of F is the union of 3 line segments, namely the segment from ∞
to ρ, the segment from ρ to ρ + 1, and the segment from ρ + 1 to ∞. The finite vertices
are ρ and ρ + 1, and ∞ is the infinite vertex. The angles F at ρ and ρ + 1 are equal to
2π/6. Moreover, the vertex ∞ is a cusp of F . Clearly, the three boundary segments are sides
of F . The corresponding boundary transformations are t : z �→ z + 1, s : z �→ −1/z, and
t−1 : z �→ z − 1.

(3.6) Proposition. For any point w of D there is only a finite number of transforms γF such
that w ∈ γF . In particular, in F there is only a finite number of points that are �-equivalent
to w. Moreover, F has only a finite number of sides.

Proof. Assume that w belongs to the n transforms γ1F, . . . , γnF , and consider the union,

γ1F ∪ · · · ∪ γnF. (3.6.1)

Each transform γiF is, in a sufficiently small fundamental neighborhood of w, a union of
angular sectors, and the angle of γiF at w is equal to the angle of F at γ −1

i w. The interiors
of different transforms are disjoint. Hence, in a sufficiently small fundamental neighborhood
of w, the union (3.6.1) is a union of angular sectors. The angle of the union is at most 2π and
it is equal to the sum of the angles of F at the points γ −1

i w. The latter angles are bounded
away from 0, since the angle is at least equal to π except possibly at the finitely many vertices
of F . Therefore, there is an upper limit for the number n. Thus there is only a finite number
of transforms γjF containing w.

If v ∈ F is �-equivalent to w, say w = γ v, then γF is among the γjF , and hence the
transformation γ is equal to one of the γj . In particular, v is one of the finitely many points
γ−1
j w. Hence, only a finite number of points of F are equivalent to w.

An end point v of a side of F is �-equivalent to a vertex of F . If v is a limit point of F ,
then v is an infinite vertex of F . If v is in F , then v is �-equivalent to a finite vertex of F and
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so, by what was just proved, there is only a finite number of possibilities for v. Hence there
is only a finite number of end points of sides. Thus the number of sides of F is finite.

(3.7) Observation. Consider the union (3.6.1) with n maximal, that is, the γjF are all the
transforms containing w. Then, clearly, the union is a neighborhood of w if and only if the
sum of the angles of F at the points γ −1

j w is equal to 2π .

(3.8) Note. It follows from Proposition (3.6) that �-equivalence on F is finite, that is, every
point v of F is �-equivalent to only a finite number of points in F . If v is in U , then v is
�-equivalent only to itself. If v is a relative interior point of a sideL of F , then v is equivalent
to γLv and to no other point different from v.

It follows also that F contains only a finite number of �-elliptic points v. Indeed, if v
is �-elliptic of order at least 3, then v is one of the finitely many vertices. So assume that
v is �-elliptic of order 2, and not a vertex, that is, assume that v is relative interior on a
boundary segment B. The non-trivial transformation γ with v as fixed point is a rotation by
π around u. Therefore B has a line segment in common with γF . It follows that v belongs
to a side of F and that γ is the corresponding boundary transformation. There is only a finite
number of sides. In particular, only a finite number of points can be fixed point of a boundary
transformation. Hence there is only a finite number of possibilities for v.

(3.9) Proposition. The following conditions on the domain F are equivalent:

(5i) Any compact subset K of D meets only a finite number of transforms γF .
(5ii) For any point w of D, the union,

γ1F ∪ · · · ∪ γnF, (3.9.1)

where the union is over the finitely many transforms γjF containing w, is a neigh-
borhood of w.

(5iii) The boundary of F is the union of the sides of F .

Proof. (i) �⇒ (ii): Let W be a fundamental neighborhood of w. The transforms γF cover
D. In particular, they cover W . As the closure of W is compact, it follows from (i) that W
is contained in a finite union of transforms γjF . Each transform is a closed subset of D.
Therefore, if we omit from the transforms γjF those that do no contain w, then the union of
the remaining γjF is still a neighborhood of w. Thus (ii) holds.

(ii) �⇒ (i): For any point w of D, the union (3.9.1) of the finitely many γjF contains
a fundamental neighborhood W of w. Each transform γF is the closure of its interior.
Therefore, if a transform γF meets W , then it is equal to one of the γjF . In particular,
W meets only a finite number of transforms γF . Now, let K be a compact subset of D.
Choose for each point w of K a fundamental neighborhoodW meeting only a finite number
of transforms γF . Since K is compact, it follows that K meets only a finite number of
transforms γF . Thus (i) holds.

(ii) �⇒ (iii): Take any point w on the boundary of F . It belongs to some boundary
segment B of F . Consider a small fundamental neighborhood W of w. It follows from (ii)
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that W is contained in the union of F and a finite number of transforms γiF containing w.
In particular, the part of B in W is also part of the boundary of one of the transforms γiF .
Therefore, the part of B in W is part of a side of F . Hence w belongs to a side of F . Thus
(iii) holds.

(iii) �⇒ (ii): Consider the union (3.9.1), and its part in a sufficiently small fundamental
neighborhood W of w. The part is the union of a finite number of angular sectors bounded
by a finite number (possibly none) of half rays from w. By (iii), we may assume that each
bounding half ray is the part of a side of a transform γiF . However, being part a side of a
transform γF , the half ray is also contained in a second transform γ ′F , contradicting the half
ray bounded the part inW of the union (3.9.1). Thus there are no bounding half rays. Hence
the union containsW . Thus (ii) holds.

Hence the equivalence of the three conditions has been proved.

(3.10) Definition. The fundamental domainF will be called a normal domain if the equivalent
conditions of Proposition (3.9) hold. Note that we have assumed Condition (4) for F . In
general, for an arbitrary fundamental domain, the condition (5i) can be taken as the definition
of normality.

If F is a normal domain, then for the transforms γjF in the union (3.9.1) the sum of the
angles of the transforms γjF at w is equal to 2π . Equivalently, the sum of the angles of F at
the points γ−1

j w is equal to 2π . The points γ −1
j w are exactly the points v of F ∩ �w, and

each v appears as γ−1
j w exactly |P�w| times. Hence, for a normal domain F , the following

formula holds: ∑
v∈F∩�w

AnglevF = 2π/|P�w|. (3.10.1)

Conversely, if the equation (3.10.1) holds for all points w, then the condition (5ii) holds, as
observed in (3.7).

(3.11) Proposition. Assume that F is normal fundamental domain for �. Then the group P�
is generated by the boundary transformations γL corresponding to the sides of F .

Proof. Let� be the subgroup of generated by the γL. It suffices to prove the equation,

D :=
⋃
δ∈�

δF. (3.11.1)

Indeed, assume that the equation holds. Fix a point u of the interior U of F . Let γ be a
matrix in �. Then γ u belongs to δF for some δ in �. As γ u is an interior point of γF , it
follows that γ , up to ±1, is equal to δ.

To prove the equation (3.11.1), let D0 be the union on the right hand side. Using the
properties of the sides L of F , it follows easily that any point of F is an interior point of a
finite union of transforms δF for δ ∈ �. As a consequence, it F meets a transform γF , then
γF = δF for some δ in�.

It follows first that the union D0 is an open subset of D, and next that the complement
D − D0 is a union of transforms γD0. Therefore, the complement is open too, and since D
is connected, it follows that D0 = D.
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(3.12) Proposition. Let� be a subgroup of finite index d in �. Assume for simplicity that�
is homogeneous or that � is inhomogeneous. Consider a decomposition into right cosets,

� = �γ1 ∪ · · · ∪�γd.

Assume that F is a normal fundamental domain for �. Then the union of transforms,

G := γ1F ∪ · · · ∪ γdF,

is a normal fundamental domain for �. Moreover, any side of G is of the form γiL where
L is a side of F , and the corresponding boundary transformation is determined as follows:
according to the coset decomposition, we have γiγ

−1
L = δγk for a unique k and a unique δ

in �. Then δ = δi,L is the boundary transformation corresponding to the side γiL.

Proof. The union of the γiU is an open subset of D, andG is its closure. The interior V ofG
contains the union, and thereforeG is the closure of V . The conditions (1)–(3) follow easily
for G. Moreover, the boundary of G is contained in the union of transforms γiL where L is
a side of F . Of course, the inclusion may be strict: some side γiL of γiL may be a side of a
different γjF and hence not a part of the boundary of G. The assertions of the Proposition
follow easily.

(3.13) Exercise. Modify Proposition (3.12) to cover the case when � is homogeneous and
� is inhomogeneous.

(3.14) Proposition. Assume that F is a finite fundamental domain. Then F is normal, if and
only if all cusps of F are �-parabolic. Moreover, if F is normal, then every �-parabolic
point is �-equivalent to a cusp of F and the quotient D/� is compact.

Proof. By hypothesis, there is only a finite number of limit points of F , and they are all cusps.
Assume first that they are all�-parabolic. To prove thatF is normal, we verify Condition (5i).
LetK be a compact subset of D. Then, by Lemma (2.10), each cusp of F has a fundamental
neighborhood U , such that the intersection γU ∩ K is empty for all γ . Clearly, if we cut
away from F a fundamental neighborhood of each cusp, then what remains of F is a compact
subset K1 of F . By Lemma (2.2), the intersection γK1 ∩ K is non-empty for only finitely
many γ . Therefore, the intersection γF ∩ K is non-empty for only finitely many γ . Thus
Condition (5i) holds.

Assume conversely that F is normal. Let v be a cusp of F . We have to show that there is
in � a parabolic matrix with v as fixed point. After a suitable conjugation, we may assume
that (D, v) = (H,∞). Then a fundamental neighborhood of v is a half plane V : 	z > R.
When R is sufficiently big, the intersection F ∩ V is the union of a finite number of vertical
strips, bounded by a finite number of vertical line segments. There is only a finite number
of sides of F . So, enlarging R, we may, by (5iii), assume that each vertical bounding line
segment is part of a side of F . In particular, the rightmost of the vertical bounding segments
is also part of a side of some transform γ1F different from F . In particular, v = γ1v1 for
some cusp v1 of F . Repeat the argument to the cusp v of γ1F and the rightmost bounding
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vertical segment of γ1F , and continue. As there are only a finite number of cusps of F , it
follows that the given cusp v = ∞ is a fixed point of some matrix γ �= ±1 of �.

We claim that γ is parabolic. Indeed, otherwise γ would have a second fixed point different
from ∞ on the boundary of H. After a conjugation we may assume that the second fixed
point of γ is 0. Hence, γ z = rz for some positive real number r �= 1. Replacing γ by
γ−1 if necessary, we may assume the r < 1. Now, F contained a vertical strip, bounded by
two vertical lines and (below) by a horizontal straight line. Clearly, when the powers γ n are
applied to the strip, the two bounding vertical lines move towards the imaginary axis and the
bounding straight horizontal line moves towards the real axis. Hence, if K is any compact
neighborhood of a point on the imaginary axis, then the intersection K ∩ γ nF is non-empty
for n � 0. The latter property contradicts Condition (5i). Therefore, γ is parabolic. Thus
we have proved conversely that if F is normal, then every cusp of F is �-parabolic.

Assume that F is normal. Denote by F ∗ the union of F and the limit points of F . There
is only a finite number of limit points. Therefore F ∗ is a compact subset of D ∪ ∂D. Each
cusp is �-parabolic, and hence F ∗ is contained in D∪ ∂�D. Consider the image of F ∗ in the
quotient D/�. As F ∗ is compact, the image is compact. Moreover, as F contains a system
of representatives for the �-orbits in D, the image contains the open subset D/�. The latter
subset is dense in D/� by (2.13). Hence the image of F ∗ is all of D/�. It follows first that
every point of D ∪ ∂�D is �-equivalent to a point of F ∗, and next that the quotient D/� is
compact. Thus the two remaining assertions of the Proposition have been proved.

(3.15) Definition. A discrete subgroup � of SL(D) such that the quotient D/� is compact
is called a Fuchsian group of the first kind. It follows from Corollary (3.14) that if � has a
finite normal fundamental domain, then � is of the first kind. Conversely, we prove in the
next section that if � is of the first kind, then there exists a finite normal fundamental domain
F for �.

(3.16) Definition. For the limit points of F there is no notion corresponding to the angle at
the points of F . However, for a �-parabolic cusp v of F we can define the width of F at v
as follows: In a fundamental neighborhood V of v, the intersection F ∩ V is a finite union
of cuspidal sectors. Assume first that (D, v) = (H,∞). Then V is a half plane V : 	z > R

in H, and the cuspidal sectors are vertical strips. The canonical generator at v = ∞ is a
translation z �→ z+h. Define the width at ∞ as 1/h times the sum of the euclidean widths of
the strips (where the euclidean width of a vertical strip is the euclidean distance between its
bounding vertical lines). It follows easily from Condition (3) that the width is at most equal
to 1.

In general, choose a conjugation α : (D, v) → (H,∞), and define the width of F at the
�-parabolic point v as the width at ∞ of αF with respect to the conjugate subgroup �α . A
different choice of α differs from the first choice by a Möbius transformation of the form
z �→ rz+ b, where r > 0 and b ∈ R. Hence, for the second choice, the widths of the vertical
strips and the number h are both multiplied by r , and consequently, the quotient is unchanged.
Hence the width of F at a �-parabolic cusp v is well defined.
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If F is a finite normal domain, then following formula holds for any �-parabolic point w:

∑
v∈F ∗∩�w

widthvF = 1, (3.15.1)

where F ∗ is the union of F and the cusps of F . Indeed, consider the cusps vi ∈ F ∗ that are
�-equivalent tow, and choose for each a matrix γi such that γivi = w. Then every transform
γF having w is a cusp is of the form γ nwγiF , where γw is the canonical generator. Each
transform γiF is, in a small fundamental neighborhood V of w, a union of cuspidal sectors
bounded by vertical line segments. By (5iii), we may assume that each bounding vertical line
segment is part of a side of γ iF . It follows that the transform γ nwγiF cover all of V . The
formula (3.15.1) is an easy consequence.

Note that, using the canonical generator γv at a point v of F , we can normalize the angle
at v: the canonical generator γv is a rotation around v by the angle 2π/|P�u|. Define the
width of F at v to be the angle of F at v divided by the rotation angle of γv . Then the formula
(3.15.1) hold for all points w of D ∪ ∂�D. In fact, for points w ∈ D, (3.15.1) is obtained
from (3.10.1) by division by 2π/|P�w|.
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4. Canonical fundamental domains.

(4.1) Setup. Fix a disk D and a discrete subgroup � of SL(D). Let b be a point of D. The
corresponding canonical domain F(b) is the subset of D consisting of all points z satisfying
the inequalities,

F(b) : dist(z, b) ≤ dist(z, b′) for all b′ ∈ �b. (4.1.1)

We will show in this section that if the point b is �-ordinary (i.e., not �-elliptic), then the
set F(b) is a fundamental domain for �. In addition, the interior of F(b) is the set U(b) of
points z for which the inequalities (4.1.1) are strict for b ′ �= b. Moreover, we prove that F(b)
is a convex polygon with (in general) an infinite number of sides. If � is Fuchsian group of
the first kind, then F(b) is a finite normal fundamental domain.

For the remainder of the section we fix a �-ordinary orbit B, say B = �b0 where b0
is not �-elliptic. We consider exclusively the canonical domains F(b) for points b ∈ B.
Clearly, for any matrix γ in �, we have that γF(b) = F(γ b). Thus the domains F(b) are
the transforms under � of the domain F := F(b0) for any given point b0 in B.

(4.2) Observation. The inequality (4.1.1), for two different points b, b ′ of B, defines a
(non-euclidean) half plane Fb,b′ of D, bounded by the line,

Lb,b′ : dist(z, b) = dist(z, b′),

of points of equal distance to b and b′. Each half plane Fb,b′ is closed and convex. In addition,
if v is any point of Fb,b′ then the open line segment from b to v is contained in the interior of
Fb,b′ , that is, for points z on the open line segment, the inequality (4.4.1) is strict.

The subset F(b) is the intersection of the closed half planes Fb,b′ for all b′ �= b in B.
Therefore, the subset F(b) is closed and convex in D. In addition, ifw belongs to F(b), then
the open line segment from b to w is contained in U(b). The latter property holds also when
w is a limit point of F(b), since a point w of ∂D is a limit point of F(b) if and only if it is a
limit point of each half plane Fb,b′ .

(4.3) Definition. Fix b0 ∈ B and set F := F(b0). Obviously, if b �= b0, then the intersection
F ∩ F(b) is contained in the line Lb0,b. Moreover, the intersection is closed and convex.
Hence the intersection is either empty, or a single point, or a line segment of D (possibly with
one or both end points on the boundary ∂D). By definition, a line segment L of D, which is
an intersection L = F ∩ F(b) for some b �= b0 in B, is called a side of F . An end point of a
side is called a vertex. The finite vertices belong to F , the infinite vertices are limit points of
F .

The line Lb0,b is orthogonal to the line segment from b0 to b and intersects the line
segment in its midpoint. Hence, when b0 is fixed, the line Lb0,b determines the point b. As
a consequence, different sides of F lie on different lines. It follows easily that a finite vertex
of F belongs to exactly two sides of F and is a common end point of the two. In addition, an
infinite vertex can belong to at most two sides. A limit point of F which is the common end
point of two different sides is called a cusp of F .

We prove below that the boundary of F is the union of the sides of F .
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(4.4) Observation. Consider a point u in D. By Lemma (2.11), any fundamental neighbor-
hood of u contains only a finite number of points from B. It follows that among the points
in B there is a finite number of points bj for which the distance to u is minimal. They are
said to be the points of B nearest to u. They lie on geodesic circle around u (including the
possibility of the circle with radius zero, when u belongs to B). If u ∈ B, there is only a
single b1 := u nearest to u. If u /∈ B, then, according to an orientation of the geodesic circle,
we can index the bj in a cyclic order b1, . . . , bn, so that there are no bj on the open arc from
bi to bi+1. Then, clearly, any fundamental neighborhood V of u is divided into finitely many
angular sectors,

Vi := {z ∈ V | dist(z, bi) ≤ dist(z, bj ) for all j }, (4.4.1)

and two different Vi and Vj have a half ray from u in common when j = i ± 1, and only the
point u in common otherwise. If there is only one point bi , then V1 = V , and the angle of V1
at u is equal to 2π . If there are two points bi , then V1 and V2 have a line segment as common
boundary. The angles of V1 and V2 at u are equal to π . Finally, when there are more than
two points bi , then each Vi has at u an angle strictly less than π . In any case, the sum of the
angles of Vi at u is equal to 2π . It is convenient to define the width of Vi as the angle of Vi
divided by the rotation angle of the canonical generator γu.

Consider next a point u in ∂�D. Then, again by Lemma (2.11), there is a smallest horo
cycle around u containing points of B. The points of B on this smallest horo cycle are said
to be nearest to u. The set of points of B nearest to u is a discrete subset of the horo cycle.
Moreover, it is an infinite set, since it is invariant under the canonical generator γu. Hence
the set of points ofB nearest to u can be indexed cyclically bi for i ∈ Z so that there are no bj
on the arc from bi to bi+1. Then, clearly, any fundamental neighborhood V of u is divided in
infinitely many cuspidal sectors Vi by the equations (4.4.1), and two different Vi and Vj have
a half ray from u in common when j = i ± 1, and only the point u in common otherwise.

Define the width at u of the cuspidal sector Vi as follows: Assume first that (D, u) =
(H,∞). Then the canonical generator γu is a translation z �→ z + h, and the points bi of B
nearest to ∞ are on a horizontal straight line of H. The fundamental neighborhood V is a
half plane 	z > R in H, and the cuspidal sector Vi is a vertical strip of H, bounded by the
two vertical lines of equal distance to bi−1 and bi and to bi and bi+1. Define the width of Vi
at u = ∞ as the euclidean width of the strip divided by h. In general, define the width of a
cuspidal sector Vi by using a conjugation as in (3.16).

Note that the width of a cuspidal sector Vi is at most equal to 1, since the set of nearest
points is stable under the canonical generator γu.

(4.5) Lemma. Let u be a point of D∪ ∂�D, and γu the canonical generator of �u. Consider,
in the setup of (4.4), a fundamental neighborhood V of u and the division of V in sectors Vi .
Then there is a smallest positive number d such that γuVi = Vi+d for all i. Moreover, the
sum of the widths of Vj for j = 1, . . . , d is equal to 1.

Proof. If u ∈ D, then any geodesic circle around u is invariant under γu. In particular, γu
permutes the points bi . If u ∈ ∂�D, then any horo cycle around u is invariant under γu. In
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particular, γu permutes the points bi . It follows, in both cases, that γu permutes the sectors
Vi .

Assume that u ∈ D. Then γu is a rotation by the angle 2π/|P�u| around u. So the
number d ≤ n defined by γuVi = Vi+d is independent of i. Clearly the union of the Vj , for
j = 1, . . . , e is itself an angular sector, and its angle at u is the rotation angle of γu. The
assertions of the Lemma follow easily.

Assume that u ∈ ∂�D. After a conjugation, we may assume that (D, u) = (H,∞). Then
γu is a translation z �→ z + h, and the cuspidal sectors are vertical strips. So, the number d
defined by γuVi = Vi+d is independent of i. Clearly the union of the Vj , for j = 1, . . . , d,
is itself a vertical strip of euclidean width h. The assertions of the Lemma follow easily.

(4.6) Proposition. Let u be a point of D∪∂�D. Consider, in the setup of (4.4), a fundamental
neighborhood V of u and the division of V in sectors Vi . If V is sufficiently small, then
F(bi) ∩ V = Vi and if b is a point of B such that F(b) ∩ V �= ∅, then b is one of the bi .

Proof. The points bi are the points of B nearest to u. To prove the Proposition, it suffices
to show that a sufficiently small fundamental neighborhood V of u has the following special
property: for any point w in V , the points of B nearest to w is a subset of the bi . Indeed,
assume that V has the special property. Consider a given i, say i = 0. Obviously, the
inequalities in (4.1.1) for b := b0 and all b′ ∈ B imply the inequalities in (4.4.1) for all j .
Hence, F(b0) ∩ V ⊆ V0. Conversely, assume that w belongs to V0. By the special property,
the points of B nearest to w are among the bi . By definition of V0, among the bi , then
point b0 is nearest to w. Hence b0 is a point of B nearest to w, that is, w ∈ F(b0). Thus
F(b0)∩ V = V0. Moreover, if the intersection F(b)∩ V is non-empty, take a point w in the
intersection. Then b is a point of B nearest to w. So, by the special property, b is one of the
bi .

To prove the existence of a fundamental neighborhoodV with the special property, assume
first that u belongs to D. Let r be the common (non-euclidean) distance from u to the nearest
points bi . By (2.11), any geodesic disk around u contains only a finite number of points of
B. Hence, if ε > 0 is sufficiently small, then the geodesic diskW with radius r + ε contains
of points of B only the bi . The geodesic disk V around u with radius ε/2 has the special
property. Indeed, let w be a point of V . If w belongs to V , then, by the triangle inequality,
the distance from w to any bj is strictly less than r + ε/2, and the distance from w to a point
outsideW is at least equal to r + ε/2. Therefore, the points of B nearest to w are among the
bi . Thus V has the special property.

Assume next that u is a �-parabolic point. After a conjugation, we may assume that
(D, u) = (H,∞). Then the canonical generator γu is a translation z �→ z + h, and the
smallest horo cycle containing the nearest points bi is a horizontal (straight) line 	z = r .
It follows from (2.11) that for some r ′ < r , the fundamental neighborhood W : 	z > r ′
contains of points of B only the bi . Let ε be the non-euclidean distance between the straight
lines 	z = r and 	z = r ′. It is the distance between any two points with the same real
part on the two lines; in fact, it is equal to log(r/r ′). The distance dist(z, z + h) converges
to zero uniformly as 	z → ∞. Therefore, there exists an R > r such that if 	z > R and
0 ≤ |k| ≤ h/2, then dist(z, z + k) < ε. The fundamental neighborhood V : 	z > R has
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the special property. Indeed, let w be a point of V . Let s be the non-euclidean distance from
w to the line 	z = r (then s = log(	u/r)). Since the set of points bi is invariant under the
translation z �→ z+ h, there is a bj such that for the difference of real parts, k := �bj − �u,
we have that 0 ≤ |k| ≤ h/2. Now, the distance from w to w+ k is strictly less than ε and the
distance from w + k to bj is equal to s. Hence the distance from w to bj is strictly less than
s+ ε. On the other hand, the distance from w to the line 	z = r ′ is equal to s+ ε. Hence the
distance from w to any point of B different from the bi is at least equal to s + ε. Therefore,
the points of B nearest to w are among the bj . Thus V has the special property.

(4.7) Observation. Fix a point b0 ∈ B, and set F := F(b0). The local descriptions in (4.5)
and (4.6) apply in particular to points v that are either in F or �-parabolic limit points of F .
It follows that a sufficiently small fundamental neighborhood V of v decomposes into a finite
number of sectors Vi , of which one, say V0, is equal to F ∩ V . The width of V0 at v is called
the width of F at v. If v is in F , then the sectors are angular and there is finite number. If v
is �-parabolic, then the sectors are cuspidal and there is an infinite number.

Consider the following (exhaustive) cases:
(1) There is only one Vi . Then V = V0 is contained in F , and hence v is an inner point of

F . Moreover, if F(b) meets V , the b = b0. In particular, no point of V is a side of F or a
vertex of F . The width of F at v is equal to 1.

(2) There are two angular sectorsVi , sayV0 andV1. ThenV1 = F(b1)∩V , andV ∩F(b) =
∅ when b is not b0 or b1. The common boundary of V0 and V1 is the intersection of V and
the line Cb0,b1 , and equal to the part in V of the intersection F(b0) ∩ F(b1). In particular,
the latter intersection is a side of F , it contains v, and it is the only side of F containing v.
The width of F at v is equal to 1/2. The interior points of V0 are interior points of F . In
particular, the point v belongs to the closure of the set of interior points of F .

(3) There are more than two angular sectors Vi . Then the common boundaries of V0 and
the two adjacent Vi’s are parts of sides of F . In particular, then v is a vertex of F . The
width of F at v is strictly less than 1/2. The interior points of V0 are interior points of F . In
particular, the point v belongs to the closure of the set of interior points of F .

(∞) Assume that v is a �-parabolic limit point of F . If V−1 and V1 are the two adjacent
Vi , then the intersections V0 ∩ V−1 and V0 ∩ V1 are parts of two sides of F . Thus v is the
common end point of two different sides; in particular, then v is a cusp of F .

(4.8) Theorem. Let b0 be a point of D which is not �-elliptic. Then the canonical domain
F = F(b0) of (4.1) is a fundamental domain for �, and its interior is the subset U(b0). The
boundary of F is the union of the sides of F . In addition, every �-parabolic limit point of F
is a cusp. Finally, every compact subset of D meets only a finite number of sides.

Denote by F ∗ the union of F and the set of �-parabolic limit points of F . Then, for any
point u of D ∪ ∂�D, the intersection F ∗ ∩ �u is finite, and the following formula holds,

∑
v∈F ∗∩�u

widthvF = 1

In particular, every �-parabolic point is equivalent to a point in F ∗.
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Proof. Set U := U(b0), and consider the conditions (1)–(3) of (3.1). It follows from Pro-
position (4.6) in particular that any point v of D belongs F(b) for some b = γ b0, and that
it belongs to only a finite number of F(b). As F(γ b0) = γF(b0), it follows that condition
(1) holds. Next, let v be a point in U . Then b0 is the single point in B = �b0 nearest to
v. It follows from the discussion in (4.7)(1) that a sufficiently small neighborhood of v is
contained in F . Hence U is an open subset of D. If a point of F is not in U , it follows from
the discussion that any neighborhood of v contains points ofU and points of the complement
of F . Hence U is the set of interior points in F and F is the closure of U . Thus condition (2)
holds. Finally, the intersection U ∩ γU is equal to U(b0) ∩ U(γ b0). It is obvious from the
definition in (4.1) that the intersection is empty unless b0 = γ b0. Since b0 is not �-elliptic,
the equation b0 = γ b0 implies that γ = ±1. Hence condition (3) holds. Thus F is a
fundamental domain for �.

The assertions about the boundary of F follow immediately from the discussion in (4.7).
By the same discussion, any point u of D has a fundamental neighborhood meeting at most
two sides of F . It follows that a compact subset of D can only meet a finite number of sides
of F .

Finally, the formula follows from Lemma (4.5).

(4.9) Corollary. The quotient D/� is compact, if and only if F = F(b0) is a finite normal
domain.

Proof. By Proposition (3.14), if the fundamental domain F is a finite normal domain, then
the quotient is compact.

Conversely, assume that the quotient is compact. Choose for each point u of D ∪ ∂�D
a small fundamental neighborhood V = Vu of u having the property of Proposition (4.6).
If V has the property for u, and u′ is �-equivalent to u, say u′ = γ u, then V ′ := γV has
the property for u′. Moreover, V ′ is independent of the choice of γ , because two different
choices differ by a matrix in �u, and the matrices of �u leaves the fundamental neighborhood
V invariant. Hence we may assume that Vγu = γVu for all γ in �.

For any point v of F ∗, the fundamental neighborhood Vv is a union of sectors Vi . Let Fv
be the sector contained in F ∗.

Consider an arbitrary point u of D ∪ ∂�D and the fundamental neighborhood Vu. Then
Vu is a union of sectors Vi and Vi is the part in Vu of F(bi). We have that bi = γ b0 for some
γ in �, and hence F(bi) = γF . Thus, with v := γ −1u, we have that v ∈ F ∗ and Vu = γVv.
It follows that Vi is equal to γFv . Therefore, in the decomposition of Vu, any of the sectors
Vi is a transform of Fv for some point v ∈ F ∗ ∩ �u.

The intersection F ∗ ∩ �u is finite by the Theorem. Hence it follows from the preceding
argumentation that any point u in D∪∂�D has a fundamental neighborhood which is a union
of transforms of sets Fv for a finite number of points v in F ∗. It follows that any point in
the quotient has a neighborhood which is a finite union of the images of the Fv . Since the
quotient is compact, therefore the quotient is the union of a finite number of images of the Fv .
In other words, there is a finite set of points vk in F ∗ such that any point in F ∗ is �-equivalent
to a point in the union of the Fvk .
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Let w be a point which is either on the boundary of F or a limit point of F . LetM denote
the open line segment from b0 to w. Then M is contained in the interior of F . In particular,
no points of M can belong to a transform of F different from F . Hence M is contained in
the union of the finitely many Fvi . It follows first that w is a boundary point of one of the
Fvk , and next that w belongs to one of the Fvk .

Each Fvk meets at most two sides of F and has at most one point on ∂D. As the boundary
of F is the union of the sides, it follows first that the number of sides is finite. Hence the
condition (4) of (3.1) holds. Next, it follows that there is only a finite number of limit points
for F . Hence F is a finite domain. Moreover, the limit points of F are in F ∗ and hence
�-parabolic. Therefore, by Proposition (3.14), F is a finite normal domain.

Thus the Corollary has been proved.

(4.10) Note. If the canonical domain F = F(b0) has finite area, then it is a finite normal
domain. Indeed, assume that the area of F is finite. For each finite vertex v of F , let αv
denote the angle of F at v (equal to 2π times the width at v). Set αv := 0 for all limit points
v of F . Let vi be a finite number of points that are either vertices or limit points of F . Let F ′
be the convex hull of the vi . Then F ′ is a finite polygon, possibly with some of its vertices on
∂D. If α′

i is the angle of F ′ at vi , then it is well known that the area of F ′ plus 2π is equal to∑
(π − α′

i). Now, since F is convex, we have that F ′ ⊆ F . So, the area of F ′ is at most the
area of F and the angle α′

i is at most αvi . Therefore, the sum
∑
(π − αvi ) is at most equal to

the area of F plus 2π . As a consequence, the following sum over all points v that are either
a vertex or a limit point of F is bounded above:

∑
(π − αv). (*)

In the sum (*), each limit point of F contributes with the term π . Hence there is only a finite
number of limit points of F . Divide the finite vertices into �-equivalence classes. Each class
is finite, and sum of the angles in a given class is equal to 2π/d where d is the common
number of elements of the isotropy group P�v for any vertex v in the class. Let n be the
number of vertices in the class. Then the sum of the terms in (*) corresponding to the vertices
in the class is equal to (n − 2/d)π . Each angle is strictly less than π . Therefore, if d = 1,
then n ≥ 3, and if d = 2 then n ≥ 2. Hence, n− 2/d ≥ 1 if d = 1 or d = 2. If d > 2, then
(n − 2/d) ≥ 1/3. Hence, in all cases, the group contributes with at least π/3 to the sum. It
follows that there is only a finite number of groups. Hence the number of finite vertices is
finite.

As the number of vertices is finite, so is the number of sides. Moreover, there is only a
finite number of limit points of F . So F is a finite domain. Now it follows from Theorem
(3.7) that F is a finite normal domain.

(4.11) Exercise. Prove that the considerations in (4.10) imply the following estimate:

Area(F )/π + 2 ≥ (number of infinite vertices)+ (number of finite vertices)/3.
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5. The Euler characteristic.

(5.1) Setup. Fix a disk D and a discrete subgroup � of SL(D) such that the quotient X =
X(�) := D/� is compact.

The quotient is a surface by Corollary (2.13): any point in the quotient has an open
neighborhood topologically isomorphic to an open disk in the plane. Therefore, as is well
known, the Euler characteristic χ(X) is defined. It is the alternating sum of the ranks of the
cohomology groups,

χ(X) = dimH 0(X)− dimH 1(X)+ dimH 2(X). (5.1.1)

Obviously, the quotientX is connected. In addition, the definition of the local isomorphisms
in Corollary (2.13) shows thatX in a natural way is an oriented surface. Therefore, as is well
known, the surface X is (topologically) a sphere with a certain number of handles attached.
The number of handles is called the genus ofX and is denoted g = g(X) = g(�). In addition,
the cohomology groups H 0(X) and H 2(X) are 1-dimensional, and H 1(X) is of dimension
2g. Hence the genus and the characteristic are related by the formula,

χ = 2 − 2g. (5.1.2)

Moreover, it is well known that the characteristic can be determined from any a triangulation
of X by the formula,

χ(X) = #(vertices)− #(edges)+ #(faces). (5.1.3)

Fix a finite normal fundamental domainF for�, cf. Proposition (3.14) and Corollary (4.9).
The boundary of F is the union of finitely many sides. We will take as definition of a vertex
here a point which is an end point of a side. Recall that for any side L of F there is a unique
boundary transformation γL in� such that γLL is a side of F . We will say thatL is an elliptic
side if γLL = L. Equivalently, a side L is elliptic, if it contains an elliptic point v which is
not a vertex. Then, necessarily, the point v is elliptic of order 2 and γL is the rotation by the
angle π around v.

(5.2) Definition. The Euler characteristic of the domain F is defined from any triangulation
of F as the number,

χ(F ) = #(inner vertices)− #(inner edges)+ #(faces). (5.2.1)

The Euler characteristic is in fact a topological invariant of the interior U of F . If U is
connected, then the characteristic is equal to 1 minus the number of holes inU . At any rate, it
is a consequence of (the proof of) the next formula that the characteristic of F is independent
of the choice of triangulation.
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(5.3) Proposition.

Area(F ) = −2πχ(F )+ #(sides of F)π −
∑

AnglevF, (5.3.1)

where the sum is over the vertices of F and the angle of F at a cusp is defined as 0.

Proof. Consider a triangulation of F . Each face is a triangle. An edge of a triangle is either
an inner edge or part of the boundary of F . Clearly, if we divide a side of F into two by a
point on the side, then the number of sides is increased by 1 and the sum of the angles of is
increased by π ; hence the right side of (5.3.1) is unchanged. Therefore, we may assume that
the sides of F are exactly those edges of the triangulation that are contained in the boundary.

If we sum the areas of the faces of the triangulation, we get the area of F , that is the left
side of (5.3.1). On the other hand, each face is a triangle and its area is equal to π minus the
sum of the three angle of the triangle. Hence the sum of the areas of the faces is equal to π
times the number of faces minus the sum of the angles of the faces. In the latter sum, each
inner vertex contributes with 2π and each vertex on the boundary of F contributes with the
angle of F at the vertex. Hence we have obtained the equation,

Area(F ) = #(faces)π − #(inner vertices) 2π −
∑

AnglevF.

The equation (5.3.1) is a consequence, since obviously, the equation,

3#(faces) = 2#(inner edges)+ #(sides),

holds for a triangulation whose outer edges are the sides of F .

(5.4) Proposition. Take as vertices of F the end points of the sides. Then the Euler charac-
teristics of X = D/� and the fundamental domain F are related by the formula,

χ(X) = χ(F )− #(non-elliptic sides of F)

2
+ #

(vertices of F

�

)
, (5.4.1)

where the last fraction denotes the set of �-equivalence classes of vertices of F .

Proof. Consider an elliptic sideL of F . It does not contribute to the right hand side of (5.4.1).
The boundary transformation γL is a rotation by π around an elliptic point v of order 2 on L.
The point v divides L into two line segments L′ and L′′ with v as common end point. The
two segments L′ and L′′ are interchanged by γL. Hence, considering the sides of F , we may
replace the side L by the two sides L′ and L′′ and add the point v as a vertex. The point v
is �-equivalent to no other point of F . Therefore, the replacement does not change the right
hand side of (5.4.1). Thus, to prove (5.4.1), we may assume that no side of F is elliptic.

Consider a side L and its transform L′ = γLL. A given point v interior on L divides
L into two line segments L1 and L2 with v as common end point. Then L′ is divided into
the two line segments L′

1 := γLL1 and L′
2 = γLL2 with v′ := γLv as common end point.

Hence, considering the sides of F , we may replace the two sides L and L′ by the four sides
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L1, L′
1, L2, L′

2 and add the two points v and v ′ as a vertices. The points v and v ′ form a single
�-equivalence class of vertices. Therefore, the replacement does not change the right hand
side of (5.4.1). Thus, to prove (5.4.1), we can divide any side L of F into a finite number
of sides as long as we divide similarly the side γL. In particular, just dividing some of the
sides into two sides if necessary, we may assume that no two different points on a side are
�-equivalent.

Consider a triangulation T of F . As noted above, we may assume that any edge of T
which is contained in the boundary of F is a side of F . Then every triangle of T is mapped
homeomorphically onto its image in the quotient X, and the images form a triangulation of
X. Clearly, in the image triangulation, the faces correspond to the faces of T , the edges
correspond to inner edges of T and pairs L, γLL of sides of F , and the vertices correspond
to inner vertices of T and �-equivalence classes of vertices of F . Thus the required equation
(5.4.1) follows from (5.1.3) and the definition of χ(F ).

(5.5) Corollary. The following formula holds:

Area(F )

2π
= −χ(X)+

∑
w mod �

(
1 − 1

|P�w|
)
, (5.5.1)

where the sum is over all orbits that are �-elliptic or �-parabolic, and |P�w| is the common
order of the isotropy groups of the points in an orbit. In the sum, at the �-parabolic orbits
where the isotropy group is infinite, the fraction 1/|P�w| is counted as 0.

Proof. We apply the two formulas (5.2.1) and (5.4.1). It is clear, and noted in the proof of
(5.4), that to apply (5.4.1) we may assume that no side of F is �-elliptic. Hence we obtain
the equation,

Area(F )

2π
= −χ(X)+ #

(vertices of F

�

)
−

∑
AnglevF /2π.

In the sum, group the terms according to their�-equivalence class. Consider a�-equivalence
class of vertices represented by a pointw, that is, a class consisting of all vertices�-equivalent
to w. If w is in D, then, by (3.10), the corresponding contribution to the sum is equal to
1/|P�w|. If w is in ∂�D, corresponding to an equivalence class of cusps of F , then all
the angles are zero, and the corresponding contribution in the sum is zero, and hence by
convention equal to 1/|P�w|. Hence, we obtain the equation,

Area(F )

2π
= −χ(X)+

∑
w mod �

(
1 − 1

|P�w|
)
,

where the sum is over all orbits containing a vertex of F . The asserted equation (5.5.1) is a
consequence since, by assumption, every elliptic point is �-equivalent to a vertex.
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(5.6) Note. It follows from (5.5) that the area of the fundamental domain F is always a
rational multiple of 2π , that is, the quotient Area(F )/2π is a rational number. The quotient
is denotedµ = µ(�). In addition, it is customary to denote by νe(�) the number of�-elliptic
orbits of order e. In addition, the number of �-parabolic orbits is denoted ν∞(�). Hence,
using (5.1.2), the following equation is just a rewriting of (5.5.1),

µ = 2g − 2 + ν∞ +
∑
e≥2

νe

(
1 − 1

e

)
. (5.6.1)

(5.7) Observation. If � is a subgroup of finite index in �, then

µ(�) = |P�:P�|µ(�). (5.7.1)

Indeed, if the transformations γi , for i = 1, . . . , d, represent the right cosets of P� modulo
P�, then, as observed in (3.12), the unionG := ⋃

γiF is a normal fundamental domain for
�. Obviously, the area ofG is d times the area of F . As a consequence, (5.7.1) holds.

(5.8) Example. The group �(1) := SL2(Z) is a discrete subgroup of SL(H). A fundamental
domain for �(1) was determined in (1.6). The domain was a triangle with one cusp and two
finite �-equivalent vertices. Obviously for a triangle, and more generally for any polygon
with a simply connected interior, the Euler characteristic is equal to 1. The side connecting
the two finite vertices is elliptic, and there are two equivalence classes of vertices. Hence, by
the formula (5.4.1), the Euler characteristic of �(1) is 1− 1+ 2 = 2. Thus the genus is equal
to 0, confirming that the quotient H/�(1) obviously is a sphere.

The angles of the fundamental domain at the two finite vertices are equal to 2π/6. Hence
the area of the domain is equal to π/3. In other words, µ = 1

6 . There is one parabolic
orbit, one elliptic orbit of order 2 and one of order 3 and no other elliptic orbits. Hence
ν∞ = ν2 = ν3 = 1, and νe = 0 for e > 3.

Consider a subgroup � of finite index in �(1). Set d := |P�(1):P�|. Then µ(�) = d/6
by (5.7.1). Moreover, since every �-elliptic point is �(1)-elliptic, we have νe = 0 for e > 3.
Hence, with νe = νe(�), equation (5.6.1) is equivalent to the following,

g(�) = 1 + d

12
− ν2

4
− ν3

3
− ν∞

2
. (5.8.1)

(5.9) Note. The area of the fundamental domain F can be obtained by integration. Assume
first the disk is the upper half plane H. Then,

Area(F ) =
∫
∂F

dz

	z =
∫
∂F

dx

y
=

∫
F

dx dy

y2 . (5.9.1)

The two middle path integrals are over the boundary of F , orientated counter clockwise
around F . The first path integral in (5.9.1) should be taken with care. If a side L of F has an
infinite vertex as end point, then the integral

∫
L
dz/y is not convergent. When F has infinite
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vertices, the path integral along ∂F is defined as follows: consider the path integrals obtained
by integration along the boundaries of the subdomains obtained from F by cutting away a
small fundamental neighborhood of each infinite vertex. The limit of these path integrals, as
the fundamental neighborhoods shrink around the infinite vertices, is then the path integral
along ∂F .

In the first integral of (5.9.1), the integrand is a sum of two forms,

dz

y
= dx

y
+ i

dy

y
.

The second form is a total differential in H, y−1dy = d(log y). Hence its integral over a
closed path is equal to zero. Therefore, the second equality of (5.9.1) holds.

Consider the integral
∫
L
dx/y over any oriented line segmentL in H. SayL is the segment

from u to v, where u and v are allowed to be limit points. Then the path integral
∫
L
dx/y is

convergent, and given by the formula,

∫
L

dx

y
= θL,v − θL,u, (5.9.2)

where, for any point w on L, the angle θL,w is the oriented angle from L to the (vertical) line
fromw to ∞. The formula follows easily from the definition of the path integral, noting thatL
is part of a circle orthogonal to the real axis (the trivial case whenL is part of a vertical straight
line has to be treated separately). From the formula (5.9.2) it follows that if F is a triangle,
then the path integral

∫
∂F
dx/y is equal to π minus the sum of the interior angles. Thus the

equation
∫
∂F
dx/y = Area(F ) holds when F is a triangle. Therefore, using a triangulation

of F , the equation holds in general. As d(y−1dx) = −y−2 dy∧dx = y−2 dx∧dy, the last
equality in (5.9.1) follows from Stoke’s theorem. Thus the equations of (5.9.1) have been
proved.

The first equation of (5.9.1) implies the following:

Area(F ) =
∑

i

∫
L

J (γL, z)
′

J (γL, z)
dz. (5.9.3)

where the sum is over the sidesL of F , and γL is the boundary transformation. Indeed, if γ ∈
SL(H) then J (γ, z) = cz+ d with real numbers c and d. It follows that 2iJ (γ, z)′ = 2ic =
(J (γ, z) − J (γ, z))/	z. Moreover, 	(γ z) = |J (γ, z)|−2	z and d(γ z) = J (γ, z)−2dz.
Hence we obtain the equations,

2i
∫
L

J (γ, z)′dz
J (γ, z)

=
∫
L

(
1 − J (γ, z)

J (γ, z)

)dz
	z =

∫
L

( dz
	z − d(γ z)

	(γ z)
)

=
∫
L

dz

	z −
∫
γL

dz

	z .

Take γ := γL. Then γLL is a side L′ of F . However, the orientation on L′ as a side of F
is the reverse of the orientation on L′ as an image γLL. Hence the difference on the right
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hand side of the equations is the sum
∫
L
dz/	z + ∫

L′ dz/	z. Consequently, (5.9.3) follows
by summation over all the sides L of F . In fact, it follows that

Area(F )

2
=

∑′
i

∫
L

J (γL, z)
′

J (γL, z)
dz. (5.9.4)

where the sum is over unordered pairs {L,L′} of sides with L′ = γLL.
It is not hard to see, using a Möbius transformation to transform the integrals, that (5.9.3)

and (5.9.4) holds for any disk D.
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Modular groups

1. Finite projective lines.

(1.1) Setup. Recall that the group SL(H) is the group SL2(R). The subgroup SL2(Z) is a
discrete subgroup. It is called the modular group.

Fix a natural number N . We are going to consider various subgroups of SL2(Z) related
to subgroups of SL2(Z/N). Note that, by the Chinese Remainder Theorem, if N = ∏

pν is
the prime factorization of N , then

GL2(Z/N) =
∏

GL2(Z/pν), SL2(Z/N) =
∏

SL2(Z/pν).

Clearly, the definition of the action of GL2(C) on the Riemann sphere C extends to an
arbitrary field. More generally, if R is any commutative ring, we define PGLn(R) as the
quotient of GLn(R) modulo the scalar matrices:

PGLn(R) := GLn(R)/R
∗.

By definition, PSLn(R) is the image of SLn(R) in PGLn(R), that is,

PSLn(R) := SLn(R)/µn(R),

where µn(R) is the subgroup of R∗ consisting of n’th roots of unity. Note in particular, for
n = 2, that the group PSL2(R) is in general a non-trivial quotient of SL2(R)/± 1, since the
equation α2 = 1 in R may have non-trivial solutions.

Assume that R is a local ring with maximal ideal m. Let R be the disjoint union, R :=
R ∪ 1

m
, where 1

m
is a set consisting of one symbol for each element in m. Denote by R2 the

R-module of columns, and by (R2)∗ the subset of columns for which at least one entry is a
unit. Then there is a surjective map (R2)∗ → R,[

z1
z2

]
�→ z1/z2. (1.1.1)

The quotient z1/z2 ∈ R is defined as z1z
−1
2 if z2 ∈ R∗ and as the symbol 1/(z−1

1 z2) if
z2 ∈ m. Obviously, the group GL2(R) acts on the set (R2)∗ and the scalar matrices permute
the elements of the fibers of the map (1.1.1). Hence the action descends to an action of
PGL2(R) on R. As in the case of Möbius transformations, it is a faithful representation,

PGL2(R) ↪→ Aut(R). (1.1.2)

The set R for a local ring R is the projective line IP 1(R). The action of PGL2(R) on the
projective line generalizes to an action of PGLn+1(R) on projective n-space IP n(R) :=
(Rn+1)∗/R∗.
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(1.2) Note. Consider a field F . Then it follows, as in the proof of (Möb.1.3)(3), that the
action of PGL2(F ) on F is triply transitive. However, the action of the subgroup PSL2(F )

is in general only doubly transitive: if (u, v) and (u′, v′) are two pairs of different points of
F then the matrices α that map the first pair to the second are the matrices of the following
form (with an obvious notion for the representatives of the four points):

α = [ũ′ ṽ′]
[
λ 0
0 µ

]
[ũ ṽ]−1,

where λ, µ ∈ F ∗. Clearly, with suitable choices of λ and µ, the determinant of α is equal to
1. For instance, if F is a finite field with q elements, then there are (q − 1)(q − 1) matrices
α, and q − 1 of these have determinant 1. So, if q is odd, there are (q − 1)/2 automorphisms
in PSL2(F ) mapping the first pair to the second.

(1.3) Proposition. Consider in SL2(Z) the three matrices,

s :=
[ 0 −1

1 0

]
, t :=

[ 1 1
0 1

]
, u :=

[ −1 −1
1 0

]
.

Then s2 = −1, u3 = 1, and s = tu. In particular, s is of order 4 and u is of order 3.
Moreover, the group SL2(Z) is generated by the two matrices s and t , and hence also by s
and u.

Proof. The three asserted equations follow by a simple computation. In addition,

tb =
[ 1 b

0 1

]
, st−1s−1 =

[ 1 0
1 1

]
. (1.3.1)

Denote by � the subgroup generated by s and t . It follows from (1.3.1) that the elementary
row and column operations on matrices in GL2(Z) can be achieved by multiplication from
the left and right by matrices in �. By the Euclidean algorithm, every matrix in GL2(Z) can
be changed into a diagonal matrix by the elementary operations. In particular, any matrix σ
in SL2(Z) can, by multiplications from the right and left by matrices in �, be changed into
±1. As −1 = s2, it follows that σ belongs to �.

(1.4) Sublemma. The group SL2(Z/N) is generated by the following matrices:

s :=
[ 0 −1

1 0

]
, t :=

[ 1 1
0 1

]
, dµ :=

[
µ 0
0 µ−1

]
for µ ∈ (Z/N)∗. (1.4.1)

Proof. Note first that if the integers a, c,N are relatively prime, then there is a number k such
that a + kc is relatively prime to N . Indeed, it suffices to take k := ∏

p, where the product
is over all primes p such that p is a divisor of N and not a divisor of a.

Consider an arbitrary matrix σ in SL2(Z/N):

σ =
[
ā b̄

c̄ d̄

]
,
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where ad − bc ≡ 1 (mod N). We have to show that we can obtain the identity matrix by
multiplying σ a finite number of times by the matrices in (1.4.1) and their inverses.

Clearly, the integers a, c, N are relatively prime. Hence there exists a number k such that
a+kc is prime toN . Therefore, replacing σ by t kσ , we may assume that ā ∈ (Z/N)∗. Next,
replacing σ by d−1

ā σ , we may assume that a = 1. Furthermore, since

σ t−b =
[ 1 b̄

c̄ d̄

][ 1 −b̄
0 1

]
=

[ 1 0
c̄ 1

]
,

we may assume that a = d = 1 and b = 0. Finally,

sσ s−1t c = s
[ 1 0
c̄ 1

]
s−1t c =

[ 1 −c̄
0 1

]
t c = 1,

and hence the identity matrix has been obtained, as required.

(1.5) Proposition. Reduction modulo N is a surjective homomorphism of groups,

SL2(Z) → SL2(Z/N).

As a consequence, the group SL2(Z/N) is generated by the first two matrices s and t of
(1.4.1).

Proof. To prove that reduction modulo N is surjective, it suffices to lift the generators of
(1.4.1). Obviously s and t lift. For a diagonal matrix dµ, we have that µ = m, where m is
prime toN . Thenm is prime toN 2. Hence there are numbers x and y such that xm−yN2 = 1.
Clearly, the following matrix of SL2(Z) is a lift of dµ:

[
m yN

N x

]
.

Hence the reduction is surjective. It follows that SL2(Z/N) is generated by s and t , since
the lifts of s and t generate SL2(Z) by (1.3).

(1.6) Corollary. The group GL2(Z/N) is generated by the matrices,

s =
[ 0 −1

1 0

]
, t =

[ 1 1
0 1

]
, dµ,1 :=

[
µ 0
0 1

]
for µ ∈ (Z/N)∗. (1.6.1)

Proof. Clearly, the assertion follows from the last assertion of Proposition (1.5).

(1.7) Corollary. Letp be a prime number. Then, forν ≥ 1, the surjective ring homomorphism
Z/pν → Z/p induces a surjective group homomorphism,

GL2(Z/pν) → GL2(Z/p), (1.7.1)
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and the kernel of the induced homomorphism consists of all matrices in Mat2(Z/pν) of the
form,

1 + α, (1.7.2)

where all entries in α belong to the kernel of Z/pν → Z/p.

Proof. Clearly, the generators s and t of (1.6.1) for N := p lift, and the generator d1,µ lifts,
because (Z/pν)∗ → (Z/p)∗ is surjective. Hence the homomorphism (1.7.1) is surjective.
Obviously, any matrix in the kernel has the form (1.7.2). Conversely, for a matrix σ = 1+α of
the form (1.7.2), the determinant is congruent to 1 modulop; hence σ belongs to GL2(Z/pν),
and obviously σ belongs to the kernel of (1.7.1).

(1.8) Proposition. The orders of the groups GL2(Z/N) and SL2(Z/N) are given by the
following formulas,

| GL2(Z/N)| = N4 ∏
p|N(1 − 1

p
)(1 − 1

p2 ), | SL2(Z/N)| = N3 ∏
p|N(1 − 1

p2 ).

As a consequence,

| SL2(Z/N)/± 1| =
{

6 for N = 2,
1
2N

3 ∏
p|N(1 − 1

p2 ) for N > 2.

Proof. By the Chinese Remainder Theorem, it suffices to prove the formulas when N is a
prime power,N = pν . The quotient Z/p is the field Fp with p elements. Hence the order of
the group GL2(Z/p) is equal to the number of bases of the 2-dimensional vector space F 2

p ,

that is, the order is equal to (p2 −1)(p2 −p). By Lagrange, the kernel of the homomorphism
Z/pν → Z/p is of order pν−1. Hence, there are (pν−1)4 matrices of the form (1.7.2).
Consequently, by Corollary (1.7),

| GL2(Z/pν)| = (pν−1)4(p2 − 1)(p2 − p) = (pν)4(1 − p−2)(1 − p−1).

Thus the first asserted formula holds. The second formula follows from the first, because
SL2(Z/pν) is the kernel of the surjective homomorphism,

det : GL(Z/pν) → (Z/pν)∗,

and (Z/pν)∗ has order pν − pν−1 = pν(1 − p−1).
Clearly, the final formula is a consequence, since 1 = −1 in Z/N only when N = 2 (or

N = 1).

(1.9) Remark. The order of P SL2(Z/N) is obtained from the order of SL2(Z/N) by dividing
by the order of the groupµ2(Z/N) defined in (1.1). Clearly, the latter order is a multiplicative
function of N . Obviously, for an odd prime power pν , the order of µ2(Z/pν) is equal to 2.
For a power of 2, the order of µ2(Z/2ν) is equal to 1 for ν = 1, equal to 2 for ν = 2 and
equal to 4 for ν ≥ 3.
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(1.10) Lemma. (1) The group SL2(Z/1) is the trivial group of order 1.
(2) The group PSL2(Z/2) = SL(Z/2) is the dihedral group D3 = S3 of order 6.
(3) The group PSL2(Z/3) = SL(Z/3)/± 1 is the tetrahedral group A4 of order 12.
(4) The group PSL2(Z/4) = SL(Z/4)/± 1 is the hexahedral group S4 of order 24.
(5) The group PSL2(Z/5) = SL(Z/5)/± 1 is the dodecahedral group A5 of order 60.
(6) The group PSL2(Z/6) = SL(Z/6)/± 1 is isomorphic to the group S3 × A4 of order

72.

Proof. The assertion (1) is trivial. By the Chinese Remainder Theorem, the assertion (6)
follows from (2) and (3). To prove the remaining assertions, consider for N = 2, 3, 4, 5
the ring Z/N . Then Z/N is a field for N = 2, 3, 5, and a local ring for N = 4. In each
of the four cases, the order of the group PSL2(Z/N) is given by the formula of (1.8). To
identify the group with the asserted permutation group, consider the projective line Z/N and
the representation of (1.1.2),

PSL2(Z/N) ↪→ Aut(Z/N). (1.10.1)

N = 2: The group PSL2(Z/2) has order 6. The projective line Z/2 has 3 elements:
∞, 0, 1. Hence the right hand side of (1.10.1) is the symmetric group S3. Thus the two sides
have the same order, and hence the inclusion is an isomorphism.
N = 3: The group PSL2(Z/3) has order 12. The projective line Z/3 has 4 elements:

∞, 0, 1,−1. Hence the right hand side of (1.10.1) is the symmetric group S4. As the left
hand side is of order 12, it is equal to the unique subgroup A4 of index 2 in S4.
N = 4: The group PSL2(Z/4) has order 24. The projective lineX := Z/4 has 6 elements:

∞, 1
2 , 0, 2, 1,−1, and there is an obvious map Z/4 → Z/2. Given any point x in X there

is a unique second point x ′ having the same image as x in Z/2. Consider subsets Z of
X consisting of 3 elements lying over the 3 elements ∞, 0, 1 of the projective line Z/2.
Obviously, if Z = {x, y, z} is such a subset, then so is the complement Z ′ = {x ′, y ′, z′}.
Hence, there are 4 elements in the set D of all decompositions of X into two such subsets,

X = {x, y, z} ∪ {x ′, y ′, z′}.

Clearly, the group PSL2(Z/4) acts on the set D. Consequently, we obtain a representation,

PSL2(Z/4) → Aut(D) = S4. (1.10.2)

The representation (1.10.2) is injective. Indeed, assume that σ in SL2(Z/4) acts as the identity
on D. Take a decomposition in D, say {a, b, c} ∪ {a ′, b′, c′}. Then {a, b′, c′} ∪ {a′, b, c}
is a second decomposition. As the first decomposition is fixed under σ , we have either
σ {a, b, c} = {a, b, c} orσ {a, b, c} = {a′, b′, c′}. Assume thatσ {a, b, c} = {a′, b′, c′}. Then,
since the second decomposition is fixed under σ , it follows first that σ {a, b ′, c′} = {a′, b, c}
and next that σa = a′. Similarly, σb = b′ and σc = c′, and hence σx = x′ for all
x. However, it is easily verified that the permutation x �→ x ′ can not be obtained from
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a matrix with determinant 1. So the case σ {a, b, c} = {a ′, b′, c′} is excluded. Therefore,
σ {a, b, c} = {a, b, c}. As the second decomposition is fixed under σ , it follows that σa = a

and σa′ = a′. Similar equations are obtained for b and c, and hence σ is the identity in
PSL2(Z/4).

As the representation (1.10.2) is injective and the two groups have the same number of
elements, the representation is an isomorphism.
N = 5: The group G = PSL2(Z/5) has order 60. The projective line X := Z/5 has

6 elements: ∞, 0, 1, 2,−2,−1. The action of G on X is doubly transitively. In fact, as
observed at the end of (1.2), if (u, v) and (u′, v′) are any two pairs of different points of
X, then there are two elements of G mapping the first pair to the second. Take a subset
{x1, x2} with two elements. There are two elements ofG for which x1 and x2 are fixed points.
One element is the identity, and the second is (as seen by reducing to the case x1 = ∞
and x2 = 0) a double transposition (y1, y2)(z1, z2). Similarly, there are two elements of
G that interchanges x1 and x2, namely the two double transpositions (x1, x2)(y1, y2) and
(x1, x2)(z1, z2). Therefore, the subset {x1, x2} is part of a unique decomposition of X into
three parts,

X = {x1, x2} ∪ {y1, y2} ∪ {z1, z2}, (1)

with the special property that any element inG that stabilizes one part will stabilize all three
parts. There are 15 subsets with two elements. Hence, there are 5 elements in the set D
of all decompositions (1) with the special property. Clearly, the group G acts on the set D.
Consequently, we obtain a representation,

PSL2(Z/5) = G → Aut(D) = S5. (1.10.3)

The representation is injective. Indeed, assume that α is a nontrivial element ofG that acts as
the identity on D. Take a point x1 such that αx1 �= x1. Consider first the decomposition (1)
with x2 := αx1. Since the decomposition is invariant, it follows that α{x1, x2} = {x1, x2}.
Hence α has two fixed points, namely either y1 and y2, or z1 and z2. Consider next the
decomposition (1) with a fixed point of α as x2. Then, again since the decomposition is
invariant, it follows that α{x1, x2} = {x1, x2}, which is a contradiction since αx1 �= x1 and
αx2 = x2. Hence the representation is injective.

As the representation (1.10.3) is injective, necessarily its image is the unique subgroupA5
of index 2 in S5.

Hence all the isomorphisms of the Lemma have be established.

(1.11) Exercise. (1) The projective line X := Z/3 has 4 elements: ∞, 0, 1, −1. Prove
that, as permutations of X, we have s = (∞, 0)(1,−1) and t = (0, 1,−1). The tetrahedral
group T is the automorphism group of a tetrahedron. The elements of T permute the 4 faces
of the tetrahedron, and so T is a subgroup of S4. Prove that the permutations s and t are
‘tetrahedral’, that is, under a suitable labeling of the four faces, s and t can be realized as
rotations of the tetrahedron. Conclude that PSL2(Z/3) = T .

(2) The projective line X := Z/4 has 6 elements: ∞, 1
2 , 0, 2, 1, −1. Prove that, as

permutations of X, we have s = (∞, 0)(2, 1
2 )(1,−1) and t = (0, 1, 2,−1). The hexahedral
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groupH is the automorphism group of a hexahedron. The elements ofH permute the 6 faces
of the hexahedron, and so H is a subgroup of S6. Prove that the permutations s and t are
‘hexahedral’, and conclude that PSL2(Z/4) = H .

(3) The projective line X := Z/5 has 6 elements: ∞, 0, 1, 2, −2, −1. Prove that, as
permutations ofX, we have s = (∞, 0)(1,−1) and t = (0, 1, 2,−2,−1). The dodecahedral
group O is the automorphism group of a dodecahedron. The elements of O permute the 6
pairs of opposite faces of the dodecahedron, and so O is a subgroup of S6. Prove that the
permutations s and t are ‘dodecahedral’, and conclude that PSL2(Z/5) = O.
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2. Small modular groups.

(2.1) Example. Consider the group G := SL2(Z/2). By (1.10)(2), G it is the symmetric
group S3 of order 6. Hence G has a unique (normal) subgroup G(2) of index 2 (and order
3), namely the alternating groupA3 generated by u. The quotientG/G(2) is the cyclic group
C2, and so the canonical map to the quotient may be viewed as a surjective character,

χ2 : G → C2.

In addition,G has three subgroups of index 3 (and order 2), generated by the three involutions,

s =
[ 0 1

1 0

]
, t =

[ 1 1
0 1

]
, sts−1 =

[ 1 0
1 1

]
.

(Note that 1 = −1 in Z/2.) The latter three subgroups are denoted respectivelyGθ ,G0, and
G0.

(2.2) Example. Consider the groupG = SL2(Z/3). It is of order 24 by (1.8). By (1.10)(3),
its quotient modulo ±1 is the alternating group A4 of order 12. The alternating group A4
contains Klein’s ‘Vier’-group, the kernel of the homomorphism S4 → S3, and the image of
A4 under the homomorphism is the alternating group A3 = C3. Hence, by composition, we
obtain a surjective character,

χ3 : G → PSL2(Z/3) = A4 → A3 = C3.

The kernel is denoted G(3). It is of index 3 (and order 8).

(2.3) Example. Consider the group G := SL2(Z/4). It is of order 48 by (1.8). We will
describe some of its subgroups.

(i) The groupG acts on the set X := ((Z/4)2)∗ of columns where at least one coordinate
is a unit. There are 12 columns in X, and they are the representatives of the 6 points of
the projective line Z/4. Hence they also represent the three points ∞, 0, 1 on the projective
line Z/2. Define a 3-orbit as a subset A = {a, a′, a′′} with 3 elements of X such that
a + a′ + a′′ = 0. For instance, the following matrix is a 3-orbit:

[ 1 0 −1
0 1 −1

]
. (1)

In Z/4, the sum of two units is always in the maximal ideal. Hence the sum of any three units
is a unit. It follows easily for any 3-orbit A = {a, a ′, a′′} that its three columns represent the
three points ∞, 0, 1 in Z/2; consequently, there is a unique ordering of the 3 elements of A
such that a, a′, a′′ represent respectively ∞, 0, 1. Clearly, the set of all 3-orbits has 42 = 16
elements. The groupG acts on the set of 3-orbits. The stabilizer of the 3-orbit (1) consists of
the matrices in G = SL2(Z/4) whose columns are two of the three columns in (1). Hence,
the stabilizer is of order 3. As a consequence, the group G acts transitively on the set of
3-orbits.
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Now, for any given 3-orbit A there is a unique decomposition of X into four 3-orbits,

X = A ∪ B ∪ C ∪D, (2)

with the special property that if E is any 3-orbit in the decomposition, then −E is not in the
decomposition. Indeed, since G acts transitively on the set of 3-orbits, it suffices to prove
the assertion when A = {a, a′, a′′} is the 3-orbit (1). Then the unique decomposition is the
following:

[ 1 0 −1
0 1 −1

]
∪

[−1 2 −1
0 −1 1

]
∪

[−1 0 1
2 −1 −1

]
∪

[ 1 2 1
2 1 1

]
. (3)

To get the decomposition, take as A the 3-orbit (1). For B = {b, b′, b′′}, take b := −a. Then
b′ �= a′ since a′ ∈ A, and b′ �= −a′ by the special property. Hence the first coordinate of b′
is equal to 2. Therefore, the first coordinate of b′′ is equal to −1. As b′′ �= a′′, it follows that
the second coordinate of b′′ is equal to 1. Therefore, the second coordinate of b′ is equal to
−1. Now it is easy to fill in the remaining 6 columns.

Let Y be the set of all decompositions with the special property. It follows that the set Y has
4 elements. The groupG acts on the set Y . By the special property, ifD is a decomposition in
Y , then the composition −D is different fromD. Hence the matrix −1 = s2 acts non-trivially
on Y . Consider the matrix u of order 3. There are 4 decompositions D in the set Y , so at
least one decomposition D is invariant under u. But then also −D is invariant under u, and
hence also the two remaining decompositions in the set Y are invariant under u. Thus u acts
trivially on Y . SinceG is generated by u and s, it follows that the image of the representation,

G → Aut(Y ) = S4,

is a cyclic group of order 4. Thus the representation may be viewed as a surjective character,

χ4 : G → C4,

where the image is generated by the image of s (or by the image of t , since s = tu). The
kernel of χ4 is a normal subgroupG(4) of order 12 inG. AsG(4) contains all order-3 elements
of G, it is generated by the order-3 elements of G. In particular, G(4) is the unique normal
subgroup of index 4 inG.

(ii) Reduction modulo 2 is a surjective homomorphismG → SL2(Z/2). Hence the kernel
of the reduction is a normal subgroup G(2) of order 8. It is easily described: it consists of
the matrices having two equal units in the diagonal and two non-units off the diagonal. In
particular, all its elements are of order 2. ThusG(2) it is commutative and elementary abelian
(isomorphic to C2 × C2 × C2).

(iii) Consider the intersection,

V := G(4) ∩G(2).

66



Automorphic functions
26. februar 1995

[Mdlar] 11

It is a normal subgroup of G. It can be described as the kernel of the restriction G(4) →
SL2(Z/2) = S3. As G(4) is generated by the order-3 elements of G, the image of the
restrictionG(4) → S3 is the subgroup A3 of order 3 in S3. Hence V is of order 4 and, being
a subgroup of G(2), V is isomorphic to C2 × C2. Since the decomposition (3) is invariant
under V , it follows that V consists of the following four matrices:

V :
[ 1 0

0 1

]
,

[ −1 2
0 −1

]
,

[−1 0
2 −1

]
,

[ 1 2
2 1

]
. (4)

(iv) Denote byGθ the subgroup ofG consisting of matrices whose reduction modulo 2 is
equal to one of the two matrices, [ 1 0

0 1

]
,

[ 0 1
1 0

]
.

In other words, with respect to the reduction map SL2(Z/4) → SL2(Z/2), the subgroupGθ
is the preimage of the subgroup of the target denotedGθ in Example (2.1). Alternatively,Gθ
can be described as the subgroup ofG stabilizing the following set of 4 columns in ((Z/4)2)∗:[ 1

1

]
,

[ 1
−1

]
,

[ −1
1

]
,

[−1
−1

]
. (5)

Clearly, Gθ is a subgroup of index 3 (and order 16), it contains the subgroup G(2) and in
addition the matrix s. It follows that restriction defines a surjective character,

χ4 : Gθ → C4.

The kernel Gθ ∩G(4) is of order 4, and hence equal to V .

(v) The subgroup Gθ has a second character defined as follows: When the four columns
of (5) are multiplied by 2, they become equal, namely equal to the column n whose two
coordinates are equal to 2. Now, there are four subsets {x, x ′} with two elements of X such
that x + x ′ = n, namely the following four:[ 1

0

][ 1
2

]
,

[ 0
1

][ 2
1

]
,

[−1
0

][−1
2

]
,

[ 0
−1

][ 2
−1

]
. (6)

Clearly, the column n is invariant under the matrices ofGθ . Therefore, the groupGθ acts on
the set Z consisting of the four subsets (6). Hence we obtain a representation,

Gθ → Aut(Z) = S4.

Obviously, the matrix s2 = −1 acts nontrivially on Z. Moreover, the set W consisting of
following four matrices is easily seen to act trivially on Z:

W :
[ 1 0

0 1

]
,

[ 1 2
0 1

]
,

[ 1 0
2 1

]
,

[ 1 2
2 1

]
. (7)

Since Gθ is of order 16, it follows that the representation is in fact a surjective character,

χθ : Gθ → C4,

and that its kernel is equal to W .
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(2.4) Remark. Let � = SL2(Z) be the modular group. Its center is the subgroup ±1.
Consider the commutator quotient � := �/� ′. As � is generated by the matrices s and u, it
follows that � is generated by the images s̄ and ū. Moreover, since s4 = u3 = 1, the order of
s̄ is a divisor of 4 and the order of ū of order a divisor of 3. Therefore, being commutative,
the quotient is cyclic and its order is a divisor of 12.

Now, by Example (2.1), the quotient SL2(Z/2) of � has a surjective character onto C2.
Hence, by composition, we obtain a surjective character

χ2 : � → SL2(Z/2) → C2.

The kernel is denoted �(2). Similarly, from Example (2.2), we obtain a surjective character,

χ3 : � → SL2(Z/3) → C3,

whose kernel is denoted �(3).
It follows from the Chinese Remainder Theorem that the intersection �(6) := �(2) ∩ �(3)

is in fact the kernel of the surjective character,

χ6 : � → SL2(Z/6) → C2 × C3 = C6.

As a consequence, the order of ū is equal to 3 and the order of s̄ is equal to 2 or 4. Clearly,
as s2 = −1, the order of s̄ is equal to 4 if and only if −1 /∈ � ′. In fact, it follows from the
more complicated example (2.3) that there is a surjective character χ4 : � → C4. Hence the
order of s̄ is equal to 4 and the commutator quotient � is cyclic of order 12.

Therefore, in an obvious notation, the commutator subgroup � ′ is equal to �(12), where
�(12) = �(4) ∩ �(3) is the kernel of a surjective character

χ12 : � → C4 × C3 = C12.
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3. Congruence subgroups.

(3.1) Definition. By Proposition (1.5), reduction modulo N is a surjective homomorphism
of groups,

SL2(Z) → SL2(Z/N).

The kernel of the reduction map is denoted �(N). Thus �(1) is the full modular group
SL2(Z), and �(N) is a normal subgroup. A subgroup of �(1) containing �(N) is called a
level-N (congruence) subgroup. As the reduction map is surjective, the level-N subgroups
correspond bijectively to the subgroups of SL2(Z/N).

Important series of level-N subgroups are defined by the following congruence conditions
modulo N on the usual four entries a, b, c, d of a matrix in SL2(Z):

�̃(N) : a ≡ d ≡ ±1, b ≡ c ≡ 0,

�0(N) : c ≡ 0,

�01(N) : c ≡ 0, d ≡ 1,

�0
0(N) : c ≡ 0, b ≡ 0.

The four subgroups correspond respectively to the following subgroups of SL2(Z/N): the
subgroup ±1, the subgroup of upper triangular matrices, the unipotent subgroup (upper
triangular matrices with 1 in the diagonal), and the subgroup of diagonal matrices. Note that
the subscripts on the middle two subgroups refer to the second row (c, d) modulo N of the
matrix (in the literature,�01 is sometimes denoted�1). Similar congruence subgroups�0(N)

and �10(N) are defined using the first row (a, b).
The subgroups �(N) for N > 2 are inhomogeneous, that is, they do not contain the

matrix −1. In general, if � is a subgroup of SL2(C), we denote by �̃ the homogenized group
� ∪ (−�). Then �̃ is a homogeneous group, and the two groups � and �̃ have the same
image in PSL2(C), that is, P� = P�̃. If � is inhomogeneous, then � is of index 2 in �̃,
and � ∼−→ P�. Clearly, the congruence group �̃(N) is the homogenized group of �(N).
Note that, for N = 2, we have that �(2) = �̃(2). The groups �01(N) and �10(N) are
inhomogeneous, and they define homogeneous groups �̃01(N) and �̃10(N).

(3.2) Observation. Congruence subgroups have finite index in �(1) = SL2(Z), because
the quotient �(1)/�(N) is the finite group GN := SL2(Z/N). In fact, the order of GN is
determined in Proposition (1.8), and it follows that

(1) the index of �(N) is equal to N 3 ∏
p|N(1 − 1

p2 ).

It is easy to determine the orders of the various subgroups of GN that define the special
level-N subgroups of (3.1). It follows that

(2) the index of �̃(N) is equal to 1
2N

3 ∏
p|N(1 − 1

p2 ) when N > 2.

(3) the index of �0(N) is equal to N
∏
p|N(1 + 1

p
).

(4) the index of �01(N) is equal to N 2 ∏
p|N(1 − 1

p2 ).

(5) the index of �0
0(N) is equal to N 2 ∏

p|N(1 + 1
p
).
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Indeed, the group �̃(N) is the preimage of the subgroup ±1 ofGN , and so the index in (2) is
obtained by dividing the order of GN by 2. Similarly, inGN the number of upper triangular
matrices is equal to the product of the orders of Z/N and (Z/N)∗. Hence the index in (3) is
obtained by dividing the order ofGN byNϕ(N) = N2 ∏

p|N(1 − 1
p
). The indices in (4) and

(5) are obtained similarly.

(3.3) Example. Level-2 subgroups correspond to the subgroups ofG= SL2(Z/2) considered
in Example (2.1). The preimage, under the reduction modulo 2, of the subgroup G(2) is a
normal subgroup �(2) of index 2 in �(1). It is equal to the kernel of a surjective character,

χ2 : �(1) → C2.

The preimages of the subgroupsG0 andG0 are the subgroups �01(2) = �0(2) and �01(2) =
�0(2). In addition, the preimage of the subgroup Gθ is a level-2 subgroup �θ , called the
θ -group. The latter three subgroups are non-normal subgroups of index 3.

(3.4) Example. The subgroup �(3) is of index 24, and the homogeneous group �̃(3) is of
index 12. The homogeneous level-3 subgroups correspond to the subgroups of the group
PSL2(Z/3) considered in (1.10)(3). In particular, the normal subgroup �(3) introduced in
Remark (2.4) is a level-3 subgroup of index 3, equal to the kernel of a surjective character,

χ3 : �(1) → C3.

(3.5) Example. The subgroup �(4) is of index 48. Various level-4 subgroups correspond
to the subgroups of G = SL2(Z/4) considered in Example (2.3). The preimage, under the
reduction modulo 4, of the subgroupG(4) is a normal subgroup �(4) of index 4, equal to the
kernel of a surjective character,

χ4 : �(1) → C4.

The preimage of G(2) is the level-2 subgroup �(2) of index 6. The intersection �(4) ∩ �(2)
is the preimage of V ; it is a normal subgroup of index 12 in �(1), and it is denoted �V . Note
that �(4) and �V are non-homogeneous. Their homogenized groups are respectively�(2) and
�(2).

The preimage of the subgroupGθ is the θ -group�θ of index 3. It contains the group �(2),
and in particular the normal subgroup �V . Hence restriction defines a surjective character,

χ4 : �θ → C4.

In addition, there is a surjective character,

χθ : �θ → C4,

whose kernel is the preimage �W ofW . Note that �W is of index 12 in �(1), but not normal.

(3.6) Exercise. Prove that the conjugate group � uθ = u−1�θu is equal to �0(2). [Hint:
reduce su = u−1su modulo 2.]
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(3.7) Exercise. The group �(2) is the homogenized group of �V . The character χ4 on �(1)
restricts to a surjective character,

χ4 : �(2) → C2.

By example (2.3)(iii), the kernel of the restricted character is equal to �V . Prove that the
restricted character on �(2) is determined by the formula,

χ4

[
a b

c d

]
= (−1)(a+b+c−1)/2.

[Hint: Clearly, for a matrix in �(2), we have modulo 2 that a ≡= 1 and c ≡ d ≡ 0, and
hence a + b + c ≡ 1. Therefore, modulo 4 we have that a + b + c ≡ ±1. Now show from
the description of V in (2.3) that a + b + c ≡ 1 holds for the matrices in �V .]

(3.8) Exercise. Clearly, for a matrix in �θ we have for the numbers c and d that exactly one
is odd. Prove that the character χθ : �θ → C4 is given by the formula,

χθ

[
a b

c d

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for d ≡ 1 (mod 4),

i for c ≡ 1 (mod 4),

−1 for d ≡ −1 (mod 4),

−i for c ≡ −1 (mod 4),

where i := χθ(s). [Hint: inspect the cosets of Gθ/W .]
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4. Some modular fundamental domains.

(4.0) Setup. In this section we describe fundamental domains for some congruence subgroups
of the modular group �(1) = SL2(Z) acting on the upper half plane H. The congruence
subgroups are of finite index in �(1). Recall that if F is a fundamental domain for a discrete
group � and� is a subgroup of finite index in � with a given system γi of representatives for
the right cosets of � in �, then the union G of the transforms γiF is a fundamental domain
for�. Moreover, if γL is the systems of boundary transformations corresponding to the side
L of F , then a system of boundary transformations ofG are obtained as follows: Consider a
side of G, say γjL where L is a side of F . Then γLL is a side of F . According to the coset
representation, we have

γjγ
−1
L = δ−1

j,Lγk

with a unique δj,L ∈ �. Then δj,LγjL = γkγLL is a side of G, and so δj,L is the boundary
transformation corresponding to the side γjL.

(4.1) Example. Take as F the fundamental domain F for the full modular group �(1)
described in Proposition (Discr.1.6). Each transformγF forγ in�(1) is a again a fundamental
domain, and the transforms cover H.

F

ρ ζ

i

− 1
2 0 1

2 − 3
2 −1 − 1

2 0 1
2 1 3

2

t−1F F tF

uF

u2F

sF

The fundamental domain F for �(1), and some of its transforms.

It follows from the description that under the action of �(1) there are exactly two elliptic
orbits, namely one of order 2 represented by the point i and one of order 3 represented by the
point ρ. In addition, there is only one parabolic orbit, represented by the point ∞.

Moreover, it follows from the description of the equivalence on the boundary of F that the
orbit space H/� (topologically) is a 2-sphere minus a point.

(4.2) Example. Occasionally, to obtain different fundamental domains, it is convenient to cut
a domain in subdomains, and then to apply different γ ’s to the different pieces. For instance,
F can be cut into two domains, F = F− ∪ F+, defined respectively by the inequalities:
�z ≥ 0 and �z ≤ 0. Then F ′ := t−1F+ ∪ F− is a different fundamental domain for �(1)
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and so is F ′′ := sF+ ∪ F−. For the two latter domains, the boundary transformations are
t, u and s, u.

F

F− F+

− 1
2 0 1

2

F ′

t−1F+ F−

−1 − 1
2 0

F ′′

F−

sF+

− 1
2 0 1

2

The fundamental domains F, F ′ and F ′′ for �(1).

(4.3) Example. The group �(2) is a normal level-2 subgroup of index 2 in �(1), equal to the
kernel of the character χ2 : �(1) → C2. Representatives for the cosets are 1, t . Hence the
union F ∪ tF is a fundamental domain for �(2). Similarly, the union F (2) := F ∪ sF is a
fundamental domain.

F tF

− 1
2 0 1

2 1 3
2

F (2)

F

sF

− 1
2 0 1

2

Fundamental domains for �(2).

Consider the first domainF ∪ tF . It has three finite vertices ρ, ζ and ρ+2, and one infinite
vertex ∞. Its boundary transformations are t 2 and v := st−1. The angles at the vertices ρ
and ρ + 1 are equal to 2π/6, the angle at ζ is equal to 2π/3 and the width at ∞ is equal to 1.
Hence, there are two elliptic orbits of order 3, represented by ρ and ζ , and one parabolic orbit
represented by ∞. Clearly, the boundary transformations are t2 and st−1. Topologically, the
orbit space H/�(2) is a 2-sphere minus a point.

Similarly, the second domain F (2) has 2 finite vertices ρ and ζ , and two infinite vertices
∞ and 0. The angles at ρ and ζ are equal to 2π/3 and the widths at 0 and ∞ are equal to 1

2 .
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The boundary transformations are defined by the two matrices

u = t−1s =
[−1 −1

1 0

]
, v = st−1 =

[ 0 −1
1 −1

]
. (4.3.1)

As a consequence, modulo ±1, the group �(2) is generated by u and v.

(4.4) Example. The group �(3) is a normal level-3 subgroup of index 3 in �(1), equal to the
kernel of the character χ3 : �(1) → C3. Representatives for the cosets are the three matrices
1, u, and u2. From the fundamental domain F ′ of (4.1), we obtain the fundamental domain
G := F ′ ∪ uF ′ ∪ u2F ′ for �(3).

G

F ′

uF ′ u2F ′

−1 − 1
2 0

stG G sG

suG

−2 −1 − 1
2 0 1

The fundamental domainG for �(3), and some of its transforms.

The domain G has no finite vertices, and 3 infinite vertices −1, 0, and ∞. The boundary
transformations correspond to the matrices,

s =
[ 0 −1

1 0

]
, st =

[−1 −2
1 1

]
, su =

[−1 −1
2 1

]
. (4.4.1)

It follows that there are 3 elliptic orbits, all of order 2, represented by the points i, i − 1, and
− 1

2 + i
2 . In addition, the three infinite vertices are equivalent, so there is only one parabolic

orbit. The orbit space H/�(3) is a 2-sphere minus a point.
As a consequence, the group �(3) is generated by the 3 matrices of (4.4.1).

(4.5) Example. The congruence subgroup�0(2) is a level-2 subgroup of index 3 in�(1). The
three matrices 1, u, u2 represents the right cosets modulo�0(2). So, the domainG of Example
(4.4) is also a fundamental domain for �0(2), but, of course, the boundary transformations
are different. For G as a fundamental domain for �0(2), the boundary transformations are
associated to the matrices,

t =
[ 1 1

0 1

]
, su =

[−1 −1
2 1

]
. (4.5.1)
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There is one elliptic orbit, of order 2, represented by the point − 1
2 + i

2 on the boundary. It
is fixed under su. Of the infinite vertices, −1 and 0 are equivalent. So there are 2 cusps, and
H/�0(2) is a 2-sphere minus 2 points.

As t ∈ �0(2), we can, as in Example (4.2), obtain a different fundamental domain F0(2)
by cuttingG by a vertical line and translating the left piece by t .

G

−1 0

F0(2)

− 1
2 0 1

2

The fundamental domainsG and F0(2) for �0(2).

The domain F0(2) has two finite vertices, ± 1
2 + i

2 , both of angle 2π/4 and representing
(of course) the same elliptic point. In addition, F0(2) has two infinite vertices 0 and ∞. The
boundary transformations of F0(2) correspond to the matrices,

t =
[ 1 1

0 1

]
, sut−1 =

[−1 0
2 −1

]
(4.5.2)

As a consequence, the two matrices in (4.5.1) (or, up to ±1 the two matrices in (4.5.2))
generate the group �0(2).

(4.6) Example. The θ -group �θ is a level-2 subgroup of index 3, and as in the previous two
examples, the matrices 1, u, u2 represent the right cosets. Hence, again, the domainG is also
a fundamental domain for �θ .

From the decomposition F = F+ ∪F− of Example (4.2), a different fundamental �θ can
be obtained as follows: The three matrices 1, t−1, ts form a different set of representatives
for the cosets modulo �θ , and so do the three matrices 1, t, t−1s. Apply the first set of
matrices to the subdomain F+ of F and the second set to the subdomain F−. The result
is a fundamental domain Fθ for �θ which is the union of the following 6 pieces: F +,
F+

1 := t−1F+, F+
2 := tsF+, F−, F−

1 := tF−, and F−
2 := t−1sF−. The pieces fit together,

and they form a domain like G with three infinite vertices and no finite vertices.
For G as a fundamental domain for �θ , the boundary transformations correspond to the

matrices,

s =
[ 0 −1

1 0

]
, st2 =

[ 0 −1
1 2

]
. (4.6.1)
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There is one elliptic orbit, of order 2, represented by the point i. Of the infinite vertices, ∞
and 0 are equivalent. The orbit space H/�θ is a 2-sphere minus 2 points.

G

−1 0

Fθ

F+
1 F− F+ F−

1

F−
2 F+

2

−1 0 1

The fundamental domainsG and Fθ for �θ .

For the fundamental domain Fθ , the boundary transformations are obviously s and t 2. In
particular, the θ -group �θ is generated by the two matrices s and t 2.

(4.7) Example. The group �(2) is a normal level-2 subgroup of index 6, equal to the kernel
of SL2(Z) → SL2(Z/2) = S3. Coset representatives are the six matrices 1, u, u2, t, tu, tu2.
The group �(2) is a subgroup of �0(2) and 1, t represent the cosets in �0(2). Hence, with
G is the fundamental domain of (4.5), the union F(2) := G ∪ tG is a fundamental domain
for �(2). Clearly, the matrix su of (4.3.1) is in �0(2) and not in �(2). Hence, the union
H := G ∪ suG is a second fundamental domain for �(2).

F(2)

G tG

−1 0 1

H

G

suG

−1 − 1
2 0

The fundamental domains F(2) and H for �(2).

The domain F(2) has no finite vertices; its infinite vertices are −1, 0, 1, ∞. The boundary
transformations are defined by the two matrices,

t2 =
[ 1 2

0 1

]
, st−2s =

[−1 0
2 −1

]
. (4.7.1)
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Thus, up to ±1, the group �(2) is generated by the matrices (4.7.1). Clearly, there are no
elliptic points. Of the infinite vertices, −1 and 1 are equivalent. Hence, the orbit space
H/�(2) is a sphere minus 3 points.

The group �(2) is the homogenization of the inhomogeneous level-4 subgroup �V de-
fined in Example (3.4). Hence the two groups have the same fundamental domain. As a
consequence, �V is generated by the two matrices,

−t−2 =
[−1 2

0 −1

]
, st−2s =

[−1 0
2 −1

]
. (4.7.2)

(4.8) Example. The group �0(4) is a level-4 subgroup of index 6. It is a subgroup of
�0(2), of index 2. Clearly, the matrix su of (4.3.1) belongs to �0(2) and not to �0(4), and
hence it represents the non-trivial coset of �0(4) in �0(2). Hence the fundamental domain
H := G∪ suG for �(2) described in Example (4.7) is also a fundamental domain for �0(4).
Since t is in �0(4), the latter domain can be cut in two by a vertical line, and we can obtain a
second fundamental domain F0(4) by translating the left piece by t .

H

−1 − 1
2 0

F0(4)

− 1
2 0 1

2

The fundamental domainsH and F0(4) for �0(4).

The domain H has 4 infinite vertices, ∞, −1, − 1
2 , and 0. Its boundary transformations

are t and sut (su)−1. For the domain F0(4), the boundary transformations correspond to the
matrices,

t =
[ 1 1

0 1

]
, sut−1(su)−1t−1 =

[ −1 0
4 −1

]
. (4.8.1)

In particular, �0(4) modulo ±1 is generated by the two matrices (4.8.1).
The orbit space H/�0(4) is a sphere minus 3 points.

(4.9) Example. The group �(6) is a normal level-6 subgroup. It is the kernel of a surjective
character χ6 : SL2(Z) → C6. The cyclic group C6 is generated by the image of t . Thus the
powers t i for i = 0, . . . , 5 are representatives for the cosets, and a fundamental domain K
for �(6) is obtained as the union of the translates t iF for i = 0, . . . , 5.
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The domain K has ∞ as its only infinite vertex. The finite vertices are the 7 points
with imaginary part 1

2

√
3 and real parts 1

2 j for j = −1, 1, 3, 5, 7, 9, 11. To get the boundary
transformations, note that modulo�(6)we have that s ≡ t3. It follows easily that the boundary
transformations are t6, st−3, t4st−1, and t2st−5. Clearly, of the seven finite vertices, the three
with real parts 1

2 , 5
2 and 9

2 are equivalent and the remaining four are equivalent. The angles in
both classes add up to 2π . Hence, there are no elliptic points for �(6). It does require some
feeling for cutting and pasting to see from the domainK that the orbit space H/�(6) is a torus
minus one point.

K

F tF t2F t3F t4F t5F

− 1
2

1
2

3
2

5
2

7
2

9
2

11
2

The fundamental domainK for �(6).

A more manageable fundamental domain for �(6) is the domain F (6):

F (6)

G sG

−1 0 1

The fundamental domain F (6) for �(6).

It is obtained as follows: The level-6 group�(6) is contained in the group�(3) of Example
(4.4), and G was a fundamental domain for the latter group. The boundary transformation s
of G is in �(3) and not in �(6). Hence the two cosets of �(6) in �(3) are represented by the
two matrices 1 and t . Hence a different fundamental domain for �(6) is obtained as the union
F (6) := G ∪ sG.
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As sG = tG, the unionF (6) = G∪sG is equal to the fundamental domainF(2) considered
in Example (4.7), but the boundary transformations are different. The domain has 4 infinite
vertices, −1, 0, 1, and ∞, and it has no finite vertices.

The boundary transformations correspond to the two matrices,

tst2 =
[ 1 1

1 2

]
, t2st =

[ 2 1
1 1

]
. (4.9.1)

It follows (again) for �(6) that there are no elliptic points and exactly one cusp, and the
orbit space is a torus minus a point. Modulo ±1, the group �(6) is generated by the two
matrices (4.9.1).
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Automorphic forms

1. Automorphic factors.

(1.1) Definition. Fix an action of a group G on a set X. As usual, when a second set Y is
given, the groupG acts on the right on the set Y X of all functions f : X → Y by the definition,

f σ := f σX, (1.1.0)

where σX is the automorphism x �→ σx of X.
LetH be a second group. Then anH -valued automorphic factor for the action ofG onX

is a map j : G×X → H satisfying for all σ, τ inG and all x inX the automorphy equation,

j (στ, x) = j (σ, τx)j (τ, x). (1.1.1)

Alternatively, the map j may be viewed as a map σ �→ jσ from G to the group HX of all
maps X → H , and the automorphy equation is the following:

jστ = (jσ τX)jτ . (1.1.2)

Assume thatH acts on the left on the set Y . Then, for everyH -valued automorphic factor
j , a right action ofG on the set YX of all functions f : X → Y is obtained by the definition,

f ·j σ = j −1
σ (f σX), (1.1.3)

or, with arguments,
(f ·j σ )(x) = j (σ, x)−1f (σx). (1.1.4)

The action of G on YX is called the automorphic action defined by the factor j . Note that a
function f : X → Y is G-invariant with respect to the automorphic action if and only if, for
all x in X and all σ inG,

f (σx) = j (σ, x)f (x). (1.1.5)

(1.2) Note. Clearly, the constant map j (σ, x) = 1 is an automorphic factor. The correspon-
ding automorphic action on YX is given by (1.1.0). More generally, automorphic factors
j (σ, x) that are independent of x correspond to homomorphisms of groups χ : G → H .
Functions f : X → Y that are invariant under the automorphic action corresponding to χ are
often called semi invariant. They are characterized by the equation,

f (σx) = χ(σ)f (x).
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(1.3) Note. Assume that the groupG acts on the right on a groupN , by group automorphisms
ofN . In other words, assume given, for σ inG, a group automorphism ofN denoted n �→ nσ ,
such that nστ = (nσ )τ . Then the semi-direct product is the product setG×N with the group
composition given by the equation,

(σ, n) · (τ,m) := (στ, nτ m). (1.3.1)

Obviously, the two maps σ �→ (σ, 1) and n �→ (1, n) identify G and N as subgroups of
product, and the pair (σ, n) is the product σ · n. Under the identification, the composition
(1.3.1) is essentially given by the commutation rule,

n · σ = σ · nσ ,
or equivalently, by nσ = σ−1 · n · σ . The projection p : (σ, n) �→ σ is a surjective
homomorphism of groups p : G × N → G, and its kernel is equal to N . The inclusion
σ �→ (σ, 1) is a section of p, that is, it is a homomorphism which composed with p is the
identity ofG. Clearly, the general sections of p are the maps of the form σ �→ (σ, νσ ), where
σ �→ νσ is a 1-cocycle, that is, a map G → N satisfying the following condition,

νστ = (νσ )
τ ντ .

Consider, in the setup of (1.1), the semi-direct product G × HX. Then, by (1.1.2), the
automorphic factors G → HX are precisely the 1-cocycles. Equivalently, a map σ �→ jσ
is an automorphic factor if and only if the map σ �→ (σ, jσ ) is a homomorphism of groups
G → G × HX. As a consequence, an automorphic factor jσ is uniquely determined by its
values on a system of generators σj for G.

(1.4) Note. Let j (σ, x) be an H -valued automorphic factor. Clearly, it follows from the
automorphy equation first, that j (1, x) = 1, and next that

j (σ−1, x) = j (σ, σ−1x)−1. (1.4.1)

Assume thatH acts on Y , and consider the corresponding automorphic action ofG on Y X. As
usual, a right action ofG is changed into a left action by composing with the anti-involution
σ �→ σ−1 ofG. It follows from (1.4.1) that the corresponding left action ofG on Y X is given
by the equation,

σ ·j f := (jσ f )σ
−1
X . (1.4.2)

(1.5) Note. In the setup of (1.1), assume that Y is a homogeneous space over H , that is, for
any two elements y and y ′ of Y there is a unique element h inH such that y ′ = hy. Clearly,
if some function f : X → Y isG-invariant with respect to the automorphic action defined by
j , then j is unique, and given by the equation,

j (σ, x) = f (σx)f (x)−1. (1.5.1)

Conversely, whenf : X → Y is any function, then the equation (1.5.1) defines an automorphic
factor j .
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(1.6) Lemma. Let α and β be matrices of GL2(C). Let z be a point of C, and assume that
the two points βz and αβz are different from ∞. Then the following equation holds:

J (αβ, z) = J (α, βz)J (β, z). (1.6.1)

Moreover, if z is a fixed point of β, then the representatives of z are eigenvectors of β
corresponding to the eigenvalue J (β, z).

Proof. The points βz and αβz are represented by the columns

β
[
z

1

]
= J (β, z)

[
βz

1

]
, αβ

[
z

1

]
= J (αβ, z)

[
αβz

1

]
. (1.6.2)

It follows that the second equation is obtained by multiplying the first by α. Therefore (1.6.1)
holds. Clearly, the last assertion of the Lemma is a consequence of the first equation of
(1.6.2).

(1.7) Observation. Consider a finite disk D, that is, a disk not containing the point ∞. Thus
D is either the interior of a usual circle in C or the points of an open half plane in C. In the
former case, the point ∞ does not belong to the boundary of D, in the latter case it does.

It follows from (1.6.1) that, for any subgroup � of SL(D), the function J (γ, z) is a C∗-
valued automorphic factor for the action of � on D. More generally, for any integer k, the
function J (γ, z)k is an automorphic factor.

Note that the absolute value |J (γ, z)|k , for any real number k, is an automorphic factor.
Our principal interest is, for certain subgroups �, automorphic factors j such that j (γ, z) is,
at least up to a complex sign, a determination of the function J (γ, z)k where the exponent k
is an arbitrary real number.

(1.8) Remark. Fix a real number k. Let w be a non-zero complex number. Recall that a
complex number u is called a value of wk , if |u| = |w|k and if, for some argument θ of w,
the real number kθ is an argument for u. If k is integral, there is only one value of wk , if k is
rational there is a finite number of values, and if k is irrational there is an infinite number of
values.

Let g : X → C∗ be a continuous map. Recall that a map h : X → C∗ is called a deter-
mination of gk , if h is continuous and, for every x in X, h(x) is a value of g(x)k . If h0 is a
determination of gk then, for every integer n, the following product is a determination of gk:

e2πinkh0(x); (*)

moreover, if X is connected, then all other determinations are of the form (*).
Determinations of gk exist if X is simply connected, or if the image of g(X) is contained

in a simply connected subset of C∗. In the latter case there exists a continuous argument
on g(X), that is, a real valued continuous function � defined on g(X) such that �(w) is an
argument for w for all w in g(X), and then the following function is a determination,

h(x) := |g(x)|kei�(g(x))k,
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In most of our applications, the map g will be holomorphic, and the image of g will avoid a
half ray starting at the point 0. In this case, the existence of a continuous argument is obvious,
and any determination of gk is again a holomorphic function. For example, if the image
g(X) avoids the negative real axis, we may always consider the principal determination of
gk , defined using as argument of g(x) the principal argument θ , where −π < θ < π .

For instance, let D be a finite disk and let α be a matrix in GL2(C) such that αz �= ∞
for all z in D. Then the function J (α, z) is (finite) and non-zero everywhere in D. It has the
form Cz + D. If C = 0, then the function J (α, z) is the non-zero constant D. If C �= 0,
then J (α, z) is a Möbius transformation, and in particular, the image of D is finite disk not
containing the point 0. Therefore, in both cases, there are determinations of the function
J (α, z)k. In the first case, any determination is constant, and hence defined on all of C. In
the second case, the function J (α, z) has a zero v outside D. Let V be the open subset of
C obtained by cutting away a half ray starting at v and having no other points in common
with the boundary of D. Then there is a determination of J (α, z)k defined on all of V . In
particular, there is a determination J (α, z)k defined on D, and it extends continuously to the
points of ∂D except possibly to the two points ∞ and v = α−1∞ if they belong to ∂D.

(1.9) Definition. Let D be a finite disk, and let � be a subgroup of SL(D). A factor of weight
k on � is a function j (γ, z) defined for γ ∈ � and z ∈ D and satisfying the following three
conditions:

(1) The function j is a C∗-valued automorphic factor for the action of � on D.
(2) For fixed γ in �, the function j (γ, z) is holomorphic.
(3) The absolute value |j | is equal to |J |k , that is, for all γ and z,

|j (γ, z)| = |J (γ, z)|k.

The group C∗ acts on itself, it acts on C, and it acts on C. In particular, from a given factor
j on � we obtain a corresponding automorphic action of � on the numeric functions on D.
The action is given by the formula,

(f ·j γ )(z) = 1

j (γ, z)
f (γ z). (1.9.1)

Numeric functions on D that are invariant under the action are called (�, j)-invariant, or
j -invariant. They are characterized by the equations, for γ ∈ � and z ∈ D,

f (γ z) = j (γ, z)f (z). (1.9.2)

Obviously, the action (1.9.1) is linear. Hence, the j -invariant functions form a vector space
over C.

(1.10) Lemma. Let D be a finite disk, and � a subgroup of SL(D). Assume that j is a factor
of weight k on �. Fix a matrix γ in �, and consider a determination J (γ, z)k on D. Then
there is a complex sign ε (i.e., |ε| = 1), and an equation,

j (γ, z) = εJ (z, γ )k for all z ∈ D, (1.10.1)
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In particular, the function j (γ, z) is completely determined by any of its values j (γ, z0) (and
the given weight k).

Proof. By Condition (1.9)(3), the quotient j (γ, z)/J (γ, z)k is of modulus 1, and holomorphic
by Condition (2). Therefore, the quotient is a constant function, and hence equation (1.10.1)
holds.

(1.11) Observation. (1) The constant automorphic factor j (γ, z) = 1 is a factor of weight 0,
and the corresponding invariant functions are simply �-invariant functions: f (γ z) = f (z)

for all γ in �.
More generally, any factor j (γ, z) of weight 0 is of constant modulus 1, and hence constant.

Therefore, the factors of weight 0 on � are precisely the unitary characters χ : � → C∗.
(2) Clearly, the product j1j2 of factors of weights k1 and k2 is a factor of weight k1 + k2.

If f1 is j1-invariant and f2 is j2-invariant, then the product function f1f2 is j1j2-invariant.
Similarly, the quotient j1/j2 is a factor of weight k1 − k2. As a consequence, if j0(γ, z)

is given factor of weight k, then the factors of weight k are precisely the functions,

j (γ, z) = χ(γ )j0(γ, z),

where χ : � → C∗ is a unitary character. In particular, if the commutator subgroup � ′ is of
finite index in �, then the number of factors of weight k is either zero or equal to the index
|�:�′|.

(3) If k is an integer, then the function J (γ, z)k is a factor of weight k. In particular, it
follows from (2) that the factors of integral weight k on � are the functions,

χ(γ )J (γ, z)k, (1.11.1)

where χ : � → C∗ is a unitary character. For an integer k, the action (1.9.1) of � on numeric
functions corresponding to the factor J (γ, z)k is denoted f ·k γ , that is,

(f ·k γ )(z) = 1

J (γ, z)k
f (γ z).

Numeric functions on D that are invariant with respect to the factor J (γ, z)k are said to be
�-invariant of weight k.

(4) As noted in (1.4), it follows from the automorphy equations that j (1, z) = 1. Assume
that � is homogeneous, that is, −1 ∈ �. Then it follows similarly that j (−1, z)2 = 1.
Consequently, the function j (−1, z) is the constant 1 or −1. If a function f is j -invariant,
and f is non-zero, say f (z0) �= 0, then it follows from the equation f (z0) = f ((−1)z0) =
j (−1, z0)f (z0) that j (−1, z0) = 1. Hence j (−1, z) is the constant 1. Therefore, when � is
homogeneous, we are mostly interested in homogeneous factors, that is, factors j for which
j (−1, z) = 1.

Note that the factor J (γ, z)k for an integer k is only homogeneous when k is even. The
homogeneous factors of odd (integral) weight k are the functions (1.11.1) where χ : � → C∗
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is an odd unitary character (that is, χ(−1) = −1). In particular, if −1 belongs to the
commutator subgroup � ′, then there are no homogeneous factors of odd integral weight on
�.

(5) Clearly, if � is inhomogeneous, and �̃ denotes the homogenized group �̃ = �∪ (−�),
then every factor j on � extends to a homogeneous factor j on �̃ by defining j (−γ, z) :=
j (γ, z) for γ in �.

(6) The function |J (γ, z)|k is an automorphic factor on �, but it is not holomorphic, and
hence it is not a factor in the sense of Definition (1.9). Note that the condition (1.9)(3) is that
the automorphic factor |j (γ, z)| is equal to the automorphic factor |J (γ, z)|k . Clearly, for an
automorphic factor j (γ, z) to satisfy condition (1.9)(3), it suffices that the equations,

|j (γ, z)| = |J (γ, z)|k, (1.11.2)

hold for a system of matrices γ generating the group �.
(7) As noted in (1.5), if f : D → C∗ is any function, then the equation,

j (γ, z) := f (γ z)/f (z), (1.11.3)

defines an automorphic factor on any subgroup of SL(D). If f is holomorphic, then j is
holomorphic in z. In fact, if f is meromorphic and the right hand side of (1.11.3) has no
zeros or poles, then (1.11.3) defines a holomorphic automorphic factor j . But of course, for
j to be a factor in the sense of Definition (1.9) it is required that the equations,

|f (γ z)/f (z)| = |J (γ, z)|k, (1.11.4)

hold for all matrices γ in the group �. As observed in (6), it suffices that the equations
(1.11.4) hold for a system of generators for �.
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2. Examples I.

(2.1) Example. Let k be an integer. Let � be a lattice in C, say � = Zω1 + Zω2 where the
complex numbers ω1 and ω2 are linearly independent over R. Consider the following sum,

Ek(�) = Ek

[
ω1
ω2

]
=

∑
ω �=0

1

ωk
, (2.1.1)

where the sum is over all ω �= 0 in �. The sum is absolutely convergent for k ≥ 3. For
typographical reasons, the sum will also be denoted E(ω1, ω2). In particular, for z ∈ H, we
define the Eisenstein series,

Ek(z) = Ek(z, 1) =
∑′ 1

(nz +m)k
, (2.1.2)

where the sum is over pairs of integers (m, n) �= (0, 0). The function Ek(z), for k ≥ 3, is
holomorphic in H.

Clearly, if λ is a non-zero complex number, then Ek(λ�) = λ−kEk(�). In addition, if
γ is a matrix in �(1) = SL2(Z) then the two pairs (ω1, ω2) and (ω1, ω2)γ

tr generate the
same lattice. As a consequence, E(ω1, ω2) = E(ω1, ω2)γ

tr. In particular, we obtain the
equations,

Ek(γ z) = Ek

[
γ z

1

]
= Ek

1

J (γ, z)
γ
[
z

1

]
= J (γ, z)kEk(z).

In other words, for an integer k ≥ 3, the function Ek(z) is �(1)-invariant of weight k.
Note that the function Ek(z) is equal to zero when k is odd. We will see later that the

function in non-zero when k is even.

(2.2) Example. The Eisenstein series (2.1.2) is closely related to the following series, defined
for an integer k ≥ 3,

Gk(z) := 1

2

∑
(m,n)=1

1

(mz + n)k
, (2.2.1)

where the sum is over all pairs of relatively prime integers (m, n). Indeed, if we group in
(2.1.2) the terms corresponding to the greatest common divisor d of (m, n), we obtain the
equation,

Ek(z) = 2ζ(k)Gk(z), (2.2.2)

where ζ(k) = ∑
d≥1 d

−k . Hence, the function Gk is �(1)-invariant of weight k. It vanishes
when k is odd. If k is even, then the value ζ(k) is a well known rational multiple of π k . More
precisely, then 2ζ(k) = −(2πi)kBk/k! where Bk is the k’th Bernoulli number.

(2.3) Example. Dedekind’s η-function is the function in the upper half plane H defined by
the product,

η(z) = e2πiz/24
∏
n≥1

(1 − e2πinz). (2.3.1)
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The sum
∑
n e

2πinz converges normally in H; hence, so does the product. Consequently, the
η-function is holomorphic and everywhere non-zero in H.

The η-function satisfies the following functional equations,

η(z + 1) = e2πi/24η(z), η(−1/z) =
√
z/i η(z), (2.3.2)

where
√
z/i is the principal determination. The first equation is obvious, but the second is

far from trivial. It follows from the functional equations that

|η(z + 1)| = |η(z)|, |η(−1/z)| = |z| 1
2 |η(z)|.

The modular group �(1) = SL2(Z) is generated by the two matrices t and s, and tz = z+ 1
and sz = −1/z. Moreover, J (t, z) = 1 and J (s, z) = z. Hence, the equation,

|η(γ z)/η(z)| = |J (γ, z)| 1
2 ,

holds for the two generators s and t . It follows that the equation holds for all matrices in�(1).
Therefore, as observed (1.11)(7), a factor jη of weight 1

2 on �(1) is defined by the equation,

jη(γ, z) = η(γ z)/η(z). (2.3.3)

Of course, the η-factor jη is fully determined by the automorphy equations from the special
values,

jη(t, z) = e2πi/24, jη(s, z) =
√
z

i
,

but a priori, it is far from obvious that these two values define an automorphic factor on �(1).
By construction, the function η is jη-invariant. As the weight of jη is 1

2 , the even powers
j 2k
η are of integral weight k, and hence of the form in (1.11.1). In particular, the square j 2

η is
a factor of weight 1 on �(1), of the form,

j 2
η (γ, z) = χ(γ )J (γ, z),

where χ : �(1) → C∗ is a unitary character. For γ := t we obtain the equation e2πi/12 =
χ(t). For γ = s we obtain the equation z/i = χ(s)z, that is, χ(s) = e−2πi/4. As t and
s generate �(1), it follows that χ maps into the cyclic subgroup C12 of C∗. A priori, the
character group of �(1) is cyclic of order a divisor of 12, since �(1) is generated by the
matrices s and u of orders 4 and 3. Hence, using the functional equation of the η-function,
we recover the result of (Mdlar.2.4) that the character group is cyclic of order 12.

As a consequence, the power jη(γ, z)2k , where k is an integer divisible by 12, is equal to
J (γ, z)k . In particular, the discriminant�(z), defined by the equation,

�(z) := η(z)24,

is a �(1)-invariant function of weight 12 on H. Like η(z), the discriminant is everywhere
non-zero.
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(2.4) Example. As the η-function is everywhere non-zero in H, there is, for an arbitrary real
number k, a determination of the function η(z)2k . In fact, a canonical determination of η2k

is selected by chosing for the first factor in the product (2.3.1) the determination e2πikz/12

and for the n’th factor in the product the principal determination (1 − e2πinz)2k (given by the
binomial expansion). It follows that a factor of weight k on �(1) is defined by the equation,

j2k
η (γ, z) := η(γ z)2k/η(z)2k.

It follows in particular that for any given real number k there are exactly 12 factors of weight
k on �(1).

(2.5) Example. The functionG4 of Example (2.2) is �(1)-invariant of weight 4. Hence the
cubeG 3

4 is of weight 12. The discriminant� is of weight 12, and it is everywhere non-zero.
Therefore, the following function,

j (z) := G4(z)
3/�(z), (2.5.1)

is of weight 0, that is, the function j (z) is a �(1)-invariant function in the usual sense:
j (γ z) = j (z) for all matrices γ in �(1). The function j is called Klein’s j -invariant. We
prove later the following equation,

123�(z) = G4(z)
3 −G6(z)

2. (2.5.2)

It allows an expression of j (z) in terms of G4 and G6. In terms of the Eisenstein series, it is
customary to write,

g2(z) := 60E4(z), g3(z) = 140E6(z).

Then, using the values of the Bernoulli numbers, B4 = −1/30 and B6 = 1/42, it is easy to
derive the equation,

j (z) = 123 g2(z)
3

g2(z)3 − 27g3(z)2
. (2.5.3)

We show later that Klein’s invariant defines an isomorphism,

H/�(1) ∼−→ C,

from the orbit space to the Riemann sphere.

(2.6) Example. The θ -function is the function defined in the upper half plane H as the sum
over all integers n,

θ(z) =
∑

eπin
2z. (2.6.1)

The θ -function is holomorphic in H and it satisfies the two functional equations,

θ(z + 2) = θ(z), θ(−1/z) =
√
z/i θ(z), (2.6.2)
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where
√
z/i is the principal determination. As in Example (2.3), the first equation follows

immediately from the definition, but the second is far from trivial. In fact, the second equation
is equivalent to the functional equation for Riemann’s ζ -function. It follows from the two
equations that |θ(z + 2)| = |θ(z)| and |θ(−1/z)| = |z|1/2|θ(z)|.

The Möbius transformations z �→ z + 2 and z �→ −1/z are associated to the matrices t 2

and s. Moreover, J (t2, z) = 1 and J (s, z) = z. Therefore, the two equations imply that the
θ -function satisfies the equation

|θ(γ z)/θ(z)| = |J (γ, z)| 1
2 ,

for the two matrices γ = t2 and γ = s. The latter two matrices generate the θ -group �θ by
(Mdlar.4.6). It follows that the θ -function determines a unique factor jθ of weight 1

2 on the
group �θ , given by the equation,

jθ (γ, z) = θ(γ z)/θ(z). (2.6.3)

The θ -factor jθ is of course fully determined by its values on the two generators,

jθ (t
2, z) = 1, jθ (s, z) =

√
z/i,

but a priori, it is far from obvious that these two values define an automorphic factor on �θ .

(2.7) Remark. The sum (2.6.1) defining the θ -function can be split into two parts, θ =
θev + θodd, where the sums are respectively over the even and odd integers. Obviously,
θev(z) = θ(4z), and hence θodd(z) = θ(z) − θ(4z). Moreover, θev(z + 1) = θev(z) and
θodd(z+ 1) = −θodd(z). Hence we obtain the functional equation,

θ(tz) = 2θ(4z)− θ(z). (2.7.1)

From the functional equation (2.7.1) for θ(tz) and the functional equation (2.6.2) for θ(sz)
we can obtain a functional equation for θ(γ z) for any matrix γ in �(1). Consider for instance
the matrix u = t−1s defining the Möbius transformation uz = −1 − 1/z. From (2.7.1) and
(2.6.2) we obtain the equations,

θ(−1 − 1/z) = θ(−1/z+ 1) = 2θ(−4/z)− θ(−1/z) = 2
√
z/4i θ(z/4)−

√
z/iθ(z).

Hence,
θ(uz) =

√
z/i

(
θ(z/4)− θ(z)

)
. (2.7.2)

It follows easily from (2.7.1) and (2.7.2) that the two functions, θ(tz) and θ(uz), are given
by the sums,

θ(z+ 1) =
∑
n

(−1)neπin
2z, θ(−1 − 1/z) =

√
z

i

∑
n odd

eπin
2z/4. (2.7.3)

90



Automorphic functions
16. februar 1995

[Autm] 11

3. The signs of a factor.

(3.1) Setup. Fix a finite disk D and a discrete subgroup � of SL(D). In addition, fix a real
number k and a factor j (γ, z) of weight k on �.

(3.2) Lemma. Let γ be a matrix in �, and let u be a fixed point of γ in the closure of D.
Then the following limit exists:

j (γ, u) := lim
z→u

j (γ, z), (3.2.1)

where the limit is taken over points z of D. If γ is elliptic or equal to ±1, then j (γ, u) is a
d’th root of unity where d is the order of γ . If γ is parabolic, then |j (γ, u)| = 1.

Proof. Consider a determination of J (γ, z)k on D. By Lemma (1.10), there is an equation,

j (γ, z) = εJ (γ, z)k,

where |ε| = 1. As remarked in (1.8), it follows that the function j (γ, z) extends continuously
to the points of ∂D, except possibly to the points ∞ and γ −1∞. Since u is a fixed point, it
is only exceptional when it is equal to ∞. In the exceptional case, the function J (γ, z) is
constant. Therefore j (γ, z) is constant and hence it extends trivially to all of C. Thus, in all
cases, the limit (3.2.1) is simply the value at u of the extended function j (γ, z).

The remaining assertions hold trivially if γ = ±1. Assume next that γ is elliptic. Then the
fixed point u belongs to D. Clearly, since u is a fixed point, it follows from the automorphy
equation that j (γ, u)d = j (γ d, u) = 1. Hence j (γ, u) is a d’th root of unity.

Assume next that γ is parabolic. Then the fixed point u belongs to the boundary ∂D. If
u �= ∞, then by (1.6), the number J (γ, u) is an eigenvalue of γ , and hence equal to ±1
since γ is parabolic. Consequently, if u �= ∞ then j (γ, u) = εJ (γ, u)k is of modulus 1.
Clearly, if the fixed point u is equal to ∞, then the function J (γ, z) is constant, and, since γ
is parabolic, it is the constant ±1. Hence, j (γ, z) is a constant of modulus 1. In particular,
the limit j (γ, u) is of modulus equal to 1.

Thus the assertions have been proved in all cases.

(3.3) Definition. Recall that for any point u in D ∪ ∂�D we have defined the canonical
generator γu of � at u. It belongs to the isotropy group �u. It follows from Lemma (3.2) that
the following number,

ωu = ωu(j, �) := j (γu, u),

is of modulus 1. It is called the sign of the factor j at the point u. The unique real number
κu = κu(j) determined by the conditions,

ωu = e2πiκu , 0 ≤ κu < 1,

is called the parameter of the factor j at the point u.
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At a �-ordinary point u, the canonical generator is equal to 1. Hence ωu = 1 and κu = 0.
Assume that u is a �-elliptic point of D. Then, by (3.2), the sign is a du’th root of unity,
where du is the order of γu. Hence the parameter κu is of the form κu = a/du where a is an
integer and 0 ≤ a < du. In particular, we obtain for any point u of D the inequalities,

0 ≤ κu ≤ 1 − 1/du. (3.3.1)

Clearly, if −1 ∈ � and the factor j is homogeneous, then the sign ωu is an eu’th root of unity,
where eu = |P�u| is the order of the �-elliptic point u, and in the inequalities we can replace
du by eu.

(3.4) Proposition. Assume that � is the modular group �(1) = SL2(Z) acting on the upper
half plane H. Then the sign of the factor j at the point ∞ is of the form,

ω∞ = ζ−1e2πik/12, (3.4.1)

where ζ is a 12th root of unity. Moreover, the factor j is completely determined by the root
ζ and the given weight k. At the elliptic points i and ρ, the signs of the factor j are the
following:

ωi = ζ 3, ωρ = ζ 4.

Finally, j (−1, z) = ζ 6 for all z.

Proof. The point ∞ is parabolic, and the matrix t is the canonical generator γ∞. As J (t, z) =
1, it follows that j (t, z) is constant, and hence we obtain the equation,

j (t, z) = ω∞.

The point i is elliptic, and the matrix s of order 4 is the canonical generator γi . As J (s, z) = z,
the function j (s, z) is, by Lemma (1.10), of the form εzk where |ε| = 1 and zk is the principal
determination in H. Evaluation at i yields ωi = εik . Hence,

j (s, z) = ωiz
k/ik,

and the sign ωi is a 4th root of unity. Now s = tu. Therefore, from the automorphy equation,
we obtain that

j (u, z) = j (s, z)/j (t, uz) = ω−1
∞ ωiz

k/ik.

The point ρ is elliptic, and the matrix u of order 3 is the canonical generator γρ . Hence the
sign ωρ = j (u, ρ) is a 3rd root of unity. Take z = ρ in the expression for j (u, z) to obtain
the equation,

ω∞ = ωi/ωρ · ρk/ik.
Clearly, ρk/ik = e2πik/12 and ζ := ωρ/ωi is a 12th root of unity. Hence ω∞ has the
form (3.4.1). Moreover, the assertions about ωi and ωρ follow from the definition of ζ .
Furthermore, j is uniquely determined, because � is generated by s and t , and j (t, z) and
j (s, z) were determined above by the signs at ∞ and i. Finally, j (−1, z) is constant; the
constant is equal to j (−1, i) = j (s2, i) = j (s, i)2 = ω2

i = ζ 6.
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(3.5) Note. In (3.4), there are twelve possible values for ζ , and hence at most 12 possible
factors of a given weight k. As noted in example (2.4), there are in fact 12 factors of any
given real weight k.

Clearly, for an integral weight k, the factor J (γ, z)k corresponds to ζ = e2πik/12.

(3.6) Example. The factor jη associated with Dedekind’s η-function is a factor of weight
k = 1

2 on the modular group �(1). As jη(t, z) = e2πi/24, we have, in the notation of (3.4),
that ζ = 1. Hence we obtain for jη the following signs,

ω∞ = e2πi/24, ωi = 1, ωρ = 1.

The corresponding parameters are 1/24, 0, and 0.
The square j 2

η is one of the possible 12 factors of weight 1 on �(1). In fact, by (2.3),

j 2
η (γ, z) = χ12(γ )J (γ, z),

where χ12 : �(1) → C12 is the unique character for which χ12(t) = e2πi/12. As ω∞ =
e2πi/12, we have ζ = 1 in (2.4.1), and we obtain for j 2

η the following signs:

ω∞ = e2πi/12, ωi = 1, ωρ = 1.

(3.7) Example. The θ -group �θ ⊂ SL2(Z), acting on the upper half plane H, has one elliptic
orbit represented by the point i, and two cusps represented by the points ∞ and −1. At the
three points, the canonical generators are the matrices,

γi = s =
[ 0 −1

1 0

]
, γ∞ = t2 =

[ 1 2
0 1

]
, γ−1 = utu−1 =

[ 2 1
−1 0

]
.

Indeed, the first two equations are obvious. To find the canonical generator at −1, apply
conjugation by u. Under the conjugation, the point ∞ corresponds to u(∞) = −1 and �θ
corresponds to the conjugate group � uθ = u−1�θu. Modulo 2, we have that u−1su ≡ t , and
it follows that the conjugate group � u

θ is equal to �0(2), cf. Exercise (Mdlar.3.6). Clearly,
for the conjugate group the canonical generator at ∞ is the matrix t . Thus γ−1 = utu−1.

Consider the θ -factor jθ on �θ . It is of weight 1
2 and determined by the equations of (2.6),

jθ (γ∞, z) = 1, jθ (γi, z) =
√
z/i.

Clearly, γ−1 = −γ −1∞ γi . Therefore, from the automorphy equation, we obtain that

jθ (γ−1, z) = jθ (γ
−1

∞ , γiz)j (γi, z) = 1 ·
√
z/i =

√
z/i.

As
√
z/i → e2πi/8 for z → −1, we obtain for jθ the following signs,

ω∞ = 1, ω−1 = e2πi/8, ωi = 1.

The corresponding parameters are 0, 1/8, and 0.
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(3.8) Lemma. Let L be a linear function, L(z) = Cz + D, where C �= 0. Assume that
L(z) �= 0 everywhere on D, and consider a determination of L(z)k on D. Let γ be a matrix
in SL(D) and let u be a fixed point of γ belonging to the closure of D. If u belongs to the
boundary of D, assume moreover that γ is parabolic. Then,

lim
z→u

L(γ z)k/L(z)k = 1, (3.8.1)

where the limit is taken over points z of D.

Proof. The functionL has one zero v = −D/C in C. Let V be the open subset of C obtained
by cutting away from C a half ray starting at v and having no other points in common with
the boundary of D. Then D is contained in V , and clearly there is a unique extension of
L(z)k to a determination defined on all of V . Therefore the assertion (3.8.1) is elementary
when u belongs to V : in the fraction, both the denominator and the numerator converges to
the non-zero value L(u)k .

It remains to consider two further possible cases: u = ∞ and u = v. Clearly, to prove
(3.8.1), it suffices to prove that the quotient,

L(γ z)/L(z), (3.8.2)

converges to 1 for z → u. The map L is a Möbius transformation. Therefore, after a
conjugation, replacing D byL(D), � by L�L−1, and γ byLγL−1, we may assume thatL is
the identity,L(z) = z. Thus D is a finite disk not containing the point 0, and the two possible
cases are u = ∞ and u = 0.

Assume first that u = ∞. Then D is a half plane and, since γ is parabolic, the associated
transformation is of the form γ z = z + b. Then the fraction (3.8.2) is equal to 1 + b/z, and
it converges to 1 for z → ∞. Assume next that u = 0. Then D is a disk containing 0 on its
boundary. Since γ is parabolic with 0 as fixed point, the associated transformation is of the
form γ z = z/(cz + 1). Then the fraction in (3.8.2) is equal to 1/(cz + 1), and it converges
to 1 for z → 0.

Thus the assertion has been proved in all cases.

(3.9) Exercise. In the setup of (3.8), assume that the fixed point u is on the boundary of D,
but assume that γ is hyperbolic. Prove the limit in (3.8.1) exists, and find its value.

(3.10) Definition. Let α be a matrix of GL2(C) mapping a finite disk D′ onto the finite disk
D. Let �′ := �α = α−1�α be the conjugate subgroup. It is a discrete subgroup of SL(D′).
Consider a determination J (α, z′)k on D′. Define the conjugate jα of j as the function on
�′ × D′ given by the equation,

jα(γ ′, z′) := J (α, z′)k

J (α, γ ′z′)k
j (αγ ′α−1, αz′). (3.10.1)

Clearly, the fraction on the right is independent of the choice of determination.
Note that the conjugate factor is not obtained simply by a transport of structure. The latter

transport would yield the function j (αγ ′α−1, αz′).
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(3.11) Lemma. In the setup of (3.10), the conjugate j ′ := jα is a factor of weight k on
the conjugate group � ′ := �α . Moreover, if u′ and u = αu′ are corresponding points of
D′ ∪ ∂�′D′ and D ∪ ∂�D, then the signs are equal:

ωu′(j ′) = ωu(j). (3.11.1)

If the matrix α belongs to �, then � ′ = � and j ′ = j . In particular, the signs of j at two
�-equivalent points are equal.

Proof. In (3.10.1), the function j (αγ ′α−1, αz′) is an automorphic factor for the action of � ′
on D′, because it is obtained by a simple transport of structure. Moreover, as noted in (1.5), the
fraction in (3.10.1) is an automorphic factor. Therefore, the function j α is an automorphic
factor on �′. Clearly, the function jα(γ ′, z′) is holomorphic in z′. Finally, the condition
(1.9)(3) for jα follows by applying (1.6) to αγ ′ = γα, where γ := αγ ′α−1. Hence the
conjugate factor jα is a factor of weight k.

Assume that u = αu′. Then, if γu is the canonical generator of �u, the conjugate matrix
α−1γuα is the canonical generator γu′ of �′

u′ . Therefore, the equality (3.11.1) follows from
Lemma (3.8).

Assume that α belongs to �. Then � ′ = �. It follows from Lemma (1.11) that in the
definition of jα in (3.10.1), we may replace the fraction J (α, z)k/J (α, γ z)k by the fraction
j (α, z)/j (α, γ z). Then the equation jα = j follows by applying the automorphy equation
to αγ ′ = γα, where γ =: αγ ′α−1.

Clearly, the last assertion of the Lemma is a consequence of (3.11.1).

(3.12) Note. (1) For an integral weight k, the factor J (γ, z)k is invariant under conjugation,
as it follows from (1.3).

(2) In the setup of (3.10), let β be a matrix mapping a finite disk D′′ onto D′. Then
jαβ = (jα)β , as it follows by an easy computation.

(3) It follows from the last part of Lemma (3.11) that the signs ωu of j are completely
determined by the signs at one point in each parabolic or elliptic orbit.

(4) Clearly, if j1 and j2 are factors of weights k1 and k2 on �, then j1j2 is a factor of
weight k1 + k2, and for the signs we have the equation ωu(j1j2) = ωu(j1)ωu(j2).

(5) The signs ωu(�, j) depend on the group �, that is, they change if j is restricted to a
subgroup � of �. Assume that � is of finite index in �. Then ∂�D = ∂�D. Consider a
point u in D ∪ ∂�D. Denote by d the index d := |P�u:P�u|. Assume for simplicity that �
is homogeneous and that the factor j is homogeneous. If γu is the canonical generator of �u,
then γ du is the canonical generator of �u. Therefore we obtain the equation,

ωu(�, j) = ωu(�, j)
d .

(3.13) Proposition. For j (γ, z) = J (γ, z)k where k is an integer, the sign is equal to 1 at a
regular cusp, it is equal to (−1)k at an irregular cusp, and at a point u of D it is equal to
eπik(1−1/eu) where eu = |P�u|. In particular, for k = 2, the parameter is equal to 0 at any
cusp, and equal to 1 − 1/eu at a point u ∈ D.
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Proof. For a cusp u we may, by conjugation, assume that (D, u) = (H,∞). Hence the
canonical generator γu is equal to th is the regular case and equal to −th in the irregular case.
Therefore, in the irregular case, we have that J (γu, z) is the constant −1; it follows that sign
at u of J k is equal to (−1)k . In particular, the parameter is equal to 0 when k is even, and
equal to 1

2 when k is odd. The assertions in the regular case are proved similarly.
For a point u of D, we may, by conjugation, assume that (D, u) = (E, 0). Then the

canonical generator γu is the matrix of (Discr.1.3.1) with d := eu. Thus J (γu, z) is the
constant −e−πi/eu = eπi(1−1/eu). It follows that the sign of J k at u is equal to eπik(1−1/eu).
In particular, the parameter is the fractional part of k

2 (1 − 1/eu). Thus, for k = 2, the
parameter is equal to 1 − 1/eu.

(3.14) Example. Assume that j is a factor on �(1), determined as in Proposition (3.4) by its
weight k and a 12th root of unity ζ . Restrict j to the subgroup�θ . At the point i, the canonical
generators are equal and so we obtain the equation ωi(�θ , j) = ωi(�(1), j). At the point ∞,
the canonical generator of �θ is equal to t2, and hence ω∞(�θ , j) = ω∞(�(1), j)2. Finally,
at the point −1, the two groups have the same canonical generator, and hence ω−1(�θ , j) =
ω−1(�(1), j) = ω∞(�(1), j). Hence, by the results of Proposition (3.4), we obtain for the
restriction of j to �θ the following signs:

ω∞ = ζ−2e2πik/6, ω−1 = ζ−1e2πik/12, ωi = ζ 3.

In particular, the factor jθ of Example (3.7) is not the restriction of a factor on �(1).

(3.15) Exercise. On the θ -group �θ , the two factors jη and jθ differ by a unitary character
χ : �θ → C∗. Identify the character.

(3.16) Definition. Assume that the matrix α in SL2(C)maps the finite disk D onto the finite
disk D′. Consider a determination J (α, z′)k on D′ and a complex sign ε. For any numeric
function f on D, we define the weight-k conjugate to f as the function,

f α(z) := ε

J (α, z′)k
f (αz′). (3.16.1)

The definition of a weight-k conjugate function does not depend on the given subgroup �
of SL(D) and in particular, it is independent of the factor j . However, it should be noted
that contrary to the definition of the conjugate factor j α , the definition of the conjugate
function is ambiguous: f α depends on the choice of determination J (α, z′)k . As different
determinations differ by a complex sign there is, strictly speaking, only a well defined class
of conjugate functions that differ by a complex sign.

Clearly, a function f is (�, j)-invariant if and only if the weight-k conjugate function f α

is (�α, jα)-invariant. Note also that if α belongs to � (in which case D′ = D), then f ·j α
is a weight-k conjugate to f .
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4. Automorphic forms.

(4.1) Definition. A numeric function f (with values in C) defined on the upper half plane H
will be called exponentially bounded at ∞, if there exists a real number C such that

f (z) = O(|eiz|C) for 	z → ∞, (4.1.1)

uniformly on any vertical strip in H. The positive function |eiz|C is equal to e−C	z and the
condition on C implied by the O-notation is equivalent to the following: For every vertical
strip in H, there are positive real numbers R and M so that the inequality,

|f (z)| ≤ Me−C	z,

holds when z is in the strip and 	z ≥ R.
In the most important of the cases to be considered, the function f will in fact be periodic,

with a real period. Clearly, in this case, the condition holds for C if and only if (4.1.1) holds
uniformly on all of H.

The supremum of the numbersC for which the condition holds, will be called the order of
f at ∞ and it will be denoted ordH∞ f . The number ordH∞ f is equal to +∞ if the condition
holds for all C, and equal to −∞ if it holds for no C.

Clearly, if the order is positive, then f (z) → 0 for 	z → ∞, uniformly in any vertical
strip. Conversely, if f is bounded in every vertical strip for 	z � 0, then the order of f at
∞ is non-negative.

(4.2) Note. The order defined in (4.1) is in some sense analogous to the usual order at a
finite point: Let f be a numeric function defined in an open neighborhood of a point u of C.
Consider real numbers C such that

f (z) = O(|z − u|C) for z → u.

In other words, assume for some M and R that |f (z)| ≤ M|z − u|C for 0 < |z − u| < R.
Clearly, ifC exists, then f (z) has finite values in a pointed neighborhood of u. The supremum
of the possible numbers C is the order ordu f . Assume that f is holomorphic near u. Then
the order is −∞ if u is an essential singularity of f . If f is meromorphic, then the order is
the usual order and, in particular, the order is an integer if f is not the zero function.

(4.3) Lemma. The order at ∞ of functions on H has the following properties:

(1) ordH∞(eiCz) = C.
(2) ordH∞(f + g) ≥ inf{ordH∞ f , ordH∞ g}.
(3) ordH∞(fg) ≥ ordH∞ f + ordH∞ g, with equality if ordH∞(1/f ) = − ordH∞(f ).
(4) If z �→ αz is any Möbius transformation and k is a real number, then ordH∞ |αz|k = 0.
(5) ordH∞ f (rz + b) = r ordH∞ f (z) for real numbers r > 0 and b.
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Proof. In (4), set f (z) := |αz|k . There are two cases to consider: α∞ �= ∞ and αz = ∞. In
the first case, αz has a finite limit as z → ∞. In particular, (4.1.1) holds for C = 0 uniformly
on all of H. Thus the order is non-negative, and obviously, it is not positive. Hence the order
is equal to 0. In the second case, αz = cz + d with complex numbers c �= 0 and d. Clearly,
in any vertical strip, we have |z| = O(	z), and hence f (z) = O(|	z|k). Hence (4.1.1) holds
for any C < 0. Thus the order is non-negative, and obviously, it is not positive. Hence the
order is equal to 0.

The remaining assertions are easy consequences of the definition.

(4.4) Definition. Let f be a numeric function defined on a finite disk D. Let u be a point on
the boundary of D. Choose a Möbius transformation α mapping (H,∞) onto (D, u). Then
f will be said to be exponentially bounded at the point u, if the conjugate function f α on H
is exponentially bounded at ∞.

A second choice of α would differ from the first by a Möbius transformation of the form
z �→ rz + b. Hence it follows from the result (4.3)(5) that the definition of exponentially
boundedness is independent of the choice of α.

(4.5) Definition. In the setup of (4.4), from the same result (4.3)(5) quoted at the end, it
follows that we cannot define the order of f at u simply as the order of f α at ∞.

However, if a discrete subgroup � of SL(D) is given, and u is a �-parabolic point, we can
normalize the order and obtain the �-order of f at u as follows: The conjugate group �α is
a discrete subgroup of SL(H), and the conjugate of the canonical generator γu is canonical
generator of �α∞. Moreover, the latter canonical generator defines a Möbius transformation
of the form z �→ z+ h, where h > 0. Set,

ord�u f := h

2π
ordH

∞(f α). (4.5.1)

It is a consequence of the proof of the following lemma, that the �-order at u is well defined.
Obviously, it is different from −∞ if and only if f is exponentially bounded at u.

If u is a point of D, we define the �-order of f at u by the formula,

ord�u f := 1

|P�u| ordu f, (4.5.2)

where the order on the right hand side is usual order at u of the function f , see (4.2). Note
that the order of the group P�u is equal to the order of the canonical generator z �→ γu(z).
If f is meromorphic, then the order on the right side of (4.5.2) is the usual order of f . In
particular, then it is an integer (unless f = 0), and the �-order of f at a point u of D is a
rational number. On the contrary, the �-order at a cusp can be an arbitrary real number.

(4.6) Lemma. Consider a finite disk D, a discrete subgroup � of SL(D) and a point u of
D ∪ ∂�D. Let z �→ αz be a Möbius transformation mapping a finite disk D ′ onto D. Let
u′ := α−1u be the conjugate point and � ′ := �α be the conjugate subgroup. Consider a
function f on D and, for a given real number k, a weight-k conjugate f ′ = f α of f ,

f ′(z′) = ε

J (α, z′)k
f (αz′). (4.6.1)
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Then,
ord�

′
u′ f ′ = ord�u f. (4.6.2)

Proof. Assume first that u belongs to D. The Möbius transformation z �→ αz is an analytic
isomorphism. Hence, on the right side of (4.6.1), the order of f ′(αz′) at u′ is equal to the
order of f at u. Moreover, the fraction is holomorphic and everywhere non-zero on D′. In
particular, its order at u′ is equal to 0. Hence, the order of f ′ at u′ is equal to the order of f
at u. Moreover, the stabilizer groups � ′

u′ and �u are conjugate, and hence of the same order.
Therefore, it follows from the definition (4.4) that (4.6.2) holds.

Assume next that u is �-parabolic. Choose a Möbius transformation z �→ βz mapping
(H,∞) onto (D, u). Then the conjugate subgroup� = �α is a subgroup of SL(H), and the
conjugate δ of the canonical generator of �u defines a Möbius transformation z �→ z+hwith
h > 0. By definition, the right hand side of (4.6.2) is equal to (h/2π) ordH∞ f (βz).

Choose and define similarly β ′,�′, δ′, and h′. By (4.6.1),

f ′(β ′z) = ε

J (α, β ′z)k
f (αβ ′z). (4.6.3)

Now, the two matrices αβ ′ and β differ by the matrix σ := β−1αβ ′. The latter matrix belongs
to SL(H), and it fixes the point ∞. Hence, σz = rz + b. Therefore, on the right side of
(4.6.3) we have f (αβ ′z) = fβ(rz + b). Moreover, in the fraction, J (α, β ′z) is a Möbius
transformation or a constant function. Therefore, by Lemma (4.4), (4) and (5),

ordH
∞(f

′β ′) = r ordH
∞(fβ). (4.6.4)

Clearly, for the two subgroups � and �′ we have that �′ = σ−1�σ . Hence their canonical
generators δ′ and δ are conjugate: δ′ = σ−1δσ . Therefore, h′ = h/r . Now (4.6.2) follows
from (4.6.4).

(4.7) Lemma. Let� be a subgroup of finite index in �. Then, for any meromorphic function
f on D and any point u of D ∪ ∂�D,

ord�u f = |P�u:P�u| ord�u f.

Proof. Set d := |P�u:P�u|. If u is a point of D, the assertion follows from the definition
and Lagrange: |P�u| = d|P�u|. Assume that u is �-parabolic. Then P�u is an infinite
cyclic subgroup. Therefore, if γu defines the canonical generator of P�u, then γ du defines
the canonical generator of P�u. Hence, in the notation of Definition (4.5), if h is the h
corresponding to �, then the h corresponding to � is equal to dh. Thus the assertion holds
for a �-parabolic point.

(4.8) Setup. Fix a finite disk D and a discrete subgroup � of SL(D). Let j be a factor of
real weight k on �.
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A numeric function f defined on D is called a j -automorphic form, or a (�, j)-automor-
phic form, if the following conditions hold:

(1) f is j -invariant: f (γ z) = j (γ, z)f (z) for γ ∈ �,
(2) f is meromorphic in D,
(3) f is exponentially bounded at all �-parabolic points of D.

If the group � is homogeneous, we will often assume that the factor j is homogeneous, since
only the zero function is j -invariant if j (−1, z) = −1, see (1.11)(4).

Note that to verify condition (3) for a given j -invariant function f , it suffices to verify
the condition for one point in each �-parabolic orbit. Indeed, assume that f is exponentially
bounded at some point u on the boundary of D. Assume that u = γ u′ for a matrix γ in
�. It follows immediately from the definition in (4.4) that the function f γ is exponentially
bounded at the point u′. Since f is j -invariant, f (γ z) = j (γ, z)f (z). Therefore, it follows
from Lemma (4.3)(4) that f is exponentially bounded at u′.

The condition (3) for a given meromorphic functionf is usually expressed by saying thatf
is meromorphic at the cusps, and the automorphic forms defined above are sometimes said to
be meromorphic automorphic forms. An automorphic form f is said to be an integral form, if
f is holomorphic in D and the �-orders of f at all cusps are non-negative. If, in addition, the
�-orders at all cusps are positive, then f is called a cusp form. The spaces of j -automorphic
forms that are meromorphic, or integral, or cusp forms, are denoted respectively,

M(�, j), G(�, j), S(�, j).
Clearly, the spaces are vector spaces over C.

If k is an integer, then J (γ, z)k is a factor of weight k on�. More generally, then the factors
of weight k on � are exactly the function j (γ, z) = χ(γ )J (γ, z)k for a unitary character
χ : � → C∗. Accordingly, the corresponding spaces are denoted Mk(�, χ), Gk(�, χ), and
Sk(�, χ). Omission of χ indicates the trivial character χ = 1. The forms of Mk(�) are
called �-automorphic forms of weight k.

When the weight k is equal to 0, a j -automorphic form is also called a j -automorphic fun-
ction. In particular, a �-automorphic function is a �-invariant function satisfying conditions
(2) and (3). The space of �-automorphic functions is denoted M(�).

(4.9) Observation. (1) The product j1j2 of factors of weights k1 and k2 on � is a factor
of weight k1 + k2. It follows that the product f1f2 of forms fi ∈ M(�, ji) is a form in
M(�, j1j2). Similarly, the quotient f1/f2, when f2 �= 0, is a form in M(�, j1/j2).

It follows in particular that the �-automorphic functions form a field M(�). Moreover,
if M(�, j) �= (0), then M(�, j) is a one-dimensional vector space over M(�). In other
words, if f is a non-zero form in M(�, j), then the map ϕ �→ ϕf is an isomorphism,

M(�) ∼−→M(�, j).

(2) Let � be a subgroup of finite index in �. Obviously, a (�, j)-invariant function is
(�, j)-invariant. The two groups� and � have the same set of parabolic points. Hence the
condition (4.8)(3) for a function f holds for � if and only if it holds for �. Consequently,

M(�, j) ⊆ M(�, j).
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Similarly, it follows from Lemma (4.7) that G(�, j) ⊆ G(�, j) and S(�, j) ⊆ S(�, j).
(3) Consider a finite disk D and a Möbius transformation α : D′ → D defined by a matrix

α ∈ SL2(C). Then the conjugate factor jα is a factor of weight k on the conjugate group
�α = α−1�α. Choose a determination of J (α, z′)k on D′. Then for every function f on D,
the weight-k conjugate function f α is a function on D′. Clearly, conjugationf �→ f α defines
an isomorphismM(�, j) ∼−→M(�α, jα), and under conjugation, integral forms correspond
to integral forms and cusp forms correspond to cusp forms.

(4.10) Lemma. Let f be a (�, j)-automorphic form on D. If u and v are�-equivalent points
of D ∪ ∂�D, then

ord�u f = ord�v f. (4.10.1)

Proof. The equation follows from Lemma (4.6). Indeed, let v = γ u for some matrix γ in
�. Then (4.10.1) holds if the function f on the left hand side is replaced by any weight-k
conjugate f γ of f . However, the function f ·j γ is weight-k conjugate, and it is equal to
f .
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5. Fourier expansions.

(5.1). Keep the setup of (3.1). Assume for the moment that D is the upper half plane H
and that the point ∞ on the boundary of H is �-parabolic. Then the Möbius transformation
associated to the canonical generator γ∞ is of the form,

γ∞z = z+ h, for some h > 0.

The sign, ω∞(j), of j at infinity is of modulus 1, and the parameter κ = κ∞(j) is defined be
the conditions,

ω∞(j) = e2πiκ , 0 ≤ κ < 1.

Since J (γ∞, z) = ±1, it follows that j (γ∞, z) is constant,

j (γ∞, z) = e2πiκ .

Now, let f be a non-zero j -automorphic form on H. Then, in particular, f (γ∞z) =
j (γ∞, z)f (z), that is,

f (z+ h) = e2πiκf (z). (5.1.1)

Let F(z) be the function in H defined by the equation,

F(z) := e−2πiκz/hf (z). (5.1.2)

It follows from (5.1.1) that F is periodic:

F(z+ h) = F(z).

In addition, the function F(z) is meromorphic because f (z) is. Consequently, there exists a
unique meromorphic function g(q) on the pointed unit disk: 0 < |q| < 1 such that

F(z) = g(e2πiz/h). (5.1.3)

The function F(z) is exponentially bounded because f (z) is. In particular, in a strip of width
h, it follows that F(z) has no poles for 	z > R. Hence, being periodic, it follows that F(z)
is holomorphic in the domain 	z > R. Therefore, the function g is holomorphic in a pointed
disk: 0 < |q| < ε, and the possible singularity of g at 0 is isolated. It follows that g has a
convergent Laurent expansion,

g(q) =
∑

−∞<n<∞
anq

n for 0 < |q| < ε. (5.1.4)

The possible singularity 0 of g is at most a pole, that is, the Laurent expansion (5.1.4) has
only a finite number of negative terms. Indeed, since F(z) is exponentially bounded, there is
a real number C, say of the form −2πN/h for some integerN , so that F(z)/eiCz is bounded
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for 	z > R. It follows that qNg(q) is bounded near 0. Hence, in the Laurent expansion,
an = 0 for n < N . Thus the function g is meromorphic in the whole unit disk: |q| < 1, and
the order, ord0 g, of g at 0 is the least integer n such that an �= 0.

LetN be the order of g at 0. Then g(q) = qN g̃(q), where g̃ is holomorphic and non-zero
at 0. Hence F(z) = e2πiNz/hg̃(e2πiz/h). Obviously, then ordH∞ F(z) = 2πN/h. Combined
with the definition of F , it follows that

ord�∞ f = κ +N.

To summarize, we have proved the following: There is a Laurent series,

g(q) =
∑
n≥N

anq
n, (5.1.5)

convergent in a pointed disk 0 < |q| < ε, so that for 	z � 0 (more precisely, for 	z > R

where R = (− log ε)h/2π ) we have the following expansion of f ,

f (z) = e2πiκz/h
∑
n≥N

ane
2πinz/h (5.1.6)

Clearly, the �-order of f at ∞ is related to the order of g at 0 by the formula,

ord�∞ f = κ + ord0 g (5.1.7)

(5.2) Definition. The series (5.1.6), defined in the setup of (5.1), is called the Fourier expan-
sion of the form f , and the coefficients an are called the Fourier coefficients. The function
q = q(z) = e2πiz/h is called the local parameter at ∞. As a function on H it has, for any real
number l the obvious determination q l = e2πilz/h. Accordingly, we may write the Fourier
expansion in the form,

qκ
∑
n≥N

anq
n. (5.2.1)

Note that (5.2.1) does not make sense as a function of q for 0 < |q| < ε unless κ is an integer.

Now assume again that D is an arbitrary finite disk, and let f be a non-zero j -automorphic
form on D. Let u be a �-parabolic point. Consider the sign ωu = ωu(j) and the parameter
κu = κu(j). Choose a Möbius transformation z �→ βz mapping (H,∞) onto (D, u), and
choose a determination of J (β, z)k on H. Then the weight-k conjugate,

f β(z) = 1

J (β, z)k
f (βz),

is a jβ-automorphic form on H. Hence the preceding discussion applies to f β . Under
conjugation, the sign and the parameter are unchanged by (3.11), and the order is unchanged
by (4.8). The series (5.2.1) for f β , or the series (5.1.6), is called the Fourier series of f at
the point u. It follows from (5.1.7) that,

ord�u f = κu + ord0 g.

In particular, the �-order ord�u f of a j -automorphic form f is congruent to the parameter κu
modulo Z.
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(5.3). Assume for the moment that D is the unit disk E, and consider the point 0 in E. The
Möbius transformation associated to the canonical generator γ0 is of the form,

γ0z = e2πi/ez, where e = |P�0|.

[Warning: there are two e’s: one for Euler, and one for elliptic.] The sign, ω0(j), of j at 0
is an e’th root of unity. The parameter κ = κ0(j) is defined be the conditions,

ω = e2πiκ , 0 ≤ κ < 1,

and hence κ = a/e for some integer a with 0 ≤ a < e. The matrix γ0 is a diagonal matrix,
and hence J (γ0, z) is constant. It follows that j (γ0, z) is constant,

j (γ0, z) = e2πiκ .

Now, let f be a non-zero j -automorphic form on E. Then, in particular, f (γ0z) =
j (γ0, z)f (z), that is,

f (e2πi/ez) = e2πiκf (z). (5.3.1)

Let F(z) be the function in E defined by the equation,

F(z) := z−eκf (z); (5.3.2)

note that eκ is an integer, since κ = a/e. It follows from (5.3.1) that F(z) satisfies the
equation:

F(e2πi/ez) = F(z).

In addition, the function F(z) is meromorphic because f (z) is. Consequently, there exists
a unique meromorphic function g(w) on the pointed unit disk 0 < |w| < 1 such that, for
z �= 0,

F(z) = g(ze). (5.3.3)

The possible singularity for g at 0 is a pole. Indeed, since F(z) is meromorphic at 0, there
is an integer, say of the form eN , so that zeNF (z) is bounded near 0. Hence, it follows from
(5.3.2) that wNg(w) is bounded near 0. Therefore, the function g has a convergent Laurent
expansion in a small pointed disk,

g(w) =
∑
n≥N

anw
n for 0 < |w| < ε, (5.3.4)

Assume that N is the order of g at 0, i.e., aN �= 0. Then it follows from (5.3.3) F(z) is of
order eN at 0, and then from (5.3.1) that f is of order eκ + eN . Hence, for the �-order, we
obtain the equation,

ord�0 f = κ +N.
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To summarize, we have proved the following: The Laurent series for f near 0 is of the form
f (z) = zeκg(ze), that is,

f (z) = zeκ
∑
n≥N

anz
en, (5.3.5)

where e := |P�0|. The �-order of f at 0 is related to the order of g at 0 by the formula,

ord�0 f = κ + ord0 g (5.3.6)

(5.4) Definition. Assume again that D is an arbitrary finite disk, and let f be a non-zero
j -automorphic form on D. Let u be a point of D. Consider the sign ωu = ωu(j) and the
parameter κu = κu(j). Choose a Möbius transformation z �→ βzmapping the unit disk (E, 0)
onto (D, u), and consider as in (5.2) a weight-k conjugate f β . Then f β is a jβ-automorphic
form on E. Hence the preceding discussion applies to f β . The Laurent series (5.3.5) for
f β , or the expansion (5.3.4), is called the normalized Laurent series for f at the point u. It
follows from (5.3.5) that,

ord�u f = κu + ord0 g.

In particular, the �-order ord�u f of a j -automorphic form f is congruent to the parameter κu
modulo Z.

(5.5) Note. Let f be a (�, j)-automorphic form on D, and let u be a point of D∪ ∂�D. Then
the Fourier expansion of f at u defined in (5.2) when u is �-parabolic and the normalized
Laurent expansion defined in (5.4) when u belongs to D depend on the choice of conjugation
β. (In addition, they depend on the choice of a determination of J (β, z)k, but the latter
ambiguity is only up to a complex sign.) To normalize, we may assume that det β = 1.

Consider the case when u is �-parabolic. Then a second choice β ′ is of the form βσ ,
where σz = rz + b (r > 0). Clearly then, a weight-k conjugate f β

′
can be obtained as a

weight-k conjugate (f β)σ . Hence, to simplify, we may assume that D = H and that β = 1.
Then β ′ = σ and the canonical generator of �σ has h′ = h/r . We want to compare the
Fourier expansion (5.1.6) of f with the Fourier expansion of the weight-k conjugate f σ . The
matrix σ is a diagonal matrix. Hence J (σ, z) is constant, and equal to ±1/

√
r . Hence, up

to a complex sign, the determination J (σ, z)k is constant and equal to r−k/2. Therefore, a
weight-k conjugate f σ is given by

f σ (z) = rk/2f (rz+ b).

Accordingly, we obtain the Fourier expansion of f σ essentially by substitution of rz+ b for
z in (5.1.6). If we let λ := rk/2e2πiκb/h and ε := e2πib/h, then the result is the following:

f σ (z) = λe2πiκz/h′ ∑
n≥N

(εnan)e
2πinz/h.

In particular, the Fourier coefficients of the new series are given by

a′
n = λεnan.

Here |λ| = rk/2 and |ε| = 1.
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(5.6) Example. The Eisenstein series Ek(z), for an integer k ≥ 4, and the normalized series,

Gk(z) := 1

2

∑
(m,n)=1

1

(mz + n)k
,

were considered in Example (2.1). They are �(1)-invariant functions of weight k. Clearly,
they are holomorphic. The Fourier expansions of the functions are determined in (App.2.5).
The series vanish when k is odd. For k ≥ 4 even, the expansion is the following, for q = e2πiz,

Gk(z) = 1 + −2k

Bk

∑
n≥1

σk−1(n)q
n, (5.6.1)

where Bk is the k’th Bernoulli number. In particular, the order at ∞ of the functions are equal
to 0. As ∞ represents the only cusp of �(1), it follows that the functions Ek(z) and Gk(z)
are integral automorphic forms.

For k = 4 and k = 6, the expansions are the following,

G4(z) = 1 + 240
∑
r≥1

σ3(r)q
r ,

G6(z) = 1 − 504
∑
r≥1

σ5(r)q
r .

The functionsG4(z)
3 andG6(z)

2 are integral automorphic forms of weight 12. Clearly, in
their Fourier expansion, the constant term is equal to 1. Hence, for the difference, G4(z)

3 −
G6(z)

2, there is no constant term in the expansion, that is, the difference is a cusp form of
weight 12 for �(1). It is easy to see that the coefficient to q is equal to 1728 = 123. So the
difference has an expansion of the form,

G4(z)
3 −G6(z)

2 = 123q + · · · . (5.6.2)

(5.7) Example. Dedekind’s η-function,

η(z) = e2πiz/24
∏
n≥1

(1 − e2πinz),

was considered in Example (2.3). It is holomorphic in H and everywhere non-zero. The factor
jη is of weight 1

2 on �(1) and, by its construction, the function η is jη-invariant. Obviously,
the order, ordH∞ η, at ∞ is equal to 2π/24. As ∞ represents the only cusp for �(1), it follows
that η is a jη-automorphic form. The canonical generator at ∞ is the matrix t , and tz = z+1.
Hence h = 1, and the �(1)-order of η at ∞ is equal to 1/24. As the order is positive, it
follows that η is a cusp form. At the points of H, the function η is non-zero, that is, the order
is equal to 0.
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The Fourier expansion of η is obtained by developing the product
∏
n≥1(1 − qn) into a

power series. With its first terms it becomes,

η(z) = q1/24(1 − q − q2 + q5 + q7 − · · · ). (5.7.1)

In fact, the coefficients in the expansion are given by Euler’s well known pentagonal number
formula, ∏

n≥1

(1 − qn) =
∑
m

(−1)mq(3m
2−m)/2.

It follows from the expansion of η that the discriminant�(z) defined in Example (2.3) as
the power�(z) = η(z)24 has a Fourier expansion of the form,

�(z) = q − 24q2 + · · · . (5.7.2)

We prove later that the difference (5.6.2) is in fact equal to 123 times the discriminant (5.7.2).

(5.8) Example. The θ -function,
θ(z) =

∑
n

eπin
2z,

was considered in Example (2.6). It is holomorphic in H. The factor jθ is of weight 1
2 on

the group �θ , and by its construction, the function θ is jθ -invariant. There are two cusps for
�θ , represented by the points ∞ and −1. Clearly, the θ -function converges uniformly to 1
as 	z → ∞. In particular, the θ -function is exponentially bounded at ∞ and the order at
∞ is equal to 0. Essentially, the sum defining θ is the Fourier expansion at ∞. In fact, at
∞ the canonical generator of �θ is t2, and hence h = 2. Thus the local parameter at ∞ is
q = e2πiz/2 = eπiz, and the Fourier expansion at ∞ is the series,

1 + 2q + 2q2 + 2q4 + 2q9 + · · · . (5.8.1)

For the second cusp −1, take the conjugation by the matrix u. Then u∞ = −1. A weight- 1
2

conjugate θu is then given by the equation,

θu(z) = ε√
J (u, z)

θ(uz) = ε√
z
θ(−1 − 1/z).

for any complex sign ε. In particular, the function
√
i/z θ(−1−1/z) is a conjugate. It follows

from (2.7.3) that the latter conjugate has the expansion,

θu(z) =
∑
n odd

eπin
2z/4. (5.8.2)

In particular, the conjugate is exponentially bounded at ∞, and hence θ is exponentially
bounded at −1. Therefore, θ is a jθ -automorphic form. To get the Fourier expansion of θ at
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−1, note that under conjugation by u, the canonical generator of �θ at −1 corresponds to t .
Hence h = 1, and the local parameter at ∞ is q = e2πiz. Now, when n is odd, we have that
n2 ≡ 1 modulo 8. The n’th term in (5.8.2) is equal to e2πiz(n2−1)/8e2πiz/8. Thus (5.8.2) is
the Fourier expansion of θ at −1, and it takes the form,

θu(z) = e2πiz/8
∑
n odd

e2πiz(n2−1)/8 = q1/8(2 + 2q + 2q3 + 2q6 + 2q10 + · · · ).

In particular,
ord�θ−1 θ = 1/8.

As the orders at the two cusps are nonnegative, θ is an integral form.
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6. The Main Theorems.

(6.1). Keep the setup of (3.1). In other words, D is a finite disk, � is a discrete subgroup of
SL(D), and j is a factor of real weight k for �. In this section, we assume throughout that �
is a Fuchsian group of the first kind. In addition, we assume that the factor j is homogeneous,
that is, if −1 ∈ �, then j (−1, z) = 1.

The group � acts on D and on the closure D ∪ ∂�D. Since � is of the first kind, the orbit
spaceX = D/� is a compact surface. Moreover, there exists a finite fundamental domain F
for �. Accordingly, there are two fundamental invariants associated with �. The first is the
nonnegative integer g = g(�) defined as the genus of X. The second is the positive rational
number µ = µ(�) defined as the area of F divided by 2π . The two invariants are related by
the formula, see (Discr.5.5),

µ(�) = 2g(�)− 2 +
∑

u mod �

(
1 − 1

eu

)
, (6.1.1)

where eu = |P�u|. In the sum (6.1.1), and in the sums below, the summation is over the orbits
in X, or equivalently, over one point u in each �-orbit in D ∪ ∂�D. For a �-parabolic point
u, the fraction 1/eu is interpreted as zero. So, in the sum (6.1.1), each of the finitely many
cusps contributes with the term 1, and for the orbits in D, only the finitely many �-elliptic
orbits contribute with non-zero terms.

In this section we state the main theorems on automorphic forms. The proofs are postponed
to a separate section.

(6.2) Theorem A. The field M(�) of �-automorphic functions on D is finitely generated (as
a field) over C, and of transcendence degree 1.

The quotient X = X(�) is a compact Riemann surface, and by construction, M(�) is
the field of meromorphic functions on X. The assertion of Theorem A is a well known
consequence.

(6.3) Theorem B. The space M(�, j) of j -automorphic forms on D is non-zero. Moreover,
if f is any non-zero j -automorphic form, then

∑
u mod �

ord�u f = kµ(�)

2
. (6.3.1)

The existence of a non-zero j -automorphic form will follow from the construction of
Poincaré Series. The proof of (6.3.1) will be given later in this chapter.

(6.4) Corollary. The space G(�, j) of integral j -automorphic forms is of finite dimension
over C. If k < 0, then the dimension is equal to zero. If k > 0 then the dimension is at most
equal to kµ/2 + 1. If k = 0, in which case j (γ, z) = χ(γ ) with a unitary character χ on �,
then the dimension is zero if χ �= 1. Finally, the functions of G(�) are exactly the constant
functions.
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Proof. Consider a nonzero function f in G(�, j). Then the orders ord�u f are non-negative,
and the sum in (6.3.1) is equal to kµ/2. Clearly, therefore, no such f can exist if k < 0.

Assume k ≥ 0. Then ord�u f ≤ kµ/2. Let N be the largest integer less than or equal to
kµ/2. To prove that the dimension is finite we may assume that the disk is the unit disk E.
Since the order of f at zero is nonnegative, the normalized Laurent series around 0 is of the
form,

f (z) = zeκ
∑
n≥0

anw
n for w = ze, (6.4.1)

where κ = κ0(j) and e = e0. The �-order of f at zero is equal to κ + n where n is least
index such that an �= 0; on the other side, the �-order is at most equal to kµ/2. It follows
that one of the N + 1 coefficients an for 0 ≤ n ≤ kµ/2 is nonzero. The N + 1 coefficients
may be viewed as a C-linear map G(�, j) → CN+1, and we have just seen that the map is
injective. Hence the dimension of G(�, j) is finite and at most equal to N + 1.

Assume that k = 0. Let f be a function in G(�, χ). Then f is holomorphic in D, and
defines a continuous function on D ∪ ∂�D. Moreover, since χ is unitary, it follows from the
equation f (γ z) = χ(γ )f (z) that the function |f | is �-invariant. As the quotient D/� is
compact, it follows that |f | attains its maximum value at a point u of D ∪ ∂�D. It follows
from the maximum principle that f is constant. Indeed, if u is in D, the maximum principle
applies directly. If u is in ∂�D, we may, after conjugation, assume that D = H and u = ∞.
If κu = 0 then, in a neighborhood of u, f = g(q) where q = e2πiz/h and g is holomorphic
at the origin; hence the maximum principle applies to g. If κu > 0, then f vanishes at u; by
the choice of u, therefore f = 0.

Hence every function in G(�, χ) is constant. Clearly, if χ �= 1, then no non-zero constant
is χ -invariant.

Thus all assertions of the Corollary have been proved.

(6.5) Note. Assume that k > 0. It follows from (6.1.1) that the number kµ/2 is at most equal
to the following number,

k(g − 1)+ k

2
#(parabolic or elliptic �-orbits). (6.5.1)

Hence, ifN is the integer part of the number (6.5.1), then the dimension of G(�, j) is at most
N + 1. Clearly, the argument given in the proof of (6.4) applies equally well to a �-parabolic
point u, replacing the Laurent expansion by the Fourier expansion. In particular, if for two
functions f and g in G(�, j) it is known that their first N + 1 Fourier coefficients are equal,
then the two functions are equal.

(6.6) Special case. Assume that the disk is the upper half plane H and that � is a subgroup
of finite index in the modular group �(1) = SL2(Z). Denote by d the homogeneous index,
d = |�(1) : �̃|. Then, for any non-zero j -automorphic form on H,

∑
u mod �

ord�u f = kd

12
. (6.6.1)
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Moreover, if k > 0, then the dimension of G(�, j) is at most equal to [kd/12] + 1.

Proof. In the general setup of (6.1), let� be a subgroup of finite index in�. Set d := |P�:P�|.
Then, by Proposition (Discr.3.12), a fundamental domainG for� can be obtained as the union
of d transforms of the fundamental domain F for �. Hence the area ofG is d times the area
of F . Therefore, µ(�) = d µ(�).

A fundamental domain for the modular group �(1) was described in (Mdlar.4.1). Clearly,
its area is equal to 2π/6. Consequently, µ(�(1)) = 1

6 . Therefore, the assertion is a special
case Theorem B and its Corollary.

(6.7) Theorem C. The number δ = δ(�, j), defined by the following expression, is an integer:

δ := 1 − g + kµ

2
−

∑
u mod �

κu(j), (6.7.1)

where κu(j) is the parameter of j at u. If δ < 1 − g, then G(�, j) = (0). Assume that
δ ≥ 1 − g. Then the following inequalities hold:

δ ≤ dim G(�, j) ≤ δ + g.

Moreover, if δ ≥ g, then
dim G(�, j) = δ. (6.7.2)

The number δ is an integer. Indeed, let f be a non-zero j -automorphic form (Theorem
A). By Theorem B, the number kµ/2 is the sum of the �-orders of f . As observed in Section
5, the �-order ord�u f is congruent modulo Z to the parameter κu(j). Thus the difference
ord�u f − κu(j) is an integer. Hence δ is an integer.

If f is an integral non-zero j -automorphic form, then ord�u f ≥ 0. As the order is
congruent to κu and 0 ≤ κu < 1, it follows that ord�u f ≥ κu(j). Hence δ ≥ 1 − g.
Therefore, the assertion that G(�, j) = (0) when δ < 1 − g is a consequence of Theorem B.

The remaining assertions of Theorem C are consequences of Riemann’s part of the Rie-
mann–Roch Theorem. Note that the assertions give full information on the dimension of
G(�, j) when g = 0. If g > 0, the Theorem gives only an estimate of the dimension when
1 − g ≤ δ ≤ g − 1.

(6.8) Note. The following alternative expressions for δ are easily obtained from the formula
(6.1.1):

δ = g − 1 + (
k
2 − 1

)
µ+

∑(
1 − 1

eu
− κu

)

= (k − 1)(g − 1)+
∑(

k
2

(
1 − 1

eu

) − κu

)
.
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(6.9) Corollary. The dimension of G(�, j) is equal to δ and at least equal to g under any of
the following conditions: (1) k > 2, or (2) k = 2 and there are �-parabolic points, or (3)
k = 2 and there are �-elliptic points u at which κu(j) < 1 − 1/eu.

Proof. Consider the first expression for δ in (6.8). In the sum, the term corresponding to
a �-parabolic point u is equal to 1 − κu, and hence positive. The term corresponding to a
�-elliptic point is non-negative by (3.3), and positive if κu < 1 − 1/eu. It follows easily the
δ > g − 1 under any of the conditions given for the first assertion. Therefore, since δ is an
integer, the first assertion of the Corollary follows from Theorem C.

(6.10) Definition. A �-parabolic point u is said to represent a j -regular cusp, if the sign
ωu(j) is equal to 1, or, equivalently, if κu(j) = 0. Obviously, j -regularity is a property of
the cusp represented by u.

It follows from (3.13) that a cusp is J -regular if and only if it is regular. Moreover, if k is
an even integer, then all cusps are J k-regular. If k is an odd integer, then a cusp is J k-regular
if and only if it is a regular cusp for �.

Denote by δ′ = δ′(�, j) the following number,

δ′ = δ − #(j -regular cusps).

(6.11) Theorem D. Consider the space S(�, j) of j -automorphic cusp forms on D. If
δ′ < 1 − g, then S(�, j) = (0). Assume that δ ′ ≥ 1 − g. Then the following inequalities
hold:

δ′ ≤ dimS(�, j) ≤ δ′ + g.

Moreover, if δ′ ≥ g, then
dimS(�, j) = δ′. (6.11.1)

(6.12) Corollary. The dimension of S(�, j) is equal to δ ′ and at least equal to g under any
of the following conditions: (1) k > 2, or (2) k = 2 and there are �-parabolic points that
are not j -regular, or (3) k = 2 and there are �-elliptic points u at which κu(j) < 1 − 1/eu.

Proof. Consider the first expression for δ in (6.8). Clearly, in the sum, each regular cusp u
contributes with the term 1. Therefore, if we omit from the sum the terms corresponding to
the regular cusps, the resulting expression is equal to δ ′. The remaining part of the proof is
now identical to the proof of Corollary (6.9).

(6.13) Note. An integral j -automorphic form f has non-negative�-order at every point u of
D ∪ ∂�D. In particular, f has a well defined value at points u of D. For a point u ∈ ∂�D,
choose a conjugation α : (H,∞) → (D, u). Then the weight-k conjugate function f α has a
value at ∞ which, by an abuse of language, will be referred to as the value of f at u. The
value is zero if and only if the order of f at u is positive. The order is at least equal to the
parameter κu. In particular, the value at a point u representing a j -irregular cusp is necessarily
zero. It follows that f is a cusp form if and only if the value is equal to zero at every j -regular
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cusp. In other words, if Zreg is a finite set of �-parabolic points representing the subset of
j -regular cusps, then the evaluation map,

G(�, j) → CZreg, (6.10.1)

has as kernel the space S(�, j) of cusp forms. In particular, the codimension of S(�, j) in
G(�, j) is at most equal to the number of j -regular cusps, and equality holds if and only if
the evaluation map is surjective. Clearly, the evaluation map is surjective, if and only if, for
every j -regular cusp u for �, there exists an integral j -automorphic form that has a non-zero
value at u and vanishes at all other cusps.

Since δ − δ′ is equal to the number of j -regular cusps, it follows that if both equalities
(6.7.2) and (6.11.1) hold, then the evaluation map is surjective. In particular, therefore the
evaluation map is surjective if δ ′ ≥ g, and especially, it is always surjective when k > 2. It
should be emphasized that the evaluation map is not surjective in general.

(6.14). Consider in particular the factor j = J k . Thus k is assumed to be an integer; if
k is odd, the group � is assumed to be inhomogeneous. The parameters at cusps u were
considered in (6.10): If k is even, then all cusps are J k-regular (and κu = 0). If k is odd, then
the J k-regular cusps are exactly the regular cusps for �. At the irregular cusps, the parameter
is equal to 1

2 .
Consider the parameter at a point u of D. It follows from (3.13) that κu(J k) is equal to{

k
2 (1 − 1/eu)

}
, where {x} denotes the fractional part, {x} := x − [x].

An expression for δk = δ(�, J k) is obtained from the second expression for δ in (6.8). If
k is even,

δk = (k − 1)(g − 1)+
∑[

k
2

(
1 − 1

eu

)]
. (6.14.1)

Note that each cusp of � contributes with the integer k/2 to the sum. If k is odd,

δk = (k − 1)(g − 1)+
∑[

k
2

(
1 − 1

eu

)] + 1
2 #(regular cusps). (6.14.2)

Note that each cusp contributes with the integer
[
k
2

] = k
2 − 1

2 to the sum.
The numbers for k = 1 and k = 2 are the following:

δ1 = 1

2
#(regular cusps), δ2 = g − 1 + #(cusps). (6.14.3)

The dimensions of Gk(�) and Sk(�) are determined by the preceding results for k ≤ 0
and k ≥ 3. In addition, if there are cusps for �, then the results imply that dim G2(�) = δ2.

(6.15) Theorem E. The dimension ofS2(�) is equal to g. In addition, if � is inhomogeneous,
then the codimension of S1(�) in G1(�) is equal to half the number of regular cusps.

The proof of Theorem E uses the Roch part of the Riemann–Roch Theorem.
Note that the dimension of G2(�) is determined in all cases. If there are cusps, then

the dimension is equal to the number δ2 of (6.14.3). If there are no cusps, then of course
G2(�) = S2(�), and the dimension is equal to g.
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As noted in (6.13), the codimension ofSk(�) in Gk(�) is equal to the number of J k-regular
cusps if k ≥ 3. It follows from Theorem E that the assertion does not hold for k = 2 if there
are cusps, and it does not hold for k = 1 if there are regular cusps.

Theorem E determines the codimension of S1(�) in G1(�), but no general method is
known to determine the actual dimension.

(6.16) Theorem F. Assume that the disk is the upper half plane H. Let f be a non-zero
j -automorphic cusp form. Then the function f (z)(	z)k/2 is bounded in H. Consider the
Fourier expansion of f around a cusp u,

f α = e2πiκz/h
∞∑
n=0

ane
2πinz/h (6.16.1)

where κ = ord�u f is positive. Then, for the coefficients, we have the estimate,

an = O(nk/2). (6.16.2)

Proof. Note that the weight k is non-negative, since S(�, j) �= (0). Consider the function
ρ(z) = |f (z)|(	z)k/2. As 	(γ z) = |J (γ, z)|−2	(z) and f is j -invariant, it follows that ρ(z)
is �-invariant. Obviously, ρ is continuous in D. We claim that ρ(z) converges to zero when
z approaches a cusp u. Clearly, if α is a matrix of SL(H) such that α∞ = u, it suffices to
prove that ρ(αz) → 0 uniformly as 	z → ∞. Clearly,

ρ(αz) = |f (z)|	(αz)k/2 = |f (z)|
|J (α, z)|k (	z)

k/2. (6.16.3)

The fraction on the right is the absolute value of a weight-k conjugate f α . It follows from
the Fourier expansion (6.16.1) that f α = O(|e2πκz/h|). Thus ρ(αz) → 0 for 	z → ∞.

It follows that ρ extends to a continuous function on the quotient D/�. As the quotient is
compact, therefore ρ is bounded on H.

Assume that ρ(z) ≤ K for all z in H. Let g(q) be the function defined in the unit disk:
|q| < 1 by f α(z) = e2πiκz/hg(e2πiz/h). Then g is holomorphic in the unit disk, since f
in holomorphic in H. The Fourier coefficients an are the coefficients in the power series
expansion of g. Hence they can be obtained by integration,

an = 1

2πi

∫
g(q)

qn
dq

q
,

where the path integral can be taken over any circle around 0 in the unit disk. Equivalently,

an = 1

h

∫
g(e2πiz/h)dz

e2πinz/h = 1

h

∫
f α(z)dz

e2πi(n+κ)z/h ,
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where the path integral can be taken over any (euclidean) vertical line segment of length h in
H. Integrate from iε to iε + h. On the path we have, by (6.16.3), the estimate,

|f α(z)| = ρ(αz)(	z)−k/2 ≤ Kε−k/2,

and the equality |e2πi(n+κ)z/h| = e−2π(κ+n)ε/h . Therefore, we obtain the estimate for the
coefficient,

|an| ≤ Kε−k/2e2π(κ+n)ε/h.

Fix ε and apply the estimate with ε := ε/n for n ≥ 1. Since (κ + n)/n ≤ 2, it follows that

|an| ≤ Kε−k/2e4πε/h nk/2.

Therefore (6.16.2) holds.
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7. Examples II.

(7.1) Example. For the modular group �(1) = SL2(Z) acting on H, there are two elliptic
orbits represented by i of order 2 and ρ of order 3, and one cusp represented by ∞. The
genus is g = 0; the area is π/3, and so µ = 1

6 , confirming that
1
6 = 0 − 2 + (1 − 1

2 )+ (1 − 1
3 )+ 1.

Let k be a non-negative even integer, and consider the spaces Gk := G(�(1), J k) and Sk :=
S(�(1), J k). Apply the Main Theorems to the factor J k . The number δk = δ(�(1), J k) is
given by (6.14.1):

δk = −(k − 1)+ [
k
2

(
1 − 1

2 )
] + [

k
2

(
1 − 1

3 )
] + k

2 =
{

1 + [
k
12

]
when k �≡ 2 (mod 12),[

k
12

]
when k ≡ 2 (mod 12).

Note that δk ≥ 0 = g since k is non-negative. Hence it follows from Theorem C that

dim Gk = δk.

Clearly, if k ≥ 4, then δk − 1 ≥ 0 = g. Therefore, by Theorem D, if k ≥ 4, then

dim Sk = δk − 1.

Obviously, S0 = 0, and by Theorem E,

dimS2 = 0.

For small values of k, the dimensions are the following:

k 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
dim Gk 1 0 1 1 1 1 2 1 2 2 2 2 3 2 3
dimSk 0 0 0 0 0 0 1 0 1 1 1 1 2 1 2

The Eisenstein seriesEk(z) and modified seriesGk(z), for k ≥ 4, are functions inGk . They
are not cusp forms, sinceGk has the value 1 at ∞. Clearly, the functionGk(z) generates the
1-dimensional space Gk for k = 4, 6, 8, 10, 14. In particular, comparing the values at ∞, we
obtain the equationsG8(z) = G4(z)

2,G10(z) = G4(z)G6(z), and G14(z) = G4(z)
2G6(z).

The first weight k at which there is a non-trivial cusp form is k = 12. The discriminant
�(z), defined by �(z) = η(z)24, is a cusp form of weight 12, with the Fourier expansion
�(z) = q − 24q + · · · . Hence it generates the 1-dimensional space S12. On the other hand,
the difference G3

4 −G2
6 is a cusp form; it is easily seen that the coefficient to q in its Fourier

expansion is equal to 1728. Therefore, since the space S12 is 1-dimensional, the following
equation is a consequence:

�(z) = 12−3(G 3
4 −G 2

6

)
. (7.1.1)

The Fourier expansion of �(z) is of the following form,

�(z) =
∑
n≥1

τ(n)qn, with τ(1) = 1. (7.1.2)

The function τ(n) is Ramanujan’s τ -function. From the equation �(z) = η(z)24, it follows
immediately that τ(n) ∈ Z. It is not hard to see directly the right hand side of (7.1.1) has a
Fourier expansion with integral coefficients.
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(7.2) Example. The Fourier expansions of the functions Gk(z) for k = 4, 6, 8, . . . are
determined in (App.2.6): If we write �k := ∑

r≥1 σk(r)q
k , then for even k ≥ 4,

G(z) = 1 + αk�k−1, (7.2.1)

where αk = −2k/Bk . In terms of the integers Ak of (App.1),

αk = (−1)k/22k+1(2k − 1)

Ak
.

In particular, as A4 = 2 and A6 = 24, it follows that α4 = 24 · 3 · 5 = 240 and α6 =
−23 · 32 · 7 = −504. The number αk is the coefficient of q in the Fourier expansion (7.2.1).
In particular, from the equations G8 = G 2

4 , G10 = G4G6, and G14 = G8G6 observed in
(7.1), it follows that α8 = 2α4 = 25 · 3 · 5, α10 = α4 + α6 = −23 · 3 · 11, and α14 = −23 · 3.
Of course, the values of α8 and α10 confirm the values A8 = 24 · 17 and A10 = 28 · 31 in
(App.1.4). Since A12 = 29 · 691, it follows that

α12 = 24 · 32 · 5 · 7 · 13

691
. (7.2.2)

Relations among the series Gk(z) imply relations among their Fourier coefficients. For
instance, from the relationG8 = G 2

4 , it follows that α8�7 = (α4�3)
2 + 2α4�3. Hence,

σ7(r) = σ3(r)+ 23 · 3 · 5
r−1∑
t=1

σ3(t)σ3(r − t).

For the discriminant�(z), say given by (7.1.1), it follows that

(12)3�(z) = G 3
4 −G 2

6 = α3
4�

3
3 + 3α 2

4�
2
3 + 3α4�3 − α 2

6�
2
5 − 2α6�5.

As a consequence,

�(z) = 5�3 + 7�5

12
+ 8000� 3

3 + 100� 2
3 − 147� 2

5 .

It is easily seen that the fraction has integer coefficients. Hence the coefficients τ(n) of�(z)
are integers. It follows easily from the equation that τ(1) = 1, τ(2) = −24, and τ(3) = 252.
It can be proved that the function τ(n) is multiplicative. Moreover, for a primep the following
equation holds:

τ(pt+1) = τ(p)τ(pt )− p11τ(pt−1).

Thus τ(n) is completely determined by its values on primes p. Since �(z) is a cusp form of
weight 12, Theorem F implies the estimate τ(n) = O(n12/2). In fact, Ramanujan’s conjecture,

|τ(p)| < 2p11/2 for all primes p,
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was proved by P. Deligne in 1974. Far more trivial is Ramanujan’s congruence,

τ(n) ≡ σ11(n) (mod 691).

It can be proved as follows. The form G12 − G 3
4 is a cusp form of weight 12, and hence

equal to a constant times �. The constant can be determined by comparing the coefficients
to q. It follows that G12 − G 3

4 = (α12 − 3α4)�. By (7.2.2) the number a := 691α12 is an
integer, and prime to 691. Hence, by multiplying by 691, we obtain the equations of forms
with integer coefficients:

(a − 691 · 3 · α4)� = 691G12 − 691G 3
4 = a�11 − 691(G 3

4 − 1).

Modulo 691, it follows that aτ(n) ≡ aσ11(n). Hence Ramanujan’s congruence holds.

(7.3) Example. Consider again the modular group �(1). Let f be a non-zero function in
Mk = Mk(�(1)). By the Special Case (6.6), we have the equation

∑
u ord�(1)u f = k/12.

The �(1)-order at ∞, which we will denote by ord∞ f , is an integer, since the parameter at
∞ is equal to zero. The �(1)-order at i is equal to 1

2 ordi f and the �(1)-order at ρ is equal
to 1

3 ordρ f . At points of H that are not �(1)-equivalent to i or ρ, the �(1)-order is simply
the usual order. Hence the equation may be written as follows:

∑
u

ordu f + 1
2 ordi f + 1

3 ordρ f + ord∞ f = k
12 , (7.3.1)

where the sum is over a system of representatives for the �(1)-ordinary orbits. If f is an
integral form, then the orders are non-negative.

For example, consider a non-zero form f in S12. The right hand side of (7.3.1) is equal
to 1. On the left, the order ord∞ f is an integer, and positive since f is a cusp form. Hence
it follows from (7.3.1) that ord∞ f = 1 and that f is of order 0 at all points of H. In other
words, f has no zeros in H. Of course we know, by example (7.1), that f is a multiple of
�(z), and it is obvious from �(z) = η(z)24 that�(z) has no zeros.

Consider the Eisenstein series Gk for k ≥ 4. The functional equations, for γ = s and
γ = u, are the following:

Gk(sz) = zkGk(z), Gk(uz) = zkGk(z).

The point i is a fixed point of s. Hence, by the first equation, if k �≡ 0 (mod 4), then
Gk(i) = 0. Similarly, if k �≡ 0 (mod 6), then Gk(ρ) = 0. In particular,

G4(ρ) = 0, G6(i) = 0. (7.3.2)

It follows from (7.3.1) that the points in the orbit represented by ρ are the only zeros of G4
and, moreover, that these points are simple zeros. Similarly, the functionG6 has simple zeros
at the points in the orbit represented by i, and no other zeros.
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(7.4) Example. Klein’s j -invariant is the function defined in H by

j (z) := G4(z)
3/�(z).

It is of weight 0. Since�(z) has no zeros in H, the function j (z) is holomorphic in H. It has
a simple pole at ∞ (since �(z) has a simple zero), with the Fourier expansion,

j (z) = q−1 + 744 + 196884q + · · · .
The coefficients are integers. Indeed, it follows from (7.1.2) that �(z)−1 has an expansion
�(z)−1 = q−1 +· · · with integral coefficients. As the Fourier coefficients ofG4 are integral,
therefore, so are the coefficients of j (z).

The two values j (ρ) = 0 and j (i) = 1728 are immediate from (7.1.1) and (7.3.2).
Consider, for λ ∈ C, the function f (z) = j (z)− λ and the equation (7.3.1). The right hand
side is 0, and the order at infinity is −1. It follows that exactly one of the remaining orders
is non-zero. Therefore, the function j (z) has the value λ exactly at the points of one single
orbit. In other words, Klein’s j -invariant defines a bijection,

H/�(1) ∼−→ C. (7.4.1)

In fact, it follows that j (z) has ρ as a triple zero, it takes the value 1728 with multiplicity 2 at
the point i, and it takes any other value with multiplicity 1 at the points of the corresponding
orbit. It is easy to deduce that (7.4.1) is an analytic isomorphism.

(7.5) Note. The result of the previous example has as corollary the following theorem of
Picard: Any holomorphic function f (z) in C which avoids at least two values is constant.

Indeed, we may assume that f (z) avoids the two valuesw1 := j (ρ) = 0 andw2 := j (i) =
1728. Let X by the open subset of H obtained by subtracting the two orbits containing i and
ρ, and let Y be the open subset of C obtained by subtracting to two points w1 and w2. Then,
by (7.4), the j -invariant is an analytic isomorphism of X/�(1) onto Y . Since �(1) acts
properly discontinuous on X, and without fixed points, it follows that j defines a covering
j : X → Y . By assumption, f maps C into Y . Therefore, since C is simply connected, f

lifts to a holomorphic map f̃ : C → X. Consider the function eif̃ (z). It is defined on C, and
bounded, because f̃ (z) takes values in the upper half plane; hence it is constant. It follows
that f̃ (z) is constant. Therefore, f (z) is constant.

(7.6) Example. The field of �(1)-automorphic functions is generated by Klein’s invariant,

M(�(1)) = C(j). (7.6.1)

Indeed, the function j (z) has a simple pole at ∞ and no other poles. If u ∈ H, then the
function j (z)− j (u) has a zero at u, and the �(1)-order of the zero is equal to 1. It follows
that the function (j (z)− j (u))−m has a pole of orderm (i.e., a zero of �(1)-order −m) at the
points of the orbit represented byu, and no other poles. Letf be a non-zero�(1)-automorphic
function. It follows that by subtracting from f a linear combination of functions of the form,

jn, (j − j (u))−m,
we can obtain a difference without poles. Thus the difference is a constant function. Therefore
f belongs to C(j).
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(7.7) Example. Consider again the modular group �(1). Let k be an arbitrary positive real
number. By Proposition (3.4), a factor of weight k on �(1) is completely determined by the
sign at ∞ which is of the form,

ω∞ = e2πi(k−a)/12, (7.7.1)

where a is an integer, 0 ≤ a < 12. To get a homogeneous factor, assume that a is even.
Denote by jk,a the corresponding factor, and set Mk(a) := M(�(1), jk,a) etc. By (3.3), the
parameters at ∞, i, and ρ of the factor jk,a are, respectively,

κ∞ = {
(k − a)/12

}
, κi = {

a/4
}
, κρ = {

a/3
}
.

Hence the number δk,a = δ(�(1), jk,a) is given by the equation,

δk(a) = 1 + k/12 − {
(k − a)/12

} − {
a/4

} − {
a/3

}
.

When k is an even integer, the factor J k is obtained by taking a ≡ k (mod 12), and the
expression above reduces to that of Example (7.1).

Take k = 1
2 and a = 0. The corresponding factor of weight 1

2 is then the η-factor, see
Example (3.6). Clearly, δ1/2(0) = 1. Hence G(�(1), jη) = S(�(1), jη) is a 1-dimensional
space generated by the η-function.

(7.8) Example. Consider the θ -group �θ . The genus is g = 0, and µ = 1
2 since the index

of �θ in �(1) is equal to 3. For the θ -group, there is one elliptic orbit, represented by i of
order 2 with canonical generator γi = s. In addition, there are two cusps: one is represented
by ∞, where the canonical generator is t2, and one is represented by −1 where the canonical
generator is conjugate to t . The θ -function belongs to G(�θ , jθ ). The factor jθ has weight
k = 1

2 , and the parameters at the three orbits are respectively,

κi = 0, κ∞ = 0, κ−1 = 1
8 .

Consequently, δ(�θ , jθ ) = 1 + 1
2

1
2

1
2 − 1

8 = 1. Therefore, the space G(�θ , jθ ) is 1-
dimensional, and the θ -function is a generator. The θ -function is not a cusp form since it has
the value 1 at ∞. Hence there are no non-trivial jθ -automorphic cusp forms, confirming that
δ′ = 0 since the cusp ∞ is jθ -regular and the cusp −1 is not.

The θ -function has a zero of order 1/8 at the cusp −1. Therefore, from the equation∑
u ord�θu f = 1/8, it follows that θ(z) has no zeros in H.
Since θ(z) has no zeros in H and the value 1 at ∞, there is, for any real number l, a unique

determination of θ(z)l with the property that the limit of θ(z)l for 	z → ∞ is equal to 1.
Obviously, θ(z)l is a j lθ -automorphic form, where j lθ is the factor of weight l/2 defined by
j lθ (γ, z) = θ(γ z)l/θ(z)l . The factor j lθ has the following signs:

ωi(j
l
θ ) = 1, ω∞(j lθ ) = 1, ω−1(j

l
θ ) = e2πil/8.

(The first two equations are obvious, the third can be seen from (2.7.3); of course it is obvious
when l is an integer.) For convenience, take l = 2k where k is positive real. Then j 2k

θ is a
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factor of weight k on �θ , and the corresponding parameters are respectively 0, 0, and
{
k/4

}
.

It follows that
dim G(�θ , j 2k

θ ) = 1 + k
4 − {

k
4

} = 1 + [
k/4

]
.

The cusp ∞ is always regular, the cusp −1 is regular if and only if k ∈ 4Z. Hence,

dim S(�θ , j 2k
θ ) =

{ [
k/4

] − 1 if k ∈ 4Z,[
k/4

]
otherwise.

Note that, if k ∈ 4Z, then j 2k
θ = J k .

(7.9) Exercise. Prove the results of Example (7.1), using only the Special Case (6.6) of
Theorem B. [Hint: Estimate the dimension dim Gk for k = 2, . . . , 12. Use Equation (7.3.1)
to show that the dimension is 0 for k = 2 and use the Eisenstein series to conclude that the
dimension is 1 for k = 4, 6, 8, 10. Use the Eisenstein series and�(z), say defined by (7.1.1),
to conclude that the dimension is 2 for k = 12. Investigate zeros and poles of �(z), and
conclude that there is, for k ≥ 0, an exact sequence,

0 −→ Gk
�−→ Gk+12 −→ C −→ 0.

Now deduce the results of Example (7.1).]
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8. The Proofs.

(8.1). Keep the setup of (6.1). In the calculations below we will need the formula,

∑
u∈U

ordu f = 1

2πi

∫
∂U

f ′(z) dz
f (z)

. (8.1.1)

In the formula, U is an open subset of C with compact closure, f is a non-zero meromorphic
function defined in an open domain containing the closure of U . The integral is the path
integral over the oriented boundary of U , assumed to be sufficiently regular. It is assumed
that the function f has no zeros or poles on the boundary ∂U . The formula is a well known
consequence of Cauchy’s residue formula.

The path integral on the right hand side of (8.1.1) can be formed over any path C that lies
in the domain of f and avoids the zeros and poles of f . We define

IC(f ) := 1

2πi

∫
C

f ′(z) dz
f (z)

. (8.1.2)

The notation extends linearly to a chain C, defined as a formal integral linear combination of
oriented paths. Note the following two equations,

IC(f1f2) = IC(f1)+ IC(f2), IφC(f ) = IC(f ◦φ). (8.1.3)

The first equation follows because the logarithmic derivative of the product function is the
sum of the two logarithmic derivatives. In the second equation, the map φ is a holomorphic
map from some domain into the domain of f . The equation follows from the definition of
the path integral, noting that d(φ(α(t)) = φ ′(α(t))dα(t) when φ is holomorphic and α is a
C∞-map of the real variable t .

(8.2) Proof of Theorem B. We have to prove, for a non-zero j -automorphic form f , the
following formula: ∑

u mod �

ord�u f = kµ

2
. (8.2.1)

The main observation used in the proof is the following: Let C be a path in D avoiding the
zeros and poles of f and let γ be a matrix of �. Then the following equation holds:

IγC(f ) = IC(f )+ kIC(Jγ ). (8.2.2)

Indeed, f ◦γ = jγ f since f is j -invariant. Hence, by (8.1.3), the left side is equal to
IC(f )+IC(jγ ). Moreover, j (γ, z) = εJ (γ, z)k for some constant ε and some determination
J (γ, z)k . Hence the logarithmic derivative of j (γ, z) is equal to k times the logarithmic
derivative of J (γ, z). Thus IC(jγ ) = kIC(Jγ ).
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Let F be a finite normal fundamental domain for �, and denote by U the interior of F .
The domain F has a finite number of sides and vertices. Consider an infinite vertex u of F .
By (Discr.3.14), u is a cusp for�. Therefore, since f is exponentially bounded at the cusps, it
follows that f is holomorphic and non-zero in some fundamental neighborhood of u. When
a small fundamental neighborhood of each cusp of F is cut away from F , there remains is
compact set. As a consequence, the function f has only a finite number of zeros or poles in
F (and in particular on the boundary of F ).

A side ofF can be divided into two by adding to the vertices a point of a side and the image
of the point under the boundary transformation corresponding to the side. Hence we may
assume that all zeros or poles of f on the boundary of F are finite vertices of F . In addition,
we may assume that no side is mapped onto itself under the boundary transformation.

Let F0 be the subdomain obtained by cutting away from F a small fundamental neighbor-
hood of each vertex. Choose the neighborhoods such that if V is the chosen neighborhood
of a vertex u and if γ u belongs to F , then γV is the chosen fundamental neighborhood of
γ u. There is only a finite number of zeros and poles of f in U . So, when the fundamental
neighborhoods are chosen sufficiently small, then all zeros and poles in U belong to the in-
terior U0 of F0. The points of U are �-ordinary, and hence the �-order of f at a point u of
U0 is the ordinary order. Therefore, by (8.1.1),

∑
u∈U

ord�u f = I∂U0(f ). (8.2.3)

We will prove the formula (8.2.1) by evaluating carefully the integrals on the right side over
the various components of ∂U0.

The boundary ∂U0 has three types of components: there are line segments left from the
sides ofF when the neighborhoods of the two end points are cut away, there are arcs consisting
of the parts in F of the geodesic circles bounding the fundamental neighborhoods of the finite
vertices, and there are segments consisting of the parts in F of the horo circles bounding
the fundamental neighborhoods of the infinite vertices of F . The contributions to the path
integral in (8.2.3) coming from the components are grouped as follows: Denote by Isides(f )

the sum of the contributions coming from the sides. Choose in each �-equivalence class of
vertices of F one vertex u, and denote by Iu(f ) the sum of the corresponding contributions
from the class; it is the sum of the path integrals along the parts in F of the boundaries of all
fundamental neighborhoods of the vertices �-equivalent to u. Accordingly,

I∂U0(f ) = Isides(f )+
∑
u

Iu(f ), (8.2.4)

where the sum is over the chosen system of representatives of the �-equivalence classes of
vertices of F . Now, by (8.2.3) and (8.2.4), to prove Theorem B, it suffices to prove that, as
the neighborhoods shrink around the vertices,

Isides(f ) → kµ

2
, Iu(f ) → − ord�u f . (8.2.5)
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Consider first the contribution coming from the sides of F . For each side L of F there
is a component C = CL of ∂U0 lying on L and a corresponding component C ′ lying on the
side γLL, where γL is the boundary transformation corresponding to L. The orientation of
C ′ is the reverse of the orientation of γLC. Hence, by (8.2.2), the two sides L and L′ = γLL

contribute to Isides(f ) with the sum,

IC(f )+ IC′(f ) = IC(f )− IγLC(f ) = −kIC(JγL).

Therefore,

Isides(f ) = −k
∑′

ICL(JγL),

where the sum is over unordered pairs {L,L′} of sides of F with L′ = γLL. Clearly, the
sum on the right hand side converges, when the fundamental neighborhoods shrink around
the vertices, to the following sum

∑′
IL(JγL) = 1

2πi

∑′ ∫
L

J (γL, z)
′

J (γL, z)
dz .

The latter sum is, by (Discr.5.9.4), equal to −µ/2. Therefore, Isides(f ) converges to kµ/2,
and the first relation in (8.2.5) has been proved.

Consider next the contribution Iu(f ) coming from a the vertices�-equivalent tou. Choose
(finitely many) matrices γi in � so that the vertices �-equivalent to u are the points ui = γiu.
The fundamental neighborhoods of the points ui are of the images γiV of a fundamental
neighborhood V of u. Hence the components around the ui are of the form γiDi where the
Di are segments of the boundary of V . The contribution Iu(f ) is then the sum,

∑
i IγiDi (f ).

Let D be the union of the Di . Then, by (8.2.2),

Iu(f ) = ID(f )+ k
∑

IDi (Jγi ). (8.2.6)

The terms in the sum on the right side converge to zero when the neighborhoods V shrinks
around u. Indeed, the assertion is obvious if u is a finite vertex, because then the integrand
is bounded and the length of the integration path goes to 0. If u is an infinite vertex, we may
assume that the disk is the upper half plane and that u = ∞; in this case the assertion is easily
verified.

Therefore, to prove the second relation in (8.2.5), it suffices to prove the following equation,

ID(f ) = − ord�u (f ). (8.2.7)

To prove (8.2.7), assume first that u is an infinite vertex. We may, after conjugation,
assume that (D, u) = (H,∞). Then the canonical generator γu is a translation z �→ z + h.
The fundamental neighborhood V is a half plane: Im z > R, and the components Di are
horizontal straight line segments on the boundary: 	z = R; they are oriented from the right
to the left. As observed in (Discr.3.16), the union D is a system of representatives for the
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action of the canonical generator γu on the line 	z = R. Set q(z) := e2πiz/h. It follows from
the local analysis in (5.1) that there is an equation,

f (z) = e2πiκuz/hg(q), (8.2.9)

where κu = κu(j) is the parameter and g is meromorphic in the unit disk: |q| < 1, say of
order N at the origin. By the choice of fundamental neighborhood V , the function f has no
zeros or poles in the closed half plane 	z ≥ R. The half plane is mapped by q onto a pointed
disk: 0 < |q| ≤ ε. Hence g has no zeros or poles in the closed disk: |q| ≤ ε except possibly
at the origin. The image qD is the full boundary: |q| = ε of the disc, clockwise oriented.
Therefore, by (8.1.1) and (8.1.3), ID(g◦q) = −N . The logarithmic derivative of the factor
e2πiκz/h is equal to 2πiκ/h. As D is the union of horizontal line segments, oriented from
right to left, of lengths adding up to h, it follows the ID(e2πiκuz/h) = −κu. Therefore, by
(8.2.9),

ID(f ) = −κu −N = − ord�u f,

and thus (8.2.7) holds.
Assume next that u is a finite vertex. We may, after conjugation, assume that (D, u) =

(E, 0). Then the canonical generator γu is a rotation z �→ e2πi/euz. The fundamental
neighborhood V is a disk: |z| < ε, and the components Di are arcs on the boundary:
|z| = ε; they are clockwise oriented. As observed in (Discr.3.16), the unionD is a system of
representatives for the action of the canonical generator γu on the circle. Set w(z) := zeu . It
follows from the local analysis in (5.3) that there is an equation

f (z) = zκueug(w), (8.2.10)

where κu = κu(j) is the parameter and g is meromorphic in the unit disk: |w| < 1, say
of order N at the origin. By the choice of fundamental neighborhood V , the function f
has no zeros or poles in the pointed disk: 0 < |z| ≤ ε. The pointed disk is mapped by
w onto a pointed disk with radius εeu . Hence g has no zeros or poles in the image disk:
|w| ≤ εeu except possibly at the origin. The image wD is the full boundary of the image
circle |w| = εeu , clockwise oriented. Therefore, by (8.1.1) and (8.1.3), ID(g◦w) = −N .
The logarithmic derivative of the factor zκueu is equal to κueuz−1. As D is the union of
arcs, clockwise oriented, of angles adding up to 2π/eu, it follows that ID(zκueu) = −κu.
Therefore, by (8.2.10),

ID(f ) = −κu −N = − ord�u f,

and thus (8.2.7) holds.
Hence (8.2.7) holds in both cases, and the proof of Theorem B is complete.

(8.3). The proofs of Theorems A, C, D, E assume familiarity with the theory of Riemann
surfaces. Let X be a compact (connected) Riemann surface. It is well known that the only
global holomorphic functions on X are the constants. Denote by M = M(X) the field of
meromorphic functions on X. If ϕ �= 0 is a meromorphic function on X, then ϕ has finite
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order ordu ϕ at every point u of X. The order is zero except for a finite number of points u,
and the sum of the orders is equal to 0:∑

u∈X
ordu ϕ = 0. (8.3.1)

A divisor D on X is a finite formal sum, D = ∑
nu.u, of points u of X. The coeffici-

ents ordu(D) := nu are integers, and equal to 0 except for a finite number of points u.
The degree of the divisor is the sum, degD = ∑

ordu(D), of the coefficients. To every
non-zero meromorphic function ϕ there is associated a principal divisor, divϕ, defined by
ordu(divϕ) = ordu(ϕ), that is, by

divϕ =
∑

(ordu ϕ).u.

It follows from (8.3.1) that the degree of a principal divisor is equal to 0,

deg(div ϕ) = 0. (8.3.2)

Two divisorsD and D ′ are called linearly equivalent, if the difference D −D′ is a principal
divisor. Thus linearly equivalent divisors have the same degree.

Associate with a given divisor D the following vector space over C of rational functions
on X:

H 0(D) := {ϕ | divϕ +D ≥ 0},
where the inequality divϕ+D ≥ 0 for divisors means the corresponding inequalities ordu ϕ+
ordu D ≥ 0 for all the coefficients. Note that the inequality ordu ϕ+n ≥ 0 for n < 0 requires
ϕ to have a zero at u of order at least −n, and for n ≥ 0 allows ϕ to have a pole of order at most
n at u. In particular, a function ϕ inH 0(D) is holomorphic except possibly at the finitely many
points u where ordu(D) > 0. IfD andD′ are linearly equivalent, sayD−D′ = divψ , then,
clearly, the multiplication, ϕ �→ ψϕ, defines a C-linear isomorphismH 0(D) ∼−→H 0(D′).

By definition, if ϕ is a non-zero function in H 0(D), then ordu ϕ + ordu(D) ≥ 0. By
taking the sum over u, it follows that deg(divϕ)+ degD ≥ 0. Hence, by (8.3.2), degD ≥ 0.
Therefore,

H 0(D) = 0 if degD < 0. (8.3.3)

Let ω be a non-zero meromorphic differential form. Locally, around a point u of X, we
have that ω = f dz, where z is a local parameter at u. By definition, the order ordu ω is the
order of f at u. Associate with ω the divisor,

divω =
∑

(ordu ω).u.

Any meromorphic differential form ω′ is of the form ω′ = ϕω with a meromorphic function
ϕ. It follows that divω′ = divϕ + divω. Hence the divisors of differential forms form one
single class of divisors modulo principal divisors, called the canonical class. Any divisor in
the canonical class, that is, any divisor of a differential form,

K = divω,

is called a canonical divisor. Obviously, div(ϕω) = (div ϕ) + (divω). It follows that the
map ϕ �→ ϕω induces an isomorphism fromH 0(K) to the space of holomorphic differential
forms.
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The Riemann–Roch Theorem. The vector spaces H0(D) are of finite dimension, and they
vanish if degD < 0. If degD ≥ 0, then the dimension ofH 0(D) is a most equal to degD+1.
Moreover, there exists a number g = g(X) such that for any canonical divisor K and any
divisor D,

dimH 0(D) = degD + 1 − g + dimH 0(K −D). (8.3.4)

The number g = g(X) is called the genus of the Riemann surface X. It can be shown to
be equal to the topological genus of X as a surface.

Corollary. The genus g = g(X) is equal to the dimension of the space of holomorphic
differential forms, and the degree of a canonical divisor is equal to 2g − 2,

g = dimH 0(K), degK = 2g − 2. (8.3.5)

Moreover, if degD ≥ 2g − 1, then dimH 0(D) = degD + 1 − g.

Proof. The first equality follows from (8.3.4) by taking D := 0. Next, the equality degK =
2g−2 follows by takingD := K in (8.3.4). Finally, if degD ≥ 2g−1, then deg(K−D) < 0.
Hence the last assertion of the Corollary follows from (8.3.3).

It follows from the Theorem and the Corollary that if degD ≥ 0, then

degD + 1 − g ≤ dimH 0(D) ≤ degD + 1,

and the first inequality is an equality if degD ≥ 2g − 1. The latter result is referred to as
Riemann’s part of the Theorem.

(8.4). To apply the theory of Riemann surfaces to automorphic forms, note that the quotient
X = D/� is, by the construction given in the proof of Corollary (Discr.2.13), a connected
Riemann surface. To get a local parameter around a point of X, choose a representative u in
D ∪ ∂�D. Assume first that representative u is in D. After a suitable conjugation, we may
assume that (D, u) = (E, 0). Then the map,

w = zeu,

where the canonical generator at 0 is z �→ e2πieuz, identifies, for a small fundamental neigh-
borhood U of u, the open subset U/�u of X with a small neighborhood of 0 in C; thus w is
a local parameter around the given point ofX. Assume next the u is in ∂�D. After a suitable
conjugation, we may assume that (D, u) = (H,∞). Then the map,

q = e2πiz/h,

where the canonical generator at ∞ is z �→ z + h, identifies, for a small fundamental
neighborhood U of u, the open subset U/�u of X with a small neighborhood of 0 in C; thus
q is a local parameter around the given point of X.

Since � is assumed to be a Fuchsian group of the first kind, the Riemann surfaceX is even
compact.

By construction, the field M(�) of �-automorphic functions is the field of meromorphic
functions onX. Moreover, the �-order at u of a non-zero automorphic function ϕ is equal to
the order of ϕ as a meromorphic function on X.
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(8.5) Proof of Theorem A. As is well known, a compact Riemann surface is algebraic and, as
a consequence, its field of meromorphic functions is finitely generated and of transcendence
degree 1 over C. Therefore, since X = X(�) is compact, Theorem A holds.

(8.6). Let X = X(�) be the Riemann surface of (8.4). Denote by Ccusp the cuspidal divisor
of X, defined as the sum,

Ccusp :=
∑

u a cusp

1.u .

Associate with a non-zero j -automorphic form f the following divisor on X:

Df :=
∑
u

[
ord�u f

]
.u,

where [x] is the integral part. Recall that the �-order is congruent to the parameter κu(j);
whence

[
ord�u f

] = ordu f − κu(j). Therefore, by Theorem B, we obtain the equation,

degDf = kµ

2
−

∑
u

κu(j). (8.6.1)

As a consequence,
degDf + 1 − g = δ(j). (8.6.2)

Fix the non-zero j -automorphic form f . By (4.9)(1), the multiplication ϕ �→ ϕf is an
isomorphism M → M(�, j). Under the multiplication, the product ϕf is an integral form,
if and only if, for all u, ord�u (ϕf ) ≥ 0, that is, if and only if the following inequality holds:

ordu ϕ + ord�u f ≥ 0. (8.6.3)

The order ordu ϕ is an integer. Hence the inequality (8.6.3) is equivalent to the following
inequality:

ordu ϕ + [
ord�u f

] ≥ 0. (8.6.4)

It follows that ϕf is in G(�, j) if and only if ϕ is in H 0(Df ). In other words, multiplication
by the fixed form f induces an isomorphism,

H 0(Df )
∼−→G(�, j). (8.6.5)

In particular, dimH 0(Df ) = dim G(�, j).
Clearly, if ϕf is an integral form, then ϕf is a cusp form, if and only if the inequality

(8.6.3) is strict for all cusps u. If a cusp u is j -irregular, then the parameter κu(j) is non-zero,
and hence the order ord�u f is not an integer; hence, the inequality in (8.6.3) is strict, if and
only if the inequality (8.6.4) holds. If a cusp u is j -regular, then the inequality in (8.6.3) is
strict if and only if the inequality (8.6.4) is strict, that is, if and only if,

ordu ϕ + [
ord�u f

] − 1 ≥ 0. (8.6.6)
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Hence ϕf is a cusp form if and only if (8.6.6) holds at all j -regular cusps u and (8.6.4) holds
at all other orbits. Let Cj -reg denote the j -regular part of the cuspidal divisor Ccusp, that is,
Cj -reg = ∑

1.u where the sum is over the j -regular cusps u. It follows that ϕf is cusp form
if and only if ϕ belongs toH 0(Df −Cj -reg). In other words, multiplication by the fixed form
f defines an isomorphism,

H 0(Df − Cj -reg)
∼−→S(�, j). (8.6.7)

In particular, dimH 0(Df − Cj -reg) = dimS(�, j).
Obviously, the degree of Cj -reg is equal to the number of j -regular cusps. Hence, by

(8.6.2),
deg(Df − Cj -reg)+ 1 − g = δ′(j). (8.6.8)

(8.7) Proofs of Theorems C and D. The assertions follow from Riemann’s part of the Riemann–
Roch theorem, given the expressions (8.6.2) and (8.6.8) for δ(j) and δ ′(j), and the isomorp-
hisms (8.6.5) and (8.6.7).

(8.8). To use the full strength of the Riemann-Roch Theorem, we have to identify a canonical
divisorK onX. Let f be a non-zero�-automorphic form of weight 2, that is, f ∈ M(�, J 2).
Clearly, the differential form f dz on D is �-invariant. Hence it descends to a meromorphic
differential form on D/�, and in fact, as the following calculation shows, to a meromorphic
differential form on X.

Consider first a point of D/�, represented by a point u of D. After conjugation, we may
assume that (D, u) = (E, 0). Then w = zeu is a local parameter at u. There is a normalized
Laurent expansion around u,

f (z) = zκueug(w),

and the parameter κu = κu(J
2) is equal to 1 − 1/eu. Thus f (z) = (z/w)g(w); as dw =

euz
eu−1dz = eu(w/z)dz, it follows that euf (z)dz = g(w)dw. Hence the order at u of

f (z)dz as a differential form on X is equal to the order of g(w) at 0. On the other hand, the
�-order ord�u f is equal to κu plus the order of g(w). Therefore,

ord�u f = ordu(f dz)+ (1 − 1
eu
). (8.8.1)

Consider next a cusp represented by a point u of ∂�D. After conjugation, we may assume
that (D, u) = (H,∞). Then q = e2πiz/h is a local parameter at u. There is a normalized
Fourier expansion around u, and it has the form,

f (z) = g(q),

since the parameter κu = κu(J
2) is equal to 0. As dq = (2πi/h)qdz, it follows that

(2πi/h)f (z)dz = q−1g(q)dq. Hence the order at u of f (z)dz as a differential form onX is
equal to the order of g(q) minus 1. On the other hand, the �-order of f is equal to the order
of g(q). Therefore, at a cusp u,

ord�u f = ordu(f dz)+ 1. (8.8.2)
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If 1/eu is interpreted as 0 at a cusp u, then (8.8.2) is simply (8.8.1). The divisor Kf :=
div(f dz) is a canonical divisor on X. From the two equations (8.8.1) and (8.8.2), it follows
that

Df = Kf + Ccusp. (8.8.3)

Take the degree in (8.8.3) and apply (8.6.1) with j := J 2 to obtain the equation,

µ = 2g − 2 +
∑(

1 − 1

eu

)
. (8.8.4)

The equation is identical to (6.1.1). However, (6.1.1) was obtained with the topological genus
and (8.8.4) was obtained with the holomorphic genus of X. Hence the two genera are equal,
that is, the topological genus is equal to the dimension of the vector space of holomorphic
differential forms.

In addition, since all cusps are J 2-regular, the isomorphism H 0(K) ∼−→S2(�) follows
from (8.8.3) and (8.6.7). Hence the space S2(�) of cusp forms of weight 2 is isomorphic to
the space of holomorphic differential forms on X; in particular, dim S2(�) = g.

(8.9) Theorem H. Let ǰ be the factor defined by ǰ = J 2/j . Then a cusp u is j -regular if and
only if it is ǰ -regular, and δ(j)+ δ(ǰ ) is equal to the number of j -regular cusps. Moreover,
the following equation holds,

dim G(�, j) = δ(j)+ dimS(�, ǰ ). (8.9.1)

Proof. The factor ǰ is of weight 2 − k and j ǰ = J 2. Fix two non-zero automorphic forms,
f ∈ M(�, j) and f̌ ∈ M(�, ǰ). Then the product f f̌ belongs to M(�, J 2). Hence the
divisorK := div(f f̌ dz) is a canonical divisor. Now, for any point u,

ord�u (f f̌ ) = ord�u f + ord�u f̌ . (8.9.2)

The fractional parts of the three orders in (8.9.2) are the parameters, κu(J 2), κu(j), and
κu(ǰ ). Hence either κu(J 2) = κu(j) + κu(ǰ ) or κu(J 2) + 1 = κu(j) + κu(ǰ ). Assume
that u is in D. Then κu(J 2) = 1 − 1/eu. Moreover, any parameter at u is, by (3.3.1), at
most equal to 1 − 1/eu. Therefore, κu(J 2) = κu(j)+ κu(ǰ ). Assume next that u is a cusp.
Then κu(J 2) = 0. If u is j -regular, then κu(j) = 0; it follows that also κu(ǰ ) = 0 and that
κu(J

2) = κu(j)+ κu(ǰ ). If u is j -irregular, then it follows that u is also ǰ -irregular and that
κu(j)+ κu(ǰ ) = 1. Hence κu(J 2)+ 1 = κu(j)+ κu(ǰ ).

Now take integral parts of the orders in (8.9.2), and consider the corresponding divisors.
On the left we obtain, by (8.8.3), the divisor K + Ccusp. On the right we obtain, by the
discussion above, the divisorDf +D

f̌
+Cj -irreg. As a consequence, we obtain the equation,

K + Cj -reg = Df +D
f̌
. (8.9.3)

It was seen in the discussion above that a cusp u is j -regular if and only if it is ǰ -regular. Take
degrees in (8.9.3) and use (8.3.5) and (8.6.2) to see that δ(j)+ δ(ǰ ) is equal to the number of
j -regular cusps. Finally, apply (8.6.5) to (f, j) and (8.6.7) to (f̌ , ǰ ). By the Riemann-Roch
Theorem and (8.9.2), the final assertion of the Mail Theorem is a consequence.
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(8.10) Note. The factor ǰ introduced in the Theorem may be called the dual factor. Since
δ(j)+ δ(ǰ ) is equal to the number of j -regular cusps, it follows that

δ(ǰ ) = −δ′(j). (8.10.1)

The Main Theorem implies the Theorems C, D, and E. To obtain Theorem E, note first that
J 2 is the dual to the trivial factor j = 1. The constant function f = 1 is �-automorphic
of weight 0, and the corresponding divisor is D1 = 0. Hence, δ(1) = 1 − g and since
dimH 0(0) = 1, the equation dim S2(�) = g follows from (8.9.1).

Note next that the factor J is self-dual. Hence δ(J ) is equal to half the number of regular
cusps of �, cf. (6.14.3). Therefore, the last part of Theorem E is a consequence of (8.9.1).
Note that, more generally, any factor of weight 1 is of the formχ(γ )J (γ, z), and the dual is the
factor χ(γ )J (γ, z). In particular, if the character χ is quadratic, then the factor χ(γ )J (γ, z)
is self dual.
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Poincaré Series and Eisenstein Series

1. Poincaré series.

(1.1). Fix a finite disk D, a discrete subgroup � of SL(D), and a homogeneous factor j on
� of real weight k. Assume that � is a Fuchsian group of the first kind.

(1.2) Definition. Recall that the factor j defines an right action of� on meromorphic functions
φ on D, determined by (φ ·j γ )(z) = j (γ, z)−1φ(z). Clearly, the series,∑

γ∈�
φ ·j γ,

is formally�-invariant. In general, of course, the series can not be expected to be convergent.
Assume more generally that� is a given subgroup of � and that φ is (�, j)-invariant, that

is, φ(γ z) = j (γ, z)φ(z) for all γ ∈ �. Consider the series,

G(�, j,�, φ) =
∑
γ∈�\�

φ ·j γ, (1.2.1)

where the sum is over a system of representatives for the right cosets of � in �. Since φ is
(�, j)-invariant, the term in the sum corresponding to γ depends only on the coset containing
γ . Again, the series is formally �-invariant. The series (1.2.1) is the general Poincaré series.

The main questions associated with Poincaré series are the following:

(1) Is the series normally convergent in D? If it is, then the sumG(z) is meromorphic in
D, and (�, j)-invariant. Moreover, if the given invariant function φ is holomorphic
in D, then G(z) is holomorphic in D.

(2) Is G(z) exponentially bounded at the cusps of �? If it is, then G(z) is a (�, j)-
automorphic form. If the given function φ is holomorphic, is G(z) then in integral
form, or even a cusp form?

(3) Finally, isG(z) not the zero function?

(1.3). Consider an isomorphism α : D′ → D from a finite disk D′ onto D, defined by a
matrix α in SL2(C). Recall that α defines a conjugate factor jα on the conjugate group �α .
Moreover, for every meromorphic function φ on D, there is a weight-k conjugate function
φα on D′ defined by φα(z′) = εJ (α, z′)kφ(αz′) with a fixed complex sign ε and a fixed
determination of J (α, z)k. Clearly, if φ is (�, j)-invariant, then the conjugate function φα is
(�α, jα)-invariant, and

G(�, j,�, φ)α = G(�α, jα,�α, φα). (1.3.1)
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(1.4) Definition. Let u be a point of D ∪ ∂�D and take the isotropy group �u as �. Natural
(�u, j)-invariant functions are obtained as follows.

Assume first that (D, u) = (E, 0). The canonical generator γu at u = 0 is a diagonal
matrix, and the associated Möbius transformation is a rotation z �→ e2πi/euz. The function
j (γu, z) is constant, and equal to the sign e2πiκu , where κu = κu(j) is the parameter. Hence
γu acts on functions on E by (φ ·j γu)(z) = e−2πiκuφ(e2πi/euz). It follows that the (�u, j)-
invariant functions are the functions of the form φ(z) = zκueu φ̃(w), where w = zeu . In
particular, take φ̃(w) = wl where l is an integer. Then φ(z) = z(κu+l)eu . Therefore, if κ is
any real number congruent to the parameter κu(j) modulo Z, then the following function is
(�u, j)-invariant:

φ�,0,κ (z) = φκ(z) = zκeu . (1.4.1)

Assume next that (D, u) = (H,∞), where ∞ is �-parabolic. The canonical generator γu
at u = ∞ is an upper triangular matrix with ±1 in the diagonal, and the associated Möbius
transformation is a translation z �→ z + h. The function j (γu, z) is constant, and equal
to the sign e2πiκu , where κu = κu(j) is the parameter. Hence γu acts on functions on H by
(φ ·j γu)(z) = e−2πiκuφ(z+h). It follows that the (�u, j)-invariant functions are the functions
of the form φ(z) = e2πiκuz/hφ̃(q), where q = e2πiz/h. In particular, take φ̃(q) = ql where
l is an integer. Then φ = e2πi(κu+l)z/h. Therefore, if κ is any real number congruent to the
parameter κu(j) modulo Z, then the following function is (�u, j)-invariant:

φ�,∞,κ (z) = φκ(z) = e2πiκz/h. (1.4.2)

In general, if u ∈ D∪∂�D, and κ is any real number congruent to the parameter κu(j)modulo
Z, define a �u-invariant function φu,κ as follows: in the two cases u ∈ D and u ∈ ∂�D
respectively, choose a Möbius transformation α : (D, u) → (E, 0) and α : (D, u) → (H,∞).
Set

φu,κ := (φκ)
α,

where the right hand side is the weight-k conjugate of the function defined for the conjugate
group α� in (1.4.1) and (1.4.2) in the two cases respectively.

The Poincaré series G(�, j, �u, φu,κ) is denotedG(�, j, u, κ), that is,

G(�, j, u, κ)(z) =
∑

γ∈�u\�

φu,κ (γ z)

j (γ, z)
. (1.4.3)

In terms of the chosen conjugation α,

G(�, j, u, κ)(z) = ε
∑ φκ(αγ z)

J (α, γ z)kj (γ, z)
. (1.4.4)

It should be emphasized that the Poincaré series (1.4.3) is only defined when κ is congruent
to the parameter κu(j) of j at u. If u is a �-ordinary point, then the canonical generator γu
is the identity, and the parameter κu(j) is equal to 0. The parameter is also zero, when u is a
j -regular cusp. Hence, in these two cases, the series is defined for integer values of κ . The
series (1.4.3) for a j -regular cusp u and κ = 0 is called the Eisenstein series associated with
the cusp u.
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(1.5) Note. In spite of the notation on the left hand side of (1.4.3), the series does depend
on choices. First, there is a sign involved in the definition of the weight-k conjugate under α
(of course, when k is an integer, then there is a unique k’th power J (α, z)k, and we can take
ε = 1). But the function φu,κ = (φκ)

α , and hence also the Poincaré series, depends on the
choice of α.

Compare the function φu = φu,κ obtained from α with the function φ ′
u obtained from a

second choice α′. The isomorphisms α and α ′ differ by an automorphism δ of the target,
α′ = δα. By definition, φu = (φ)α , where φ is the function (1.4.1) or (1.4.2) respectively
obtained from the conjugate group α�. Similarly, φ′

u = (φ′)δα where φ′ is obtained from the
conjugate group α′

�. Hence it suffices to compare φ and (φ′)δ .
Assume first that u is in D. Then δ is a rotation in E around 0, say δz = ζ z with |ζ | = 1.

The two functions φ and φ ′ are the same function zκeu . Moreover, up to a complex sign,
the conjugate function φ ′δ is equal to φ(ζz) = (ζ )κeuφ(z) and hence, up to sign, equal to φ.
Therefore, the function φ′

u is, up to sign, equal to φu. It follows that the series (1.4.3) for a
point u ∈ D is well defined up to a complex sign.

Assume next that u is a �-parabolic point. Then δ is a Möbius transformation in H of the
form δz = rz+ b with r > 0 and a real number b. The two functions φ and φ ′ are different:
φ = e2πiκz/h where h is defined from α� and φ′ = e2πiκz/h′

where h′ is defined from α′
�.

Clearly, h′ = rh. Hence, up to the sign e2πiκb/(rh), the function (φ′)(δz) is equal to φ(z).
The weight-k conjugate φ′δ is obtained from φ ′(δz) by dividing by J (δ, z)k. The modulus of
J (δ, z)k is equal to r−k/2. Hence φ′δ is equal to φ multiplied with a nonzero complex number
(of modulus rk/2). Therefore, the function φ′

u is, up to multiplication by a nonzero number,
equal to φu. It follows that the series (1.4.3) for a �-parabolic point u is well defined only up
to multiplication by a non-zero number.

From (1.3.1) we obtain, for a general conjugation, the following equation up to multipli-
cation by a nonzero number:

G(�, j, u, κ)α = G(�α, jα, α−1u, κ). (1.5.1)

(1.6) Example. Take (D, �, j) = (H, �(1), J k) where k is an even integer. The cusp ∞ is
J k-regular since k is even. Hence the Eisenstein series Gk = G(�(1), J k,∞, 0) is defined.
The group� is homogeneous and the isotropy group at ∞ is dicyclic, generated by the matrix
t . Obviously, the map, [

a b

c d

]
�→ (c, d),

induces a bijection from �∞\� onto the set of pairs modulo ±1 of relatively prime integers
(c, d). Thus the Eisenstein series corresponding to the cusp ∞ and κ = 0 is the following,

Gk(∞, 0)(z) = 1

2

∑
(c,d)=1

1

(cz + d)k
.

In other words, the series is the normalized Eisenstein seriesGk(z). It is normally convergent
in H for k ≥ 4.
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(1.7) Theorem G. Assume that the weight k of the factor j is greater than 2. Let u be a
point of D ∪ ∂�D, and let κ be a number congruent modulo Z to the parameter κu(j). Then,
in the setup of (1.4), the Poincaré series G = G(�, j, u, κ) defines a (�, j)-automorphic
form. The functionG(z) is holomorphic at all points of D that are not �-equivalent to u. In
addition, it vanishes at all �-parabolic points that are not �-equivalent to u. At the given
point u, the �-order of G is nonnegative if κ ≥ 0; if κ < 0, then the �-order is equal to κ .
Finally, if κ = 0 and u is a �-parabolic point (necessarily j -regular), then G(z) does not
vanish at u.

Proof. By (1.5.1), we may, after conjugation, assume that the disk is the upper half plane
H. In general, we think of the Poincaré series (1.4.1) as indexed by a chosen system of
representatives γ for the cosets �u\�. The term corresponding to γ is the function,

gγ (z) = φu,κ (γ z)/j (γ, z),

and the Poincaré series is the series G(z) = ∑
γ gγ (z).

The proof to the Theorem will be given in three parts below. In part I, we prove that the
series is normally convergent in H. It follows that the series defines a meromorphic (�, j)-
invariant function G(z) in H. By construction, the function φu is holomorphic in H, except
possibly when u ∈ H and κ < 0. In the exceptional case, the term gγ (z) in the series has a
pole of order −κ at γ−1u.

Therefore, to finish the proof of the Theorem, it remains to study the behavior of G(z)
at the �-parabolic points: we have to prove that G(z) is exponentially bounded and that the
remaining assertions of the theorem about �-parabolic points hold. Clearly, to study the
behavior of G(z) at a given �-parabolic point we may, after conjugation, assume that the
given �-parabolic point is the point ∞. Thus, in parts II and III, we assume that the point ∞
is �-parabolic.

The possible poles for the terms gγ (z) are the points in the orbit �u (when u ∈ H and
κ < 0). Therefore, since ∞ is �-parabolic, there is a number R > 0 so that all the terms
are holomorphic in the half plane HR : 	z > R. Hence G(z) is holomorphic in HR . In part
II, the series G(z) is broken up into partial sumsGw(z) as follows: The group � acts on the
right on the index set �u\�. In particular, the subgroup �∞ acts. Hence, the index set is split
into disjoint �∞-orbits. Accordingly, the series G(z) is split into a sum of partial series,

G(z) =
∑

Gw(z), (1.7.1)

where the sum is over all �∞-orbits w of �u\�, andGw(z) is the series,

Gw(z) =
∑

gγ (z),

where the sum is over those representatives γ for which the right coset �uγ belongs to the
orbit w. As a partial sum of the series G(z), each series Gw(z) is normally convergent in
H; in particular, the function Gw(z) is holomorphic in HR . Moreover, the series (1.7.1) is
normally convergent. As a sum over a �∞-orbit, each functionGw(z) is (�∞, j)-invariant.
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Consider the �∞-orbit w containing a given right coset �uβ where β is in �. Clearly,
under the right action of �∞, the isotropy group of �uβ is the intersection,

�∞ ∩ β−1�uβ = �∞ ∩ �β−1u.

A matrix in the intersection has ∞ and β−1u as fixed points. Hence, the intersection is the
trivial subgroup 1 or ±1 unless ∞ = β−1u. Of course, the exceptional case is only possible
if u is �-parabolic and �-equivalent to ∞. In the exceptional case, where β∞ = u, the orbit
w consists of the single right coset �uβ; the corresponding partial series will be denotedGu.
It consists of a single term,

Gu(z) = gβ(z) where β∞ = u. (1.7.2)

In all other cases, the partial series corresponding to the orbit w containing �uβ is the follo-
wing:

Gw(z) =
∑

γ∈P�∞

gβγ (z). (1.7.3)

In part II we prove that each partial series Gw(z), which is not the exceptional series
(1.7.2), converges to 0 for 	z → ∞. The latter result is then used to finish the proof of the
Theorem in part III.

(1.8) Part I of the proof. It will be convenient to consider the measure in H defined by
dH
k (z) = yk/2−2dxdy (where z = x + iy). The measure dH

0 (z) = y−2dxdy is SL2(R)-
invariant. It follows that the measure dH

k (z) respects weight-k conjugation as follows: if α is
a matrix of SL2(R) and g is continuous on the subset αM of H, then

∫
M

|gα(z)|dH
k (z) =

∫
αM

|g(z)|dH
k (z). (1.8.1)

To prove that the Poincaré series converges normally, let K be a compact subset of H.
Choose δ > 0 and a compact subset M of H such that, for any w in K , the closed disk:
|z−w| ≤ δ is contained inM . LetC be the constant defined byC := (πδ2)−1 max(	z)2−k/2
where the maximum is over z ∈ M . For any function g(z) holomorphic in a neighborhood
of M we have, for w ∈ K , the equation,

πδ2g(w) =
∫

|z−w|≤δ
g(z)dxdy. (1.8.2)

Indeed, in the disk, g(z) is the uniform limit of its power series expansion around w. Hence,
using polar coordinates to evaluate the integral

∫
(z − w)ndxdy, it suffices to note that∫ 2π

0 einθdθ = 0 for n > 0. Thus the equation (1.8.2) holds. From the equation, we obtain
the estimate πδ2|g(w)| ≤ ∫

M
|g(z)|dxdy. Hence, by the definition of C,

|g(w)| ≤ C

∫
M

|g(z)|dH
k (z). (1.8.3)
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The term gγ (z) in the Poincaré series is equal to φ(γ z)/j (γ, z) where φ = φu,κ . Hence
gγ (z) is holomorphic in H except possibly for a pole in the point γ −1u if u ∈ H. The compact
set M meets only a finite number of points in the orbit �u. Therefore, except for a finite
number of terms, the term gγ (z) is holomorphic in a neighborhood of M . The term gγ is
equal to φ ·j γ , and in particular, it is a weight-k conjugate of φ(z). Therefore, by (1.8.1) and
(1.8.3), we have, except for a finite number of terms in the series, the estimate for w ∈ K ,

|gγ (w)| ≤ C

∫
γM

|φ(z)|dH
k (z). (1.8.4)

Hence, to prove that the Poincaré series converges normally, it suffices to prove the following
assertion: the sum of the integrals in (1.8.4), over the representatives γ for which u /∈ γM ,
is finite.

To the latter assertion will be proved for an arbitrary compact subset M of H. We may
assume that M is contained in a fundamental domain for �. Indeed, if F is a fundamental
domain for �, thenM meets only a finite number of transforms of F . HenceM decomposes
into a finite number of pieces each of which is contained in a fundamental domain and, clearly,
if the assertion holds for each piece, then it holds for M .

SinceM is contained in a fundamental domain for �, the sum of the integrals in (1.8.4) is
equal to the integral over the union,

M ′ :=
⋃
γM,

where the union is over the representatives γ of the cosets �u\� for which u /∈ γM . Thus it
suffices to prove that the following integral is finite:

∫
M ′

|φ(z)|dH
k (z). (1.8.5)

Assume first that u ∈ H. A small neighborhood of u meets only a finite number of
transforms of a fundamental domain, and hence only a finite number of transforms γM . It
follows that the unionM ′ is contained in the subdomain H′ obtained from H by cutting away
a small neighborhood of u. Hence, it suffices to prove that the following integral is finite:

∫
H′

|φ(z)|dH
k (z).

The function φ is, by definition, the weight-k conjugate obtained from φ0,κ = zeuκ by a
Möbius transformation α : (H, u) → (E, 0). Clearly, a suitable Möbius transformation is the
map: α(z) = (z − u)/(z − ū). Hence, up to a constant,

φ(z) = (z− ū)−kφ0,κ (αz).
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The function φ0,κ is bounded in the complement of a neighborhood of 0, and so the function
φ(z) is bounded in H′. Hence, it suffices to prove that the following integral is finite:

∫
H′

1

|z − ū|k y
k/2−2dxdy.

The finiteness follows easily using polar coordinates: the integral
∫ ∞
ε
r−k+k/2−2rdr is finite

because k > 0, and the integral
∫ π

0 (sin θ)
k/2−2dθ is finite, because k > 2.

Assume next that u is �-parabolic. Clearly, after a conjugation, we may assume that
u = ∞. Let z �→ z + h be the Möbius transformation associated to the canonical generator
γ∞. The union M ′ is over a system of representatives for the cosets �∞\�. Since M is
compact and ∞ is �-parabolic, there is a number R so that no transform γM intersects the
half plane: 	z > R. Consider the part ofM ′ in the vertical strip: nh ≤ �z ≤ (n+ 1)h. The
part is transformed, by the power γ −n∞ , into the vertical strip 0 ≤ �z ≤ h. Moreover, since
φ(z) is (�u, j)-invariant, it follows from (1.8.1) that the integral over the part is unchanged
when the part is replaced by its transform. Therefore, we may assume thatM ′ is contained in
the part H′ of H determined by the inequalities 0 < 	z ≤ R, 0 ≤ �z ≤ h. Hence, it suffices
to prove that the following integral is finite,

∫
H′

|φ(z)|dH
k (z).

The function φ = φ∞,κ is, by definition, the function

φ(z) = e2πiκz/h.

It is bounded in the horizontal strip 0 < 	z ≤ R. In particular, it is bounded in H ′. Hence, it
suffices to prove that the following integral is finite:

∫
H′
yk/2−2dxdy.

The finiteness is obvious: the integral
∫ R

0 yk/2−2dy is finite, because k > 2.
Thus it has been proved in both cases that the integral (1.8.5) is finite. Hence the Poincaré

series converges normally in H, and part I of the proof is complete.

(1.9) Part II of the proof. By part I of the proof, we know that the Poincaré series G(z)
is a (�, j)-invariant meromorphic function in H. Hence Theorem G holds if there are no
�-parabolic points. In the remaining parts of the proof we assume that ∞ is �-parabolic. Let
z �→ z+ h be the Möbius transformation associated to the canonical generator at ∞. In this
second part of the proof, we prove that the partial series Gw(z) of (1.7.3), where β ∈ � and
β∞ �= u, converges to 0 for 	z → ∞.

The term gβγ in the series (1.7.3) is equal to (φu,κ ·j β) ·j γ . The function φu,κ is a
weight-k conjugate of either φ0,κ or φ∞,κ , and φu,κ ·j β is a weight-k conjugate of φu,κ .
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Therefore, replacing u by β−1u, we may assume that β = 1. Then u �= ∞. Therefore, for
the conjugation α defining φu,κ = (φκ)

α , we have that J (α, z) = cz + d where c �= 0. In
fact, if u ∈ H we may assume that J (α, z) = z − ū and if u ∈ ∂�H we have c and d in R.
Hence, dividing by a nonzero number, we may assume that J (α, z) = z + d, where d has
nonnegative imaginary part. It follows that |φu,κ | = |z+ d|−k |φκ(αz). The function φκ(αz)
is equal to (αz)κeu if u ∈ H and equal to e2πiκ(αz)/h if u ∈ ∂�H. Since u �= ∞, it follows
in both cases that the function φκ(αz) is bounded in HR. Hence, with a constant C > 0, we
have the estimate for z ∈ HR:

|φu,κ (z)| ≤ C|z + d|−k.
The translation z �→ z+h associated to γ∞ generates the group P�∞. Moreover |J (γ n∞, z)| =
1. Therefore, for z ∈ HR ,

|Gw(z)| ≤ C
∑
n

1

|z + nh+ d|k .

Clearly, the sum on the right side converges to 0 uniformly as 	z → ∞.
Thus we have proved that the partial seriesGw(z), except in the exceptional case, converges

to 0 uniformly as 	z → ∞, and part II of the proof is complete.

(1.10) Part III of the proof. Assume as in part II that the point ∞ is �-parabolic and that
P�∞ is generated by z �→ z + h. We have to study the behavior of G(z) near ∞. It suffices
to consider three cases:

(1) The point u is in H.
(2) The point u is �-parabolic and not �-equivalent to ∞.
(3) The point u is equal to ∞.

We have to prove in all cases that G(z) is exponentially bounded at ∞. In fact, we have to
prove in the cases (1) and (2) that the order ofG at ∞ is positive; in case (3) we have to prove
that the �-order is positive if κ > 0, and equal to κ is κ ≤ 0.

By part II of the proof, the functionG(z) is a normally convergent seriesG(z) = ∑
Gw(z)

of functions Gw(z) holomorphic in a half plane HR . One of the functions Gw(z) may be
the exceptional function Gu of (1.7.2). Denote by

∑′
w Gw(z) the series of the remaining

functions. Each functionGw(z) is (�∞, j)-invariant, and hence of the form,

Gw(z) = e2πiκ∞z/hG̃w(q), q = e2πiz/h,

where G̃(q) as a function of q is meromorphic in the punctured unit disk: 0 < |q| < 1. The
half planeHR is mapped by q onto a punctured diskV−0 whereV is an the open disk: |q| < ε.
Since Gw(z) is holomorphic in HR , the function G̃w(q) is holomorphic in the pointed disk
V −0. Moreover, sinceGw(z) → 0 for 	z → ∞ by part II and κ∞ < 1, it follows that G̃w(q)
is also holomorphic for q = 0; in addition, G̃w(q) vanishes for q = 0 when κ∞ = 0. As the
series

∑′
Gw(z) converges normally in HR , it follows that the series

∑′
G̃w(q) converges

normally in the pointed disk V − 0. Moreover, each termGw(q) in the series is holomorphic
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also at q = 0. Therefore, as is well known, the series
∑′

G̃w(q) converges normally in the
whole disk V . In particular, the sum G̃(q) := ∑

G̃w(q) is holomorphic in V ; in addition, it
vanishes at q = 0 if κ∞ = 0. Therefore, since

∑′
Gw(z) = e2πiκ∞z/hG̃(q),

it follows that the series
∑′
w Gw(z) has positive order at ∞.

Now, in the cases (1) and (2), we have G(z) = ∑′
w Gw(z). Hence the assertions for the

cases (1) and (2) hold. In case (3), the functionG(z) is the sum of two functions,

G(z) = Gu(z)+
∑′

Gw(z).

As u = ∞, the first function is φ∞(z) = e2πiκz/h, and so its �-order at ∞ is equal to κ . The
second function has positive�-order. Clearly, the assertion for the case (3) is a consequence.

Thus part III of the proof is complete, and Theorem G has been proved.

(1.11) Note. Consider, in the assumptions of Theorem G, the series G(z) = G(�, j, u, κ)

for κ ≥ 0. It follows from the Theorem that the form G(z) is an integral form. If u ∈ D,
thenG(z) is a cusp form and if u ∈ ∂�D, thenG(z) is a cusp form if an only if κ > 0. Note
however that the formG(z) may be the zero form. In fact, the examples in (Autm.7) contain
several cases where S(�, j) = 0 (for k > 2). In these cases, necessarily G(z) = 0.

It follows from the Theorem that the Eisenstein series G(�, j, u, 0) associated with a j -
regular �-parabolic point u is an integral non-vanishing form in G(�, j). It has order 0 at
the cusp defined by u, and it vanishes at all other cusps. It follows that the evaluation map in
(Autm.6.13) is surjective. In particular, we recover the result that the codimension of S(�, j)
in G(�, j), for k > 2, is equal to the number of j -regular cusps.

(1.12) Note. It is a consequence of Theorem G that there are non-zero (�, j)-automorphic
forms for a factor j of any weight k. Indeed, assume first that k > 2. Then the Poincaré
seriesG(z) = G(�, j, u, κ) obtained from, say, a �-ordinary point u and κ < 0 has �-order
equal to κ . In particular, G(z) is a nonzero function in M(�, j). For general k, choose an
even integer l > 2 such that k + l > 2. Then there are nonzero functions f ∈ M(�, jJ l)

and g ∈ M(�, J l). Whence the quotient f/g is a nonzero function in M(�, j).
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2. A Fourier expansion of an Eisenstein Series.

(2.1). In this section, the disk is assumed to be the upper half plane H and k is assumed to be
an integer. We consider a level-N subgroup � of the modular group �(1) = SL2(Z) and on
� a factor on � of the following form,

j (γ, z) = J (γ, z)k/χ(γ ), (2.1.1)

where χ : � → C∗ is a unitary character. We make a series of assumptions:
(i) By hypothesis, � is the preimage in �(1), under the reduction map modulo N , of a

subgroup � of SL2(Z/N). We assume that χ is a level-N character on �, that is, χ is the
composition of the reduction map and a character χ : � → C∗.

(ii) We assume that � contains the subgroup of diagonal matrices in SL2(Z/N). Equ-
ivalently, since the subgroup of diagonal matrices corresponds to the subgroup �0

0(N), we
assume that � ⊇ �0

0(N).
(iii) It follows from the assumption in (ii) that � is homogeneous. In order that the factor

(2.1.1) is homogeneous, we assume that

χ(−1) = (−1)k. (2.1.2)

(iv) The �-parabolic points consist of the rational numbers and the point ∞, since � is
of finite index in �(1). Since � is homogeneous, the canonical generator at ∞ is the matrix
th for some positive integer h. We assume that the point ∞ is a j -regular cusp, that is, we
assume that

χ(th) = 1. (2.1.3)

(2.2). Denote by �+ the unipotent subgroup of �, that is, �+ is the intersection of � and
the subgroup of upper triangular matrices with 1 in the diagonal. Then �+ is the cyclic
subgroup generated by γ∞, and it is of index 2 in �∞. Clearly, the image of �+ in � is the
unipotent subgroup �+ of �. By assumption (2.1)(iv), the character χ : � → C∗ is trivial on
the subgroup �+.

For any 2 by 2 matrix β, denote by 2β the second row of β. Clearly, two matrices γ1 and
γ2 with determinant 1 have the same second row if and only if γ1γ

−1
2 is unipotent. It follows

in particular that the map γ �→ 2γ defines an injection,

�+\� ↪→ Z2.

The image of the map will be denoted 2�. It consists of the pairs (c, d) of integers that occur
as the second row of some matrix of �. Similarly, there is an injection,

�+\� ↪→ (Z/N)2.

The image 2� consists of pairs of residue classes modulo N that occur as second row of a
matrix of �. The character χ : � → C∗ is trivial on the subgroup �+, and hence it induces a
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map from the set �+\� to C∗. Given the bijection above, the latter map may be viewed as a
map from 2� to C∗; we extend it with the value 0 to a map from (Z/N)2 to C. The extended
map,

χ : (Z/N)2 → C,

defines, by composition with the reduction map modulo N , a map χ : Z2 → C. For α ∈
SL2(Z), denote by

αχ : Z2 → C

the map obtained by composition of χ : Z2 → C and right multiplication by α. Unwinding
the definition, the value αχ(c, d) for integers c and d is determined as follows: if there exists
a matrix γ of � such that (c, d) modulo N is the second row of γα, then αχ(c, d) = χ(γ );
otherwise αχ(c, d) is equal to 0.

By assumption (2.1)(ii), the group � contains the subgroup of diagonal matrices of
SL2(Z/N). It follows that the row (0, n̄) belongs to 2� if and only if n̄ is invertible in Z/N .
Moreover, the group (Z/N)∗ of invertible elements n̄ is isomorphic to the group of diagonal
matrices of SL2(Z/N). Hence χ defines, by restriction, a character χ : (Z/N)∗ → C∗, and
the function χ(0, n̄) is obtained from the character by extending it with the value 0 on residue
classes that are not invertible.

The map χ(n) := χ(0, n) is a residue character modulo N . From (2.1.2) we obtain the
equation,

χ(−n) = (−1)kχ(n). (2.2.1)

In addition, for integers c and d we have the equation,

αχ(nc, nd) = χ(n) αχ(c, d). (2.2.2)

Indeed, if n is not prime to N , then clearly both sides are equal to 0. Assume that n is
prime to N , and let δn be a matrix of � whose reduction moduloN is a diagonal matrix with
last row (0, n̄). If γ is a matrix of � such that 2γ̄ ᾱ = (c̄, d̄), then δnγ belongs to � and
2δ̄nγ̄ ᾱ = (n̄c̄, n̄d̄); hence

αχ(nc, nd) = χ(δnγ ) = χ(δn)χ(γ ) = χ(n) αχ(c, d).

Thus the equation (2.2.2) holds if the right hand side is non-zero. It follows, replacing n by
its inverse modulo N , that it holds if the left hand side is non-zero. Hence (2.2.2) holds.

(2.3). Consider, for k ≥ 3, the Eisenstein series,

G(z) = G(�, j,∞, 0)(z),

where j is the factor of (2.1.1). By Theorem G, the series is an integral j -automorphic form,
and its order at ∞ is equal to 0. It vanishes at all cusps different from ∞. We will consider
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the Fourier expansion of G(z) at any �-parabolic point v. So, let α be a matrix of SL2(Z)
such that v = α∞. Consider the weight-k conjugate series,Gα(z), that is,

Gα(z) =
∑

γ∈�∞\�

1

J (α, z)kj (γ, αz)
=

∑
γ∈�∞\�

χ(γ )

J (γ α, z)k
,

where the last equation follows from the definition of j and the automorphy equations for
J (γ, z). Each right coset modulo �∞ splits into two cosets modulo �+. Hence, if we form
the sum over the cosets modulo �+, each term is repeated twice, and we obtain the equation,

2Gα(z) =
∑

γ∈�+\�

χ(γ )

J (γ α, z)k
.

By definition of the function αχ , the equation may be rewritten as follows,

2Gα(z) =
∑

(c,d)∈2�α

αχ(c, d)

(cz + d)k
. (2.3.1)

The set of pairs (c, d) in 2�α is equal to the set of pairs (c, d) such that c and d are relatively
prime and αχ(c, d) is non-zero. Indeed, obviously, if a pair (c, d) belongs to the first set, then
it belongs to the second set. Conversely, assume that (c, d) belongs to the second set. Since
c and d are prime, there is a matrix β in SL2(Z) such that 2β = (c, d). Since αχ(c, d) �= 0,
there is a matrix γ in � such that, moduloN , 2γα ≡ (c, d). The two matrices β and γα have
modulo N the same second row. Therefore, modulo N , the quotient (γ α)β−1 is a unipotent
matrix of SL2(Z/N). The latter matrix can be lifted to a unipotent matrix τ of SL2(Z).
Replace β by τβ. The replacement does not change the second row, so (c, d) is the second
row of the new β. Moreover, for the new β, the quotient (γ α)β−1 is modulo N equal to 1.
Therefore, the quotient belongs to �(N). Since �(N) is contained in �, it follows that the
quotient (γ α)β−1 is in �. Thus β = γ ′α with a matrix γ ′ of �. As (c, d) = 2β, it follows
that (c, d) belongs to the first set 2�α.

It follows that in the sum (2.3.1) is unchanged if it is formed over all pairs (c, d) of relatively
prime integers. Consider the sum over all non-zero pairs (c, d) of integers. By grouping the
terms according to the greatest common divisor, we obtain by (2.2.2) the equation,

∑′ αχ(c, d)

(cz + d)k
=

∞∑
n=1

χ(n)

nk

∑
(c,d)=1

αχ(c, d)

(cz + d)k
.

The third sum is, as noted above, equal to the sum in (2.3.1). Therefore, the following equation
holds, ∑′ αχ(c, d)

(cz + d)k
=

∞∑
n=1

χ(n)

nk

(
2Gα(z)

)
. (2.3.2)
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By (2.2.1), the right hand side of (2.3.2) is unchanged if the factor 2 is omitted and the sum
over n ≥ 1 is replaced by the sum over n �= 0. Whence,

∑
n�=0

χ(n)

nk
Gα(z) =

∑′ αχ(c, d)

(cz + d)k
. (2.3.3)

Note that the factor
∑
n�=0 χ(n)n

−k is non-zero. Indeed, in the sum over n ≥ 1, the first term

is equal to 1, and the sum of the remaining terms is, in absolute value, at most
∑
n≥2 n

−k ≤∫ ∞
1 t−kdt = 1/(k − 1).

It follows from (2.3.3) that the seriesGα(z), apart from the factor
∑
n�=0 χ(n)n

−k , is equal

to the Eisenstein series E
αχ
k (z) considered in (App.2).

(2.4) Proposition. The Eisenstein seriesG(z) of (2.3) has at the cusp ∞ the Fourier expan-
sion, with q = e2πiz/N ,

G(z) = 1 + 2

Ak(χ)

(2i

N

)k ∑
r≥1

σ
χ
k−1(r)q

r . (2.4.1)

The constant Ak(χ) is the special number associated with the character χ(n), and σ χk−1(r)

is the weighted sum of (k − 1)’st powers of divisors,

σ
χ
k−1(r) =

∑
d|r

∑
a mod N

χ(r/d, a)e2πiad/Ndk−1. (2.4.2)

At a cusp v = α∞ which is not �-equivalent to ∞, the Fourier expansion is the following,

Gα(z) = 2

Ak(χ)

(2i

N

)k ∑
r≥1

σ
αχ
k−1(r)q

r , (2.4.3)

where the definition of σ
αχ
k−1(r) is analogous to (2.4.2).

Proof. By (App.1.10.2), for the constant in (2.3.3), we have the equation,

∑
n�=0

χ(n)

nk
= (−1)kπk

(k − 1)!
Ak(χ). (2.4.4)

It follows from (2.1.2) that αχ(−c,−d) = (−1)k αχ(c, d). Hence, in the notation of
(App.2), we have that

(
αχ

)∗ = (−1)k αχ .
Now, the series G(z) is given by (2.3.3) with α = 1. By definition, χ(n) = χ(0, n).

Hence the equation (2.4.1) follows directly from Corollary (App.2.5).
Assume that v = α∞ is not�-equivalent to ∞. If a matrix γα has (0, 1) as its second row,

then it has ∞ as fixed point; thus γ v = γα(∞) = ∞. Hence no matrix γα with γ ∈ � has
(0, 1) as its second row. Therefore, αχ(0, 1) = 0. It follows from (2.2.2) that αχ(0, n) = 0
for all n. Consequently, the special number associated with the function αχ is equal to 0.
Hence the equation (2.4.3) follows from the expansion for the Eisenstein series E

αχ
k (z) in

Corollary (App.2.5) by dividing by the constant (2.4.4).
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(2.5) Note. The Fourier expansion of the Eisenstein series G(z) in (2.4) is in terms of the
parameter qN = e2πiz/N . On the other hand, G(z) has period h, where th is the canonical
generator of � at ∞, and soG(z) has a Fourier expansion in terms of qh = e2πiz/h. Clearly,
the matrix tN belongs�(N). Hence it belongs to�. Consequently, tN is a power of t lh , that is,
N = lh. It follows that the Fourier coefficient in (2.4.1) to qr vanishes unless r is a multiple
of l.

(2.6) Note. The Eisenstein series is not normally convergent for k = 2. However, the series on
the right hand side of (2.3.3), when the summation is performed as in [App.2.2], is normally
convergent, and if Gα(z) is defined by the equation (2.3.3) for k = 2, then the expansion of
(2.4) holds. However, the resulting functionGα(z) can not be expected to be (�, j)-invariant
in general.

When k = 1, the situation is even more complicated. In order that the summation described
in [App.2.2] applies to the right hand side of (2.3.3), it is required that the sum

∑
d
αχ(c, d)

over d modulo N is equal to 0.
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3. Example: Eisenstein series for the theta group.

(3.1). Recall that the θ -group �θ is the subgroup of �(1) formed by matrices that modulo 2
are congruent to either 1 or s. It is generated by the matrices t 2 and s. The θ -factor jθ is a
factor of weight 1

2 . It is determined on the generators by the equations,

jθ (t
2, z) = 1, jθ (s, z) =

√
z

i
.

Let k be an integer. Then the power j 2k
θ is a factor of integral weight k. In particular, the

square j 2
θ is a factor of weight 1, and hence of the form,

j 2
θ (γ, z) = J (γ, z)/χθ(γ ),

where χθ : �θ → C∗ is a unitary character. The character is given on the generators as
follows:

χθ (t
2) = 1 χθ(s) = i.

It follows that the character χθ is the character χθ considered in Exercise (Mdlar.3.8). It is
given as follows,

χθ

[
a b

c d

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for d ≡ 1 (mod 4),

i for c ≡ 1 (mod 4),

−1 for d ≡ −1 (mod 4),

−i for c ≡ −1 (mod 4).

The group �θ is a level-4 group, and it follows from the description the χθ is a level-4
character. Clearly, the setup of (2.1) applies. The character χθ (n) is a Dirichlet character
modulo 4, usually denoted χ4(n). The value χ4(n) is 1 if n ≡ 1, it is −1 if n ≡ −1, and it is
0 if n is even. The function χθ (c, d) is determined by the expression above. On a nonzero
pair (c, d), the value is given as follows:

χθ (c, d) =
⎧⎨
⎩
χ4(d) if c is even and d is odd,

iχ4(c) if c is odd and d is even,

0 otherwise.

(3.2). Assume that k is at least 3. Then the results of Sections 1 and 2 apply to the Eisenstein
series,

Gk(z) := G(�θ , J
k/χkθ ,∞, 0).

It follows that Gk(z) is an integral form in Gk(�θ , χkθ ). Moreover, its Fourier expansion is
given by (2.4). Let us fix k and write χ for χ kθ . To determine the Fourier coefficients of the
Eisenstein series, we need the special number Ak(χ) and the function σχk−1(r). The result is
the following.
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(3.3) Proposition. The Eisenstein seriesGk(z) of (3.2), for k ≥ 3, has the following Fourier
expansion, with q = e2πiz/2,

Gk(z) = 1 +
∑
r≥1

βk(r)q
r ,

where the coefficients βk(r) are given by the formula,

βk(r) = 4

Ak

[
2k−1σ ′

k−1(r)+ σ ′′
k−1(r)

];
the Ak are the numbers of (App.1.3) and

σ ′
k−1(r) =

∑
d|r
χ4

(
r/d)kdk−1, σ ′′

k−1(r) =
∑

d|r, d≡k mod 2

(−1)(d−k)/2dk−1.

Proof. The expansion is given by (2.4), however in terms of q4 = e2πiz/4. As Gk(z) is
periodic with period 2, we know a priori that the coefficients σ χk−1(r) are only non-zero when
r is even.

To determine the constant factor in the expansion (2.4.1), note that the function χ(n) =
χ4(n)

k depends on the parity of k. Assume first that k is odd. Then χ(n) = χ4(n). Clearly,
χ4 = 2δ−χ2 where δ(n) is the function introduced in Example (App.1.13). Hence,Ak(χ) =
2Ak(δ) − Ak(χ2). It follows from (App.1.13) and (App.1.12), for k odd, that 2Ak(δ) =
(−1)kAk/2k and Ak(χ2) = 0. Therefore,

Ak(χ) = (−1)kAk/2
k. (3.3.1)

If k is even, then χ(n) is the function χ2(n) considered in Example (App.1.12); hence the
special number is given by the formulaAk(χ) = Ak/2k . Therefore, the formula (3.3.1) holds
for all k.

From (3.3.1) we obtain, for the constant factor in the expansion (2.4.1), the equation,
(2/Ak(χ))(2i/4)k = 2(−i)k/Ak . Hence the expansion is the following,

Gk(z) = 1 + 4

Ak

∑
r≥1

1

2ik
σ
χ
k−1(r) q

r
4 .

Therefore, we have to prove that σχk−1(r) vanishes when r is odd and that σ χk−1(2r) =
2ikβk(r).

The sum σ
χ
k−1(r) is over divisors d of r and over a modulo 4. Denote by σ 0,2(r) the

sum of the terms corresponding to a = 0 and a = 2 and by σ 1,3(r) the sum of the terms
corresponding to a = 1 and a = 3. Clearly, for the first sum,

σ 0,2(r) =
∑
d|r

[
χ(r/d, 0)+ χ(r/d, 2)(−1)d

]
dk−1 =

∑
d|r
ikχ4(r/d)

k
[
1 + (−1)d

]
dk−1.
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Obviously, the terms in the sum corresponding to odd divisors d vanish. In particular, when
r is odd, the sum is zero. For an argument of the form 2r , the nonzero terms are obtained
from the even divisors of 2r , that is, for divisors of the form 2d for d | r . Whence,

σ 0,2(2r) = 2ik
∑
d|r
χ4(r/d)

k2k−1dk−1 = 2ik2k−1σ ′
k−1(r). (3.3.2)

For the second sum,

σ 1,3(r) =
∑
d|r

[
χ(r/d, 1)id + χ(r/d, 3)(−i)d]dk−1 =

∑
d|r, r

d
even

[
1kid + (−1)k(−i)d]dk−1.

Evidently, the sum is zero if r is odd. For an argument of the form 2r , the nonzero terms are
obtained from the divisors d of r . Hence,

σ 1,3(2r) =
∑
d|r
id

[
1 + (−1)k+d)

]
dk−1 = 2ik

∑
d|r, d≡k

id−kdk−1 = 2ikσ ′′
k−1(r). (3.3.3)

Since σχk−1(r) = σ 0,2(r)+ σ 1,3(r), it follows that σ χk−1(r) vanishes for odd r , and it follows
from (3.3.2) and (3.3.3) that σχk−1(2r) = 2ikβk(r). Hence Gk(z) has the asserted Fourier
expansion.

(3.4) Note. Depending on the residue class of k modulo 4, the expression for βk(r) can be
simplified as follows:

Assume first that k is even. Then χ4(n)
k = χ2(n). Hence σ ′

k−1(r) = ∑′
d|r dk−1 where the

prime indicates a sum over those divisors d for which r/d is odd. Clearly, σ ′′
k−1(r) vanishes

for odd r , and for even r ,

σ ′′
k−1(r) = (−1)k/22k−1

∑
d| r2
(−1)ddk−1.

The sum splits into a difference of two:
∑ev
d| r2 d

k−1 − ∑odd
d| r2 d

k−1, where the two sums are,
respectively, over the even and odd divisors of r/2. It follows, for k even, that βk(r) is equal
to 2k+1/Ak times the following expression,

∑′

d|r
dk−1 + (−1)k/2

∑ev

d| r2
dk−1 − (−1)k/2

∑odd

d| r2
dk−1. (3.4.1)

If r is odd, then the last two sums vanish, and the first is equal to σk−1(r). Assume that r
is even. Clearly, the last sum is the sum over the odd divisors d of r . The first sum is over
the (necessarily) even divisors d for which r/d is odd, and the second sum is over the even
divisors d for which r/d is even. Thus every divisor d of r contributes with a non-zero term
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in exactly one of the three sums in the expression. It follows that the expression, for k ≡ 0
(mod 4), is equal to σ ev

k−1(r)− σ odd
k−1(r). Hence, for k ≡ 0 (mod 4),

βk(r) = 2k+1

Ak
×

{
σk−1(r) if r is odd,

σ ev
k−1(r)− σ odd

k−1(r) if r is even.

Similarly, for r even and k ≡ 2 (mod 4), the expression (3.4.1) is equal to the difference
σk−1(r)− 2

∑ev
d| r2 d

k−1. Now the even divisors of r
2 are of the form 2d where d is a divisor

of r4 . Therefore, for k ≡ 2 (mod 4),

βk(r) = 2k+1

Ak
×

{
σk−1(r) if r is odd,

σk−1(r)− 2kσk−1(r/4) if r is even.

The difference in the last expression equals (1+2k−1)σ odd
k−1(r)+ (4k−1 −2k)σk−1(r). Indeed,

if r is even, then a divisor in r is either odd, or it is of the form 2d where d is an odd divisor
in r , or it is of the form 4d where d is a divisor of r4 . Hence, σk−1(r) = (1 + 2k−1)σ odd

k−1(r)+
4k−1σk−1(

r
4 ), and we obtain the alternative expression for the difference.

Assume that k is odd. Then χ4(n)
k = χ4(n). The sum in σ ′′

k−1(r) is over the odd divisors
d of r . If d is odd, then id−k = (−1)(d−1)/2(−1)(k−1)/2. Moreover, χ4(d) = (−1)(d−1)/2.
Therefore, for odd k,

βk(r) = 4

Ak

∑
d|r

[
2k−1χ4(r/d)+ (−1)(k−1)/2χ4(d)

]
dk−1.

(3.5). The θ -function is (essentially) given by its Fourier expansion at the cusp ∞, that is,
θ(z) = ∑

n q
n2

where q = e2πiz/2. The θ -function belongs to G(�θ , jθ ), and it vanishes at
the second cusp represented by −1. Hence the power θ(z)l , for a positive integer l, belongs
to G(�θ , j lθ ) and it vanishes at −1. Clearly, the power has the Fourier expansion at ∞,

θ(z)l = 1 +
∑
r≥1

bl(r)q
r ,

where bl(r) is the number of solutions (n1, . . . , nl) in Zl to the equation,

r = n 2
1 + · · · + n 2

l .

Assume that l is even, say l = 2k, where k is a positive integer. Then j 2k
θ = (j 2

θ )
k = J k/χkθ .

Hence θ(z)2k belongs to the space G(�θ , J k/χ kθ ) and it vanishes at −1. The Eisenstein
series Gk(z), for k ≥ 3, has the same properties. Moreover, both forms have at ∞ a Fourier
expansion with constant term 1. It follows that the difference θ(z)2k −Gk(z) is a cusp form.
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(3.6) Proposition. Let b2k(r) be the number of solutions (n1, . . . , n2k) in Z2k to the equation,

r = n 2
1 + · · · + n 2

2k. (3.6.1)

Then, for k ≥ 3, the following asymptotic formulas holds:

b2k(r)− βk(r) = O(rk/2).

Moreover, the equality b2k(r) = βk(r), holds for k = 2, 3, 4, that is,

b4(r) = 8 ×
{
σ(r) when r is odd,

3σ odd(r) when r is even.

b6(r) = 4
∑
d|r

[
4χ4(r/d)− χ4(d)

]
d2.

b8(r) = 16 ×
{
σ3(r) when r is odd,

σ ev
3 (r)− σ odd

3 (r) when r is even.

Finally, for k = 1, we have the equation, b2(r) = 1
2β1(r) = 4

∑
d|r χ4(d).

Proof. The difference b2k(r)−βk(r), for k ≥ r , is the r’th Fourier coefficient in the cusp form
θ(z)2k − Gk(z). The asymptotic formula, for k ≥ 3, follows from Theorem F (Autm.6.16)
since the difference θ(z)2k −Gk(z) is a cusp form.

Moreover, for k ≤ 4, the space Sk(�θ , j 2k
θ ) of cusp forms is equal to 0 by Example

(Autm.7.8). Therefore, the equation b2k(r) = βk(r) holds for 3 ≤ k ≤ 4. It holds also for
k = 2, because it is possible to prove that the Poincaré seriesG2(z)with a suitable summation
does define an automorphic form. The proof is not easy, and it is not covered in these notes.

Finally, the explicit formula, b2(r) = 1
2

∑
d|r χ4(r) is elementary. It can be proved using

unique prime factorization in the ring Z[i] of Gaussian integers.

(3.7) Exercise. StudyGk(z) at the cusp−1 using conjugation by the transformationu = st−1.
Prove that

uχθ(c, d) =
⎧⎨
⎩
iχ4(−d) if c and d are odd,

iχ4(c − d) if c is odd and d is even,

0 otherwise.

Deduce from (2.4.3) and (Autm.5.2) a formula for the number bodd
2k (r) of decompositions of

r into 2k odd squares.
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Appendix

1. Bernoulli and Euler numbers.

(1.1) Setup. As is well known, two important sequences of numbers, the Bernoulli numbers
B0, B1, . . . and the Euler numbers E0, E1, . . . are defined by the Taylor expansions,

z

ez − 1
=

∑
k≥0

Bk
zk

k!
,

2ez

e2z + 1
=

∑
k≥0

Ek
zk

k!
. (1.1.1)

The first function has poles at the non-zero integral multiples of 2πi. Hence the first series is
convergent in the open disk: |z| < 2π . Similarly, the second series converges when |z| < π .
Obviously, B0 = E0 = 1.

The numbers appear in the Taylor expansion of many important functions. The second
function in (1.1.2) is equal to 1/ cosh z. In particular, it is an even function of z. Hence all
Euler numbers of odd index vanish. Moreover, evaluation at iz yields the expansion,

1

cos z
=

∑
k even

(−1)k/2Ek
zk

k!
. (1.1.2)

In the first equation of (1.1.1), divide by z and add 1
2 to obtain the following equation:

1

2

ez + 1

ez − 1
= 1

z
+ (B1 + 1

2 )+
∑
k≥1

1

k + 1
Bk+1

zk

k!
.

In the equation, the left side is an odd function of z. Therefore, the equation implies that
B1 = − 1

2 and that all other Bernoulli numbers of odd index vanish. The equation is the
expansion of the function 1

2coth z
2 . Evaluation at 2iz yields the equation,

cot z = 1

z
+

∑
k odd

(−1)(k+1)/22k+1

k + 1
Bk+1

zk

k!
. (1.1.3)

Finally, from cot z− 2 cot 2z = tan z, we obtain the expansion,

tan z =
∑
k odd

(−1)(k−1)/22k+1(2k+1 − 1)

k + 1
Bk+1

zk

k!
. (1.1.4)
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(1.2) Definition. It will be convenient to introduce a third sequence of numbers A1, A2, . . . .
They are defined by the expansion,

1 + sin z

cos z
=

∑
k≥0

Ak+1
zk

k!
. (1.2.1)

Obviously,A1 = 1. The left hand side of (1.2.1) is the sum of the even function 1/ cos z and
the odd function tan z. Hence (1.2.1) implies the expansions,

1

cos z
=

∑
k even

Ak+1
zk

k!
, tan z =

∑
k odd

Ak+1
zk

k!
. (1.2.2)

Accordingly, the Ak with odd k are called secant numbers, and the Ak with even k are called
tangent numbers.

By comparing (1.2.2) with the expansions (1.1.2) and (1.1.4) we obtain the following
relations for k ≥ 1:

Ak =
{
(−1)(k−1)/2Ek−1 if k is odd,

(−1)k/2−12k(2k − 1)Bk/k if k is even.

(1.3) Lemma. The numbers Ak are positive integers. Moreover, if k is even, then kAk is
divisible by 2k−1; in particular, thenAk is divisible by 2k/2−1. Furthermore, the numbers are
given by A1 = 1 and the following recursion formula for k ≥ 0:

Ak+2 = Ak+1 +
(
k

2

)
Ak −

(
k

4

)
Ak−2 +

(
k

6

)
Ak−4 ± · · · .

Proof. Denote by α(z) the fraction on the left side of (1.2.1). It is the sum of sec z =
1/ cos z and tan z. To obtain the derivatives of α(z), note that (sec z)′ = sec z tan z and
(tan z)′ = 1+ tan2 z. It follows by induction that there are polynomials F0(t), F1(t), . . . and
G1(t),G2(t), . . . and an equation,

α(k)(z) = sec z Fk(tan z)+Gk+1(tan z).

The polynomials are given recursively: Fk = tFk−1 + (1 + t2)F ′
k−1 andGk+1 = (1 + t2)G′

k

(and F0 = 1, G1 = t). It follows easily that each of Fk and Gk is a polynomial of degree k,
with positive integer coefficients in degrees k, k−2, k−4, . . . and zero coefficients otherwise.
In particular, Ak = Fk−1(0)+Gk(0) is a positive integer. Hence the first part of the Lemma
holds.

To prove the second part, note that by (1.2.2) we have the Taylor expansion,

z tan z =
∑
k even

kAk
zk

k!
.
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Hence it suffices to prove for τ(z) := 2z tan z = ∑
k Ckz

k/k! that the Taylor coefficient Ck
is divisible by 2k .

Clearly, τ ′(z) = 2 tan z + 2z(1 + tan2 z). Multiplication by 2z yields:

2zτ ′(z)− 2τ(z) = 4z2 + τ(z)2.

It follows, by comparing the coefficients of zk/k!, that

2(k − 1)Ck =
k∑
i=0

(
k

i

)
CiCk−i , for k > 2. (1.3.2)

Obviously, Ck = 0 if k is odd, or if k = 0. Moreover, C2 = 4. Proceed by induction, and
assume that k > 2 is even, k = 2l. In the sum (1.3.2), the extreme terms vanish, because
C0 = 0. In the middle term, the binomial coefficient

(
k
l

)
is even,

(
k
l

) = 2
(
k−1
l−1

)
. The remaining

terms come in equal pairs, since
(
k
i

) = (
k
k−i

)
. Therefore, division by 2 in (1.3.2) yields:

(k − 1)Ck =
∑

0<i<l, i even

(
k

i

)
CiCk−i +

(
k − 1

l − 1

)
C 2
l . (1.3.3)

By the induction hypothesis, each product CiCk−i is divisible by 2k . So the sum is divisble
by 2k . Hence, so is Ck , because the factor k − 1 is odd.

To prove the recursion formula, note that α(z) = α ′(z) cos z. Insert the expansionsα(z) =∑
Ak+1z

k/k! and α′(z) = ∑
Ak+2z

k/k! and the well known expansion of cos z. The
recursion formula follows by comparing the coefficients of zk .

(1.4). A simple computation using the recursion formula gives the following table:

k 1 2 3 4 5 6 7 8 9 10 11 12
Ak 1 1 1 2 5 24 61 24 · 17 1385 28 · 31 50521 29 · 691

(1.5) Note. The left hand side of (1.2.1) is equal to cos z/(1 − sin z) and hence equal to the
logarithmic derivative of the following function,

A(z) = 1

1 − sin z
. (1.5.1)

In other words, we can think of the numbers Ak as defined by the expansion,

a(z) = log
1

1 − sin z
= constant +

∑
k≥1

Ak
zk

k!
. (1.5.2)

On the left, the logarithm is a multi valued function. The denominator of the fraction vanishes
at the points z = π/2+2pπ for p ∈ Z. In particular, the left hand side has determinations in
the open disk: |z| < π

2 , and different determinations differ by a constant. Hence the equation
(1.5.2) defines the numbers Ak for k ≥ 1.

(1.6) Definition. Let χ : Z → C be a periodic function, say χ(n+N) = χ(n) for all integers
n. Associate with χ the sequence of numbers Ak(χ) for k ≥ 1 defined by the expansion,
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χ(0)

z
− 1

N

∑
a mod N

χ(a) cot
z+ πa

N
=

∑
k≥0

Ak+1(χ)
zk

k!
, (1.6.1)

where the index a ranges over a system of representatives for the residue classes modulo N .
The left hand side has poles at the integer multiples of π . In the sum on the left side, the
terms for a �≡ 0 (mod N) are holomorphic at z = 0. Moreover, the pole at 0 of the term for
a ≡ 0 is canceled by χ(0)/z. Hence the left hand side has no pole at z = 0. Therefore, the
left side is holomorphic in the disk |z| < π . Consequently, the coefficients are well defined,
and the series on the right converges for |z| < π . The numbers Ak(χ) for k = 1, 2, . . . are
called the special numbers associated to the periodic map χ : Z → C. Their relation to the
generalized Bernoulli numbers are described in Note (1.16).

(1.7) Note. Consider the two functions,

F(z) = 1

2 sin z
, f (z) = logF(z).

The function F(z) is meromorphic in C with simple poles at the integral multiples of π . Its
logarithm f (z) is a multi valued function. The derivative f ′(z) is single valued, equal to the
logarithmic derivativeF ′(z)/F (z) = − cot z of F . As the poles are on the real axis, there are
determinations of f (z) in the upper half plane and in the lower half plane. To define specific
determinations, note that

F(z) = −ieiz
1 − e2iz = ie−iz

1 − e−2iz .

If z is in the upper half plane H, then |e2iz| < 1. Hence, in the upper half plane we obtain a
determination f + of f defined by,

f+(z) = −iπ/2 + iz+ log
1

1 − e2iz , 	z > 0, (1.7.1)

where the logarithm on the right side is the principal determination,defined by the power series
log 1/(1 − w) = ∑

d≥1(1/d)w
d . Similarly, in the lower half plane there is a determination,

f−(z) = iπ/2 − iz+ log
1

1 − e−2iz , 	z < 0.

Consider in the setup of Definition (1.6) the following function,

Fχ(z) :=
∏

a mod N

F
(z + πa

N

)χ(a) =
∏

a mod N

(
1

2 sin((z + πa)/N)

)χ(a)
.

The exponents χ(a) are not assumed to be integers, so Fχ(z) is a multi valued function. Most
easily, we may think of Fχ as defined in terms of its logarithm,

fχ(z) :=
∑
a

χ(a)f
(z+ πa

N

)
.
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The functionfχ(z) is a multi valued function: two determinations of it in an open connected
subset of C differ by a constant. Its derivative is single valued,

f ′
χ (z) = 1

N

∑
a

(
−χ(a) cot

z+ aπ

N

)
. (1.7.2)

As a consequence, the special numbers could have been defined by the equation,

fχ(z) = −χ(0) log z + (constant)+
∑
k≥1

Ak(χ)
zk

k!
(1.7.3)

(leaving A0(χ) undefined).

(1.8) Note. The starting point of the following computations is the well known formula,

1

z
+

∑
n≥1

( 1

z + n
+ 1

z− n

)
= π cot πz. (1.8.1)

The series on the left is normally convergent, and so it defines a meromorphic function in C.
To prove the formula, note that the function on the left hand side has the following properties:
it has poles exactly at the integers, with principal part around z = n equal to 1/(z − n), it is
periodic with period 1, and it is bounded in any domain |	z| ≥ ε. Clearly, the function on the
right has the same properties. It follows that the difference of the two functions is bounded
in C, and hence constant. As the two functions are odd functions, the difference is zero.

We shall rewrite the formula as follows:

∑+

n

1

z+ n
= π cot πz,

where the summation sign
∑+ indicates the symmetric summation over all integers n, that

is, the sum with the terms ordered as indicated in (1.8.1). Note that the sum
∑
n(z+ n)−k is

absolutely convergent when k ≥ 2.

(1.9) Lemma. Let χ : Z → C be a periodic map. Then the following formula holds:

∑+

n

χ(n)

z + n
= −πf ′

χ (πz). (1.9.1)

Proof. Fix a system of representatives a for the residue classes modulo a period N . Then
the symmetric summation on the left side of (1.9.1) can be replaced by the sum over a of
the symmetric summation over n of the terms χ(a)/(z + a + Nn). By (1.8.1), the latter
summation yields (1/N)χ(a)π cot π(z + a)/N . Now, by (1.7.2), summation over a yields
−πf ′

χ (πz).
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(1.10) Proposition. Let χ : Z → C be a periodic map. Then, for k ≥ 1,

∑+

n

χ(n)

(z+ n)k
= (−1)kπk

(k − 1)!
f (k)χ (πz). (1.10.1)

As a consequence, ∑+

n�=0

χ(n)

nk
= (−1)kπk

(k − 1)!
Ak(χ). (1.10.2)

Proof. The first formula is obtained from (1.9.1) by applying the operator d k−1/dzk−1 and
multiplying the result by (−1)k−1/(k − 1)!. By (1.7.3), the special numbers Ak(χ) are
the values at 0 of the k’th derivative of the function fχ (z) + χ(0) log z. Hence the second
formula is obtained from the first by subtractingχ(0)/zk and evaluating the resulting equation
at z = 0.

(1.11) Example. Let χ = χ1 be the constant function χ1(n) = 1. The special numbers
Ak(χ) are determined from the function F1(z) := 1/(2 sin z). Obviously,

2
F1(2z)

F (z)
= 1

cos z
=

√
A(z)A(−z).

Hence we obtain, up to addition of a constant, the following equation for the logarithms,

f1(2z)− f1(z) = 1

2

(
a(z)+ a(−z)).

Comparing the coefficients, it follows that (2k − 1)Ak(χ1) = 1
2 (1 + (−1)k)Ak , that is,

Ak(χ1) =
{
Ak/(2k − 1) if k is even,

0 if k is odd.

As a consequence, if k ≥ 2 is even, then 2ζ(k) = ∑
n�=0 n

−k = πkAk/(2k − 1)(k − 1)!.
Equivalently,

1

1k
+ 1

2k
+ 1

3k
+ · · · = πkAk

2(2k − 1)(k − 1)!
.

(1.12) Example. Let χ = χev be the parity character defined by χev(n) = 1 when n
is odd and χev(n) = 0 if n is even. The special numbers Ak(χ) are determined from
Fev := 1/(2 sin(z+ π)/2). Obviously,

−2Fev(−2z) = 1

sin(π/2 − z)
= 1

cos z
=

√
A(z)A(−z).
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Taking the logarithm, it follows that, up to a constant, fev(−2z) = 1
2 (a(z)+ a(−z)). Hence

we obtain that

Ak(χev) =
{
Ak/2k if k is even,

0 if k is odd.

As a consequence, if k ≥ 2 is even, then
∑
n odd n

−k = πkAk/2k(k − 1)!. Equivalently,

1

1k
+ 1

3k
+ 1

5k
+ · · · = πkAk

2k+1(k − 1)!
.

(1.13) Example. Letχ = δ be the function defined by δ(n) = 1 if n ≡ 1 (mod 4) and δ(n) =
0 otherwise. The special numbers Ak(χ) are determined from Fδ = 1/(2 sin(z + π)/4).
Obviously,

2Fδ(2z)
2 = 1

2 sin(z/2 + π/4)2
= 1

1 − cos(z + π/2)
= A(−z).

Taking the logarithm, it follows that up to a constant, 2fδ(2z) = a(−z). Hence we obtain
that

Ak(δ) = (−1)kAk/2
k+1.

As a consequence, for all k ≥ 1, we have that
∑+

n�=0 δ(n)/n
k = πkAk/2k+1(k − 1)!. If k

is odd, we obtain that
1

1k
− 1

3k
+ 1

5k
± · · · = πkAk

2k+1(k − 1)!
,

and if k is even, we obtain the result from Example (1.12).

(1.14) Exercise. Prove for S(z) = 2 sin z the formula,

S(Nz) =
N−1∏
j=0

S(z + jπ/N).

[Hint: use XN − 1 = ∏N−1
j=0 (X − e2πij/N).] Deduce that the special numbers Ak(χ) are

independent of the choice of period N entering in their definition.

(1.15) Exercise. Prove that Ak+1 is equal to the number of up-down permutations of
(1, . . . , k), that is, permutations (σ1, . . . , σk) with σ1 < σ2 > σ3 < σ4 > σ5 < · · · .

Hint: From the equation 2α ′(z) = α(z)2 + 1, deduce the recursion formula,

2Ak+1 =
k−1∑
i=0

(
k − 1

i

)
Ai+1Ak−i , A0 = A1 = 1.

Prove for the number ak of up-down permutations the following formulas (for k ≥ 2):

ak =
k−1∑
i=0
i odd

(
k − 1

i

)
aiak−i−1 =

k−1∑
i=0
i even

(
k − 1

i

)
aiak−i−1.

The i’th terms in the two sums count the numbers of up-down permutations having, respec-
tively, the biggest element k at position i + 1 and the smallest element 1 at position i + 1.
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(1.16) Note. The special numbersAk(χ) introduced here are closely related to the generalized
Bernoulli numbers Bk(χ) of Leopoldt, defined by

N∑
a=1

χ(a)
zeaz

eNz − 1
=

∞∑
k=0

Bk(χ)
zk

k!
,

whenχ is a primitive characterχ : (Z/N)∗ → C∗, extended withχ(a) = 0 when (a, N) > 1.
Indeed, the special numbers Ak(χ) are defined in terms of the generating function αχ(z):

αχ(z) = 1

N

∑
a mod N

χ(a) cot
z + πa

N
, zαχ(z) = χ(0)−

∑
k≥1

kAk(χ)
zk

k!
.

The numbers Bk(χ) (k = 0, 1, . . . ) of Leopoldt may be defined (when χ is a primitive
character modulo N ) in terms of the generating function βχ(z):

βχ(z) =
N∑
a=1

χ(a)
eaz

eNz − 1
, zβχ(z) =

∑
k≥0

Bk(χ)
zk

k!
.

Compare αχ(Nz/2) and βχ (iz). Set q = q(z) := eiz and ζ := e2πi/N . Clearly,
βχ(iz) = ∑N

a=1 χ(a)q
a/(qN − 1). For z in the upper half plane, we have that |q| < 1. So,

using the geometric series for 1/(1 − qN), it follows that

βχ(iz) = −
∞∑
d=1

χ(d)qd. (1)

In the function αχ(Nz/2), the term with the cotangent is cot( z2 + πa/N). Since cotw =
−i − 2ie2iw/(1 − e2iw), we have that cot( z2 + πa/N) = −i − 2iζ aq/(1 − ζ aq). So, using
the geometric series for 1/(1 − ζ aq), it follows that

N
2 α

χ
(
Nz
2

) = − i

2

∑
a

χ(a)− i
∑
a

∑
d≥1

χ(a)ζ adqd . (2)

Proposition. Assume that χ is a primitive character modulo N , for N ≥ 2. Then
N
2 α

χ
(
Nz
2

) = iτ (χ)βχ(iz),

where τ(χ) is the Gauss sum, τ(χ) = ∑
amodN χ(a)ζ

a . In particular, for k ≥ 1,

−(N/2)kkAk(χ) = τ(χ)ikBk(χ).

Proof. The first equation follows from (1) and (2) by using the formula
∑
a χ(a)ζ

da =
χ(d)τ(χ) in the last (double) sum in (2). Multiply by z to obtain the equations of Bernoulli
numbers.

(1.17) Exercise. Prove for k even that kAk/2k−1 is odd. [Hint: Induction. Use (1.3.3)
divided by 2k . Rewrite the sum using the equation

(
k
i

) = (
k−1
i−1

) + (
k−1
i

)
. The resulting

expression should not depend on the parity of l. Deduce modulo 2 that the sum equals∑
1≤j<l

(
k−1
j

) = 2k−2 − 1.]
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2. Fourier expansion of Eisenstein series.

(2.1) Setup. Fix a natural number N . Let ζ = ζN be the N ’th root of unity, ζ := e2πi/N .
Let q = qN be the function of z defined by q(z) = e2πiz/N .

In (1.7) we introduced the function F(z) = 1/(2 sin z) and its logarithm f (z) = logF(z).
The logarithm f (z) had a specific determination in the upper half plane, denoted f + in (1.7):

f (z) = −πi
2

+ iz+ log
1

1 − e2iz , 	z > 0. (2.1.1)

where the logarithm on the right side is the principal determination, log 1/(1 − w) =∑
d≥1(1/d)w

d when |w| < 1.

Let a be an integer. Then (2.1.1) applies to π(z+a)/N . As e2πi(z+a)/N = ζ aq, we obtain
the equation,

f
(πz+ πa

N

)
= πi

(
− 1

2
+ z + a

N

)
+

∑
d≥1

ζ add−1qd .

Assume that χ : Z → C has periodN . The logarithm fχ = logFχ was defined in (1.7) as
the sum

∑
a χ(a)f ((z+ πa)/N) where the sum is over a system of representatives modulo

N . Using the above determination, we obtain in the upper half plane an expression for the
function fχ (πz). More precisely, let lχ (z) be the linear function,

lχ (z) =
∑
a

χ(a)πi
(−1/2 + (z + a)/N

)
.

In addition, let τ(χ, ζ ) be the Gauss sum, defined for any N ’th root of unity ζ as the sum,

τ(χ, ζ ) :=
∑
a

χ(a)ζ a. (2.1.3)

Then the function fχ (πz) is given in the upper half plane H by the formula,

fχ(πz) = lχ (z)+
∞∑
d=1

τ(χ, ζ d)d−1qd where q = e2πiz/N . (2.1.4)

The formula
∑+

χ(n)/(z+ n) = −πf ′
χ (πz) for all non-integer z was proved in Lemma

(1.9). In the upper half plane, the right side of the formula is the derivative of (2.1.4) multiplied
by −1. As q ′(z) = (2πi/N)q(z), we obtain the formula,

∑+

n

χ(n)

z + n
= − iπ

N

∑
a

χ(a)− 2πi

N

∞∑
d=1

τ(χ, ζ d)qd. (2.1.5)

165



[App] 10 Automorphic functions
16. februar 1995

By applying the operator dk−1/dzk−1 and multiplying by (−1)k−1/(k − 1)!, we obtain, for
k ≥ 2 and z ∈ H, the formula,

∑
n

χ(n)

(z + n)k
= (−1)k

(k − 1)!

(2πi

N

)k ∞∑
d=1

τ(χ, ζ d)dk−1qd . (2.1.6)

(2.2) Definition. Let χ : Z × Z → C be a function of 2 integer variables, and set χm(n) :=
χ(m, n). Assume that the function χ is bounded. In addition, assume for all m in Z that
χm(n), as a function of n, has period N . Define for k ≥ 1 the associated Eisenstein series,

E
χ
k (z) :=

∑′ χ(m, n)

(mz+ n)k
, (2.2.1)

where the sum is over (m, n) �= (0, 0). The series is normally convergent for k ≥ 3 and
defines a holomorphic function in the upper half plane H. If the summation is arranged as
follows:

E
χ
k (z) :=

∑
n�=0

χ(0, n)

nk
+

∑
m�=0

∑
n

χ(m, n)

(mz+ n)k
, (2.2.2)

then the series is normally convergent also for k = 2 and defines a holomorphic function
E
χ
2 (z). In fact, as we shall show below, if the function χ satisfies that

∑
a mod N χ(m, a) = 0

for allm, and if the summations overn in (2.2.2) are interpreted as the symmetric summations,
then the right hand side of (2.2.2) is even convergent for k = 1.

For every natural number r , consider the following linear combination of (k−1)’st powers
of the divisors of r:

σ
χ
k−1(r) =

∑
d|r

∑
a mod N

χ(r/d, a)e2πiad/Ndk−1,

where the inner sum is over a system of representatives for the residue classes moduloN . In
terms of the Gauss sums of (2.1),

σ
χ
k−1(r) =

∑
d|r
τ (χr/d , ζ

d)dk−1.

Finally, denote byAk(χ) the k’th special number of (1.6) associated to the functionχ0(n) =
χ(0, n).

(2.3) Observation. Obviously, for all k ≥ 1, it follows by a change of summation order
in (2.2.2) that Eχk (z + 1) = E

ψ
k (z) where ψ(m, n) := χ(m, n − 1); in particular, Eχk (z +

N) = E
χ
k (z). If k ≥ 3, then it follows by a change of summation order in (2.2.1) that

E
χ
k (−1/z) = zkE

ϕ
k (z), where ϕ(m, n) := χ(−n,m). The argument does not work for k = 2

or k = 1.
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(2.4) Proposition. In the setup of (2.2), assume either that k ≥ 2, or that k = 1 and∑
a χ(m, a) = 0 for all m. Then, with q = e2πiz/N ,

∑
m≥1

∑
n

χ(m, n)

(mz+ n)k
= (−1)k

(k − 1)!

(2πi

N

)k ∞∑
r=1

σ
χ
k−1(r)q

r . (2.4.1)

On the left, the sum over n is the symmetric summation when k = 1.

Proof. Assume that m ≥ 1. Then q(mz) = q(z)m. Hence, by (2.1.6) applied to mz,

∑
n

χ(m, n)

(mz + n)k
= (−1)k

(k − 1)!

(2πi

N

)k ∞∑
d=1

τ(χm, ζ
d)dk−1qmd. (2.4.2)

On the right side, the Gauss sum is bounded as a function of m, n since χ is assumed to be
bounded. Obviously, the double series

∑
m,d d

k−1qmd is normally convergent when q is in
the unit disk. Hence the sum over m ≥ 1 of the functions in (2.4.2) converges normally. In
the resulting equation, rearrange the summation on the right side according to the value of
r := md. Clearly (2.4.1) results.

(2.5) Corollary. Assume either that k ≥ 2, or that k = 1 and
∑
a χ(m, a) = 0 for all m.

Define χ∗(m, n) := χ(−m,−n). Then the Fourier expansion ofEχk (z) in H is the following,
with q = e2πiz/N ,

E
χ
k (z) = (−1)kπk

(k − 1)!
Bk(χ)+ (−1)k

(k − 1)!

(2πi

N

)k ∑
r≥1

brq
r ,

where br = σ
χ
k−1(r)+ (−1)kσχ

∗
k−1(r). IfAk(χ) �= 0, then the normalized seriesGχk obtained

by dividing Eχk by its constant term has the following expansion,

G
χ
k (z) = 1 + 1

Ak(χ)

(2i

N

)k ∑
r≥1

brq
r .

Proof. The left side is equal to the sum of the two series in (2.2.2). The first (constant) series
is, by (1.10.2), equal to the constant term in the asserted Fourier expansion. The second series
is separated into two: the sum of terms for m ≥ 1 and the sum of terms for m ≤ −1. For
the first sum, use the equation (2.4.1). In the second sum, replace m by −m to obtain the
following sum: ∑

m≥1

∑
n

χ(−m, n)
(−mz + n)k

.

Replace n by −n in the inner sum and multiply by (−1)k . The result is the left hand side of
(2.4.1) with χ replaced by χ∗. Thus (2.4.1) applies to the second sum as well, and we obtain
for the Fourier coefficient br the asserted sum.

The expression for the normalized series follows immediately from the expression for
E
χ
k (z).
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(2.6) Example. Assume that χ is the constant function χ(m, n) = 1. Then N = 1, and the
corresponding function Ek is the Eisenstein series considered in (Autm.2.1) for k ≥ 3,

Ek(z) =
∑′ 1

(nz +m)k
.

The divisor sum is the sum,
σk−1(r) =

∑
d|r
dk−1.

The series vanishes when k is odd. Assume that k ≥ 2 is even. Then br = 2σk−1(r). Hence
we obtain the Fourier expansion,

Ek(z) = 2ζ(k)+ (−1)k/22(2π)k

(k − 1)!

∑
r≥1

σk−1(r)q
r , q = e2πiz. (2.6.1)

The normalized series Gk is obtained by dividing by 2ζ(k). In the notation of Section 1,
2ζ(k) = πkAk/(2k − 1)(k − 1)!. Hence we obtain for Gk the Fourier series,

Gk(z) = 1 + (−1)k/22k+1(2k − 1)

Ak

∑
r≥1

σk−1(r)q
r . (2.6.2)

In particular, the constant term is equal to 1 and all the Fourier coefficients are rational
numbers. In particular,

G2(z) = 1 − 24
∑
r≥1

σ1(r)q
r ,

G4(z) = 1 + 240
∑
r≥1

σ3(r)q
r , (2.6.3)

G6(z) = 1 − 504
∑
r≥1

σ5(r)q
r .

The number Ak is given by (1.2). It follows that the factor in (2.6.2) is equal to −2k/Bk ,
where Bk is the usual Bernoulli number.
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3. The function of Weierstrass.

(3.1) Setup. Fix in C a lattice �, say � = Zω1 + Zω2 where the complex numbers ω1 and
ω2 are linearly independent over R. Denote by M(�) the field of meromorphic �-periodic
functions, that is, a function f belongs to M(�) if and only if f is meromorphic in C and
has any ω in � as period:

f (z+ ω) = f (z).

The group� acts on C by translations, and the�-periodic functions are the functions invariant
under the action. Obviously, a fundamental domain for the action is any lattice parallelogram,

R = {z0 + t1ω1 + t2ω2 | 0 ≤ ti ≤ 1}.

The equivalence on the boundary of R identifies the opposite sides of the parallelogram.
It follows that the quotient X := C/� is a torus. In particular, the quotient is a compact
connected Riemann surface of genus 1, and M(�) is the field of meromorphic functions on
X.

(3.2) Lemma. Let f be a non-zero function inM(�). Then the following two formulas hold:

∑
u mod �

ordu f = 0,
∑

u mod �

(ordu f )u ≡ 0 (mod �). (3.2.1)

Proof. The boundary of the fundamental domain R is formed by four line segments: the
segment L1 from z0 to z0 + ω2, the segment L2 from z0 to z0 + ω1, and the two translated
segments L′

j := Lj + ωj for j = 1, 2. We may assume that the angle from ω2 to ω1 is
positive, that is, the quotient ω1/ω2 has positive imaginary part. Then the boundary of R, as
an oriented path, is the sum

∂R = L1 + L′
2 − L′

1 − L2.

Clearly, we may choose z0 such that f has no zeros or poles on the boundary of R. Consider
the path integral,

1

2πi

∫
∂R

f ′(z)
f (z)

dz. (3.2.2)

Its value is, by the residue formula, equal to the left hand side of the first formula in (3.2.1).
On the other hand, since f ′/f is �-periodic, it follows that

∫
L′
j
(f ′/f )dz = ∫

Lj
(f ′/f )dz.

Hence the path integral (3.2.2) is equal to 0. Therefore, the first formula in (3.2.1) holds.
To prove the second formula, consider the path integral,

1

2πi

∫
∂R

zf ′(z)
f (z)

dz. (3.2.3)

The poles of the integrand are the poles and the zeros of f (z). At a point u which is either
a zero or a pole of f , the residue of zf ′(z)/f (z) is equal to ku, where k = ordu f . Hence,
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by the residue formula, the path integral is equal to the left hand side of the second formula
in (3.2.1). On the other hand, since f ′/f is �-periodic, it follows that

∫
L′
j
(zf ′/f )dz =∫

Lj
(zf ′/f )dz + ωj

∫
Lj
(f ′/f )dz. Hence the path integral (3.2.3) is equal to the following

sum,

− ω1

2πi

∫
L1

f ′(z)
f (z)

dz+ ω2

2πi

∫
L2

f ′(z)
f (z)

dz. (3.2.4)

By the transformation formula for integrals, the path integral
∫
Lj
(f ′/f )dz is equal to the

integral
∫
fLj

(1/w)dw. Moreover, the image path fLj is a closed path in C∗. Therefore,

the integral (2πi)−1
∫
Lj
(f ′/f )dz is an integer. It follows that the sum (3.2.4) is an integral

linear combination of ω1 and ω2. Hence the sum belongs to �. Thus the second formula of
(3.2.1) holds.

(3.3) Remark. The two formulas of (3.2) are trivial if f is constant. Assume that f is a
non-constant function in M(�). Then the formulas apply to f (z) − λ for any λ in C. It
follows from the first formula that the number of times f (u), for umodulo�, takes the value
λ is equal to the number of poles; in particular, the number is independent of λ. Similarly, by
the second formula, again modulo�, the sum of the complex numbers u for which f (u) = λ

is congruent to the sum of the poles of f ; in particular, the sum is modulo� independent of
λ.

As a special case, it follows that if a function f in M(�) has no poles, then f is constant.

(3.4). The Weierstrass ℘-function is the function ℘(u) = ℘�(u) defined by the series,

℘(u) = 1

u2 +
∑
ω �=0

( 1

(u− ω)2
− 1

ω2

)
, (3.4.1)

where the sum is over non-zero ω in �. The series is normally convergent in C and the
function℘(u) is a meromorphic function with poles of order 2 at the points of�. Obviously,
it is an even function: ℘(−u) = ℘(u).

It is not hard to see directly that ℘(u) is �-periodic. Alternatively, we may proceed as
follows: consider the derivative:

℘ ′(u) = −2

u3 +
∑
ω �=0

−2

(u− ω)3
=

∑
ω

−2

(u− ω)3
.

Clearly, the derivative ℘ ′(u) is �-periodic. Therefore, for ω0 ∈ �, there is an equation,
℘(u + ω0)− ℘(u) = C with a constant C = C(ω0). Take u := −u − ω0 in the equation.
Since ℘(u) is an even function, it follows that C = 0. Hence ℘(u) is �-periodic.

To obtain the Laurent expansion of℘(u) at the origin, consider the difference℘(u)−1/u2.
It follows from (3.4.1) that the difference is holomorphic at the origin with the value 0.
Moreover, by applying the operator (d/du)k for k ≥ 1 to the difference, we obtain the series,

∑
ω �=0

(−1)k(k + 1)!

(u− ω)k+2 .
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Clearly, the value of the series at the origin is equal to the number (k + 1)!Ek+2 where
Ek = Ek(�) = ∑

ω �=0 ω
−k as defined in (Autm.2.1). Hence ℘(u) has at the origin the

Laurent expansion,

℘(u) = 1

u2 +
∑
k≥1

(k + 1)Ek+2u
k. (3.4.2)

From the expansions for ℘(u) and ℘ ′(u),

℘ = u−2 + 3E4u
2 + 5E6u

4 + · · · , ℘ ′ = −2u−3 + 6E4u+ 20E6u
3 + · · · ,

we obtain easily the equation,

(℘ ′)2 − 4℘3 + 60E4℘ = −140E6 + · · · .

The left hand side is �-periodic and its possible poles belong to �. The right hand side is
holomorphic at 0. Therefore, the left hand side has no poles. It follows that the left hand
side is constant, equal to −140E6. Hence, the ℘-function satisfies the following differential
equation:

(℘ ′)2 = 4℘3 − g2℘ − g3, (3.4.3)

where g2 = g2(�) = 60E4(�) and g3 = g3(�) = 140E6(�).

(3.5). Modulo ω, the origin is the only pole of ℘ ′(u), and it is a pole of order 3. Therefore,
by (3.2), ℘(u) has 3 zeros. Consider the three numbers u1 := ω1/2, u2 = ω2/2, and
u3 := (ω1 +ω2)/2. They are inequivalent modulo�, and uj ≡ −uj (mod �). Since ℘ ′(u)
is an odd function, the numbers uj are zeros of ℘′(u). Hence the uj are exactly the zeros of
℘ ′(u).

The three values λj = ℘(uj ) are different. Indeed, for λ ∈ C, the function ℘(u)− λ has
a pole of order 2 at the origin. Hence, again by (3.2), the function ℘(u) − λ has two zeros.
For λ = λj , the point uj is a zero for ℘(u) − λj , and of multiplicity 2, since ℘ ′(uj ) = 0.
Hence uj is the only zero of ℘(u)− λj .

By (3.4.3), the values λj = ℘(uj ) are roots of the polynomial 4X3 − g2X− g3, and they
are different. The latter polynomial has, for arbitrary g2, g3 in C, three roots λj in C, and the
discriminant of the polynomial is the number,

D = 16(λ1 − λ2)
2(λ1 − λ3)

2(λ2 − λ3)
2 = g 3

2 − 27g 2
3 .

Hence, for g2 = g2(�) and g3 = g3(�), it follows that the discriminantD(�) = g 3
2 − 27g 2

3
is non-zero.

(3.6) Proposition. Let g2 = g2(�) and g3 = g3(�). Then the discriminant D(�) =
g 3

2 − 27g 2
3 is non-zero. Moreover, the map u �→ (℘ (u), ℘ ′(u)) induces a bijection from the

set of points u in C −� modulo � to the set of pairs (x, y) ∈ C2 satisfying the equation

y2 = 4x3 − g2x − g3. (3.6.1)
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Proof. The first assertion was proved in (3.5). To prove the second, note first that, by (3.4.3),
the pair (x, y) := (℘ (u), ℘ ′(u)) satisfies the equation (3.6.1).

Consider conversely a pair (x0, y0) satisfying the equation (3.6.1). The function℘(u)−x0
has, counted with multiplicity, two zeros. If u0 is a zero, then so is −u0. If y0 = 0, then
x0 is one of the three roots λj in the polynomial 4x3

0 − g2 − g3 and u0 is, modulo �, the
corresponding unique zero uj of ℘(u) − λj . If y0 �= 0, then u0 is not one of the numbers
uj . Hence the two numbers u0 and −u0 are different modulo �. Moreover, the two values
℘ ′(u0) and ℘ ′(−u0) = −℘ ′(u0) are non-zero and hence different. Hence exactly one of the
values is equal to y0 and the other value is equal to −y0.

Therefore, in both cases, there is a unique u0 modulo � such that (℘ (u0), ℘
′(u0)) =

(x0, y0).

(3.7) Note. Let z be a point in the upper half plane H. Consider the lattice �z := Zz + Z.
Then there is an associated ℘-function ℘�z(w). Moreover, the numbers Ek(�z), for k ≥ 3,
and g2(�z) and g3(�z), are functions of z. In fact, they are the functions Ek(z) of Example
(Autm.2.1), and g2(z) and g3(z) of Example (Autm.2.5).

By Example (2.5),Ek(z) = 2ζ(k)Gk(z) and 2ζ(k) = πkAk/(2k−1)(k−1)!. In particular,
as A4 = 2 and A6 = 24,

g2(z) = 60E4(z) = (2π)4

22 · 3
G4(z), g3(z) = 140E4(z) = (2π)6

23 · 33G6(z).

As a consequence,

D(z) = g2(z)
3 − 27g3(z)

2 = (2π)12 · G4(z)
3 −G6(z)

2

123 .

Hence, except for the factor (2π)12, the discriminant of (3.6), as a function D(z) of z ∈ H,
is equal to the discriminant �(z) of Example (Autm.2.3), cf. (Autm.7.1). Thus the non-
vanishing of D(�) implies the non-vanishing of �(z). Similarly,

g2(z)
3

g2(z)3 − 27g3(z)2
= G4(z)

3

G4(z)3 − 27G6(z)2
. (3.7.1)

It follows that the left hand side of (3.7.1) multiplied by 123 is equal to Klein’s function j (z)
defined in (Autm.2.5).

In general, for a pair (a2, a3) of complex numbers such that a 3
2 − 27a 2

3 �= 0, we will write

j (a2, a3) := 123a 3
2

a 3
2 − 27a 2

3

.

If (a′
2, a

′
3) is a second pair, then j (a′

2, a
′
3) = j (a2, a3) if and only if, for some non-zero

number λ,
a′

2 = λ4a2, a′
3 = λ6a3. (3.7.2)
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Indeed, the “if” part is obvious. Assume conversely the equality of the two numbers j .
Clearly, if a2 = 0, then a′

2 = 0, and so (3.7.2) holds with 6 possible values of λ. Assume
that a2 �= 0. Then the first equation of (3.7.2) can be solved with 4 values of λ. For any such
λ, it follows from the equality of the two j ’s that a 2

3 = λ12a′ 2
3 . Therefore, if a3 �= 0 then the

two equations (3.7.2) hold for 4 values of λ, and if a3 = 0 then the equations (3.7.2) hold for
2 values of λ.

(3.8) Proposition. Given two complex numbers a2 and a3 such that a 3
2 − 27a 2

3 �= 0. Then
there exists a unique lattice � in C such that a2 = g2(�) and a3 = g3(�).

Proof. Note first that any lattice � is of the form,

� = λ�z, (3.8.1)

for someλ ∈ C∗ and z ∈ H. Indeed,� = Zω1+Zω2, where we may assume thatω1/ω2 ∈ H;
hence it suffices to take λ := ω2 and z := ω1/ω2. Moreover, z is uniquely determined up to
multiplication by a matrix in SL2(Z).

Next, note that the functions g2(�) and g3(�) are homogeneous, respectively of degree
−4 and −6:

g2(λ�) = λ−4g2(�), g3(λ�) = λ−6g3(�). (3.8.2)

Indeed, more generally, it is obvious that Ek(�) is homogeneous of degree −k.
Now, by (3.7), Klein’s j -invariant is the function j (z) = j (g2(z), g3(z)). The j -invariant

is, by (Autm.7.4), an isomorphism H/�(1) ∼−→ C. In particular, there is a unique orbit
�(1)z in H such that j (a2, a3) = j (z). It follows, as noted in (3.7), that a2 = λ−4g2(z)

and a3 = λ−6g3(z). Therefore, by (3.8.2), if � is defined by (3.8.1), then a2 = g2(�) and
a3 = g3(�).

To prove that � is unique, assume for a second lattice �′ the following two equations:

g2(�) = g2(�
′), g3(�) = g3(�

′). (3.8.3)

The equations are preserved if � and �′ are multiplied by the same factor. Hence we may
assume that

� = λ�z �′ = �z′, (3.8.4)

for a non-zero λ and z, z′ ∈ H. In fact we may assume that z and z′ belong to a given system
of representatives in the standard fundamental domain F for the action of SL2(Z) on H.

From the equations (3.8.4), it follows that j (z) = j (z′). Therefore, since z and z′ are
assumed to belong to a system of representatives, it follows that z = z ′. Hence,

� = λ�z, �′ = �z. (3.8.5)

Therefore, by (3.8.2), (3.8.3), and (3.8.5),

g2(z) = λ4g2(z), g3(z) = λ6g3(z). (3.8.6)
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If g2(z) and g3(z) are non-zero, it follows that λ = ±1; in particular, then �z is invariant
under multiplication by λ. If g2(z) = 0, then it follows from the second equation that λ is
a sixth root of unity. Moreover, since z is a zero of g2, it is a zero of G4, and hence, by
(Autm.7.3), z = ρ. Therefore, the lattice �z is invariant under multiplication by λ. Finally,
if g3(z) is equal to 0, it follows similarly that λ is a fourth root of unity and that z = i;
hence �z is invariant under multiplication by λ. Thus, in all cases, the lattice �z is invariant
under multiplication by λ. Therefore, by (3.8.5),� = �′, and the proof of the Proposition is
complete.
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4. Notes on elliptic curves.

(4.1) Note. By definition, an elliptic curve is a pair (X, o) consisting of a (compact, connected)
Riemann surface X and a distinguished point o of X. For instance, the torus X := C/�
associated with a lattice � in (3.1), with the image of 0 as distinguished point, is an elliptic
curve. As a second example, let g2 and g3 be complex numbers such the g 3

2 − 27g 2
3 �= 0.

Consider the equation,
y2 = 4x3 − g2x − g3. (4.1.1)

The equation defines an affine algebraic curve in the affine plane C2. The affine plane C2

is an open subset of the projective plane IP 2(C). In fact, the points of IP 2(C) are defined
by homogeneous non-zero sets of coordinates (x, y, z) up to multiplication by a (non-zero)
scalar. Among these sets of coordinates are the equivalence classes of coordinates (x, y, z)
for which z �= 0. Clearly, the latter equivalence classes are represented by coordinates of
the form (x, y, 1), and hence by points (x, y) of C2. The projective curve corresponding to
the equation (4.1.1) is the set of points in IP 2(C) whose homogeneous coordinates (x, y, z)
satisfy the homogenized equation,

y2z = 4x3 − g2xz
2 − g3z

3. (4.1.2)

Clearly, the homogenized equation (4.1.2) is satisfied for (x, y, z) with z �= 1 if and only
if (4.1.1) is satisfied for (x/z, y/z). In addition, the homogeneous equation is satisfied for
(x, y, 0) if and only if x = 0. Hence the projective curve consists of the points of the affine
curve and the point represented by (0, 1, 0).

The projective curve defined by (4.1.2) will be denoted X(g2, g3). It is not hard to prove
that X(g2, g3) is a Riemann surface.

By Proposition (3.8), there is a lattice � such that g2 = g2(�) and g3 = g3(�). Let
℘(u) = ℘�(u) be the function of Weierstrass. It follows from Proposition (3.6) that the map
u �→ (℘ (u), ℘ ′(u), 1) for u /∈ � and u �→ (0, 1, 0) for u ∈ � induces a bijection,

C/� ∼−→X(g2, g3).

Clearly, the map is a map of Riemann surfaces. Hence it is an isomorphism. In particular,
therefore X(g2, g3) is a Riemann surface of genus 1, and with o := (0, 1, 0) as distinguished
point, it is an elliptic curve.

(4.2) Note. LetX be a Riemann surface. The divisors onX, see (Autm.8.3), form an abelian
group, freely generated by the points of X. Two linearly equivalent divisors have the same
degree. The group of linear equivalence classes of divisors is the Picard group PicX. Denote
by PicnX the set of equivalence classes of degree n. Then each PicnX is a coset modulo the
subgroup Pic0X.

For any divisorD of X, denote by cl(D) the equivalence class of D in Pic(X). A point p
of X defines a divisor 1.p of degree 1; its class cl(1.p) belongs to Pic1X.
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Lemma I. LetX be a Riemann surface of genus 1. Then the map p �→ cl(1.p) is a bijection,

X ∼−→ Pic1X.

Proof. Since the genus is equal to 1, it follows from Riemann-Roch’s Theorem that

dimH 0(D) = degD if degD > 0. (4.2.1)

We have to prove the following assertion: for any divisor D of degree 1, there is a unique
point p of X such that D and 1.p are linearly equivalent, that is, there is a unique point p of
X such that, for some non-zero ϕ ∈ M(X),

divϕ +D = 1.p . (4.2.2)

Now, the left hand side divϕ +D is a divisor of degree 1. Hence it is of the form 1.p if and
only if it is positive: divϕ + D ≥ 0. By (4.2.1), the functions ϕ for which divϕ + D ≥ 0
form a one-dimensional subspace of M(X). Therefore, the assertion holds.

(4.3) Note. Consider an elliptic curve (X, o). Clearly, the map D �→ D + 1.o induces
a bijection Pic0X ∼−→ Pic1X. By composing with the bijection of Lemma I, we obtain a
bijection from X to the commutative group Pic0X. Hence there is a unique structure as an
abelian group on the points of X such that the bijection is an isomorphism of groups. The
structure will be called the elliptic addition on X, and it will be denoted additively. Clearly,
under the bijection, the distinguished point o of X corresponds to the zero element of Pic0X.
Hence o is the zero element of the elliptic addition.

Unwinding the definition, the elliptic addition of two points p and q on X is the unique
point r = p + q of X such that we have the linear equivalence of divisors,

(1.p − 1.o)+ (1.q − 1.o) ≡ 1.r − 1.o ,

or, equivalently,
1.p + 1.q ≡ 1.r + 1.o . (4.2.3)

Lemma II. The elliptic addition, as a group structure on (X, o), is characterized by the
following property: Let ϕ be a non-zero meromorphic function on X. Then the sum,∑
p∈X(ordp ϕ)p, with respect to the elliptic addition, is equal o.

Proof. Let us first prove that the property characterizes the elliptic addition. Clearly, by the
property applied to a constant function, the element o is the zero element. Ifp and q are points
ofX, let r be the (unique) point defined by the relation (4.2.3). The latter relation means that
for some non-zero function ϕ we have that divϕ = 1.r + 1.o− 1.p− 1.q. Therefore, by the
property, the equation r + o− p − q = o holds in the group X. It follows that r = p + q.

Next we prove that the property holds: By construction of the elliptic addition, the map
p �→ cl(1.p − 1.o) is a group isomorphism from X to Pic0X. Thus is suffices to prove that
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the sum,
∑
p∈X(ordp ϕ)p, with respect to the elliptic addition, under this isomorphism goes

to the zero class of Pic0X. Clearly, the sum goes to the class of the divisor,
∑
p∈X

(ordp ϕ)(1.p − 1.o) = divϕ − (deg div ϕ).o .

The divisor divϕ is principal and its degree is equal zero. Hence the class of the divisor is
equal to the zero class. Thus the elliptic addition has the property.

(4.4) Note. Consider the elliptic curve X = C/� of (4.1). It has a natural group structure
as a quotient of the additive group of C modulo the subgroup �. It follows from Lemma II
above and Lemma (3.2) that the addition induced on X by the addition of C is equal to the
elliptic addition.

Consider the elliptic curve X(g2, g3) of (4.1). It has a group structure defined by the well
known addition on a smooth cubic. The latter addition is defined as follows: consider, to
simplify, two different points p = (x1, y1) and q = (x2, y2) on the affine part of the curve.
Let L = 0 be the equation of the line through p and q. It intersects the curve in a third point s
on the curve. LetM = 0 be the equation of the line through o and s (it is simply the vertical
line through s). By definition, the third point r of intersection of M = 0 and the curve is the
composition of p and q. Now, the quotient L/M may be viewed as a meromorphic function
of the curve. It is not hard to see that

div(L/M) = 1.p + 1.q + 1.s − (1.o+ 1.s + 1.r) = 1.p + 1.q − 1.o− 1.r .

Therefore, the point r is also the elliptic sum of p and q.

(4.5) Note. Let (X, o) be an elliptic curve. We will sketch the proof that (X, o) is isomorphic
to a curve of the form X(g2, g3) (the Weierstrass normal form).

First, since X is of genus 1, it follows from the Theorem of Riemann-Roch that H 0(n.o)

is of dimension n for n > 0. In particular, the following relations hold:

H 0(0.o) = H 1(1.o) ⊂ H 0(2.o) ⊂ H 0(3.o) ⊂ H 0(4.o) ⊂ H 0(5.o) ⊂ H 0(6.o).

(The first equality holds becauseH 0(0) is the 1-dimensional space of constant functions and
contained in the 1-dimensional space H 0(1.o).)

Now choose a function x in H 0(2.o) and not in H 0(1.o) and a function y in H 0(3.o)
and not in H 0(2.o). The functions x and y are holomorphic except at o; at o they have,
respectively, a pole of order at most 2 and at most 3. Since x /∈ H 0(1.o), it follows that
ordo x = −2. Similarly, ordo y = −3. Clearly, the function x2 belongs to H 0(4.o) and
since ordo x2 = −4 it does not belong to H 0(3.o). Similarly, xy belongs to H 0(5.o) and it
does not belong to H 0(4.o), and the two functions x3 and y2 belong to H 0(6.o) and not to
H 0(5.o). It follows that the 5 functions 1, x, y, x2, xy, form a basis for H 0(5.o), and that
they supplemented with any of the two functions y2 or x3 form a basis of H 0(6.o). Hence,
there is a relation,

y2 = ax3 + bxy + cx2 + dy + ex + f,
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with a �= 0. Now, in the choice of x and y, we could replace x by αx + β for α �= 0, and we
could replace y by γy+δx+ε for γ �= 0. It is not hard to see that with suitable replacements,
we can obtain an equation in the Weierstrass normal form,

y2 = 4x3 − g2x − g3, (4.5.1)

and, moreover, the coefficients g2 and g3 are uniquely determined up to a choice of the form
g2 �→ λ4g2 and g3 �→ λ6g3. The two functions x and y are holomorphic on the complement
of o. Hence they define a map from X − {o} into the subset of C2 defined by the equation
(4.5.1).

The function y has a pole of order 3 at o and no more poles. Therefore, the function y has
three zeros p1, p2, p3, not necessarily different. By the property of Lemma II, in the group
of X,

p1 + p2 + p3 = o . (4.5.2)

Consider the polynomial on the right side of Equation (4.5.1). It follows from the equation
that the value λ1 := x(p1) is a root of the polynomial. The function x − λ1 has a pole of
order 2 at o and no more poles. Hence it has two zeros, one of which is of course p1. Let p′

1
be the other zero (not necessarily different form p1). Then, by the property of Lemma II,

p1 + p′
1 = o . (4.5.3)

By comparing (4.5.3) and (4.5.2), it follows that p ′
1 is different from p2 and p3. On the other

hand, since λ1 = x(p′
1) is root of the polynomial, it follows from (4.5.2) that p ′

1 is a zero
of y. Thus p′

1 is one of the points p1, p2, p3 and since p′
1 is different from p2 and p3, we

have necessarily p′
1 = p1. Hence p1 is different from p2 and p3. We conclude that the 3

points p1, p2 and p3 are different and that the function x takes 3 different values on these
three points. As the latter values are roots of the polynomial, it follows that the discriminant
g 3

2 − 27g 2
3 of the polynomial is non-zero.

Hence the elliptic curve X(g2, g3) is defined, and we have obtained a map from X to
X(g2, g3). It follows as in the proof of (3.6) that the map is bijective. Hence it is an
isomorphism of Riemann surfaces and of elliptic curves.

(4.6) Note. Given an elliptic curve (X, o). By (4.5), (X, o) is isomorphic to the elliptic curve
X(g2, g3). Moreover, (g2, g3) are unique up to the transformation defined in (4.5). It follows
that the following complex number,

j (X, o) := 123g 3
2

g 3
2 − 27g 2

3

.

is a well defined invariant of the elliptic curve. The invariant characterizes the elliptic curve,
that is, two curves (X, o) and (X′, o′) are isomorphic if and only if j (X, o) = j (X′, o′).
Indeed, assume that the two invariants are the same. Then, by (3.7), with an obvious notation,
we have the equations g′

2 = λ4g2 and g′
3 = λ6g3 with a non-zero scalar λ. Hence the two

curves are isomorphic.
As noted in (4.1), every elliptic curve X(g2, g3) has a parameterization x = ℘(u), y =

℘ ′(u) with a Weierstrass ℘-function defined by a suitable lattice �. Therefore, it follows
from (4.5) that every abstract elliptic curve (X, o) is isomorphic to torus C/�.
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(4.7) Exercise. Prove the addition formula for the ℘-function: Let u, v and w be complex
numbers in the complement of �. Assume that u+ v + w belongs to �. Then,

∣∣∣∣∣
℘(u) ℘ ′(u) 1
℘(v) ℘ ′(v) 1
℘(w) ℘ ′(w) 1

∣∣∣∣∣ = 0.
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automorphic factor, Autm.1.1
automorphic form, Autm.4.8
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axis, Möb.3.13
balanced, Möb.1.3
Bernoulli numbers, App.1.1
Bernoulli numbers, App.1.16
boundary segments, Discr.3.2
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Cayley transformation, Möb.1.5
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congruence subgroup, Mdlar.3.1
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cross ratio, Möb.1.6
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elliptic orbit, Discr.1.4
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Fuchsian group, Discr.3.15
fundamental domain, Discr.3.1
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�-order, Autm.4.5
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homogeneous, Möb.1.4
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integral form, Autm.4.8
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irregular cusp, Discr.1.4
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j -invariant, Autm.2.5
Klein’s j -invariant, Autm.2.5
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limit rotation, Möb.3.13
line in D, Möb.3.2
linearly equivalent, Autm.8.3
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loxodromic, Möb.2.1
Möbius transformation, Möb.1.1
modular group, Mdlar.1.1
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order, Autm.4.1
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parabolic matrix, Möb.2.1
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sign, Autm.3.3
special number, App.1.6
surface, Discr.5.1
θ -factor, Autm.2.6
θ -function, Autm.2.6
θ -group, Mdlar.3.3
τ -function, Autm.7.1
Theorem A, Autm.6.2
Theorem B, Autm.6.3
Theorem C, Autm.6.7
Theorem D, Autm.6.11
Theorem E, Autm.6.15
Theorem F, Autm.6.16
Theorem G, Poinc.1.7
Theorem H, Autm.8.9
translation, Möb.3.13
value, Autm.1.8
vertex, Discr.3.2
vertex, Discr.4.3
Weierstrass ℘-function, App.3.4
weight-k, Autm.3.16
width, Discr.3.16
width, Discr.4.4
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Special symbols:

Ak , special numbers, App.1.2
Ak(χ) , special numbers, App.1.6
Bk , Bernoulli number, App.1.1
Bk(χ) , Bernoullli numbers, App.1.16
D/� , closed orbit space, Discr.2.8
�(z) , discriminant, Autm.2.3
∂�(D) , Discr.1.1
degD , degree of divisor, Autm.8.3
δP , half turn, Möb.3.15
divϕ , principal divisor, Autm.8.3
df(u, v, w, z) , cross ratio, Möb.1.6
dist , non-euclidean distance, Möb.3.3
E , unit disk, Möb.1.8
η(z) , Dedekind eta-function, Autm.2.3
Ek , Euler number, App.1.1
Ek(z) , Eisenstein series, Autm.2.1
E
χ
k (z) , Eisenstein series, App.2.2

eu , order of elliptic point, Discr.1.4
g , genus, Discr.5.1
G(�, j) , integral forms, Autm.4.8
�(N) , congruence subgroup, Mdlar.3.1
�(1) , the modular group, Mdlar.3.1
Gk(z) , Eisenstein series, App.2.2
G
χ
k (z) , Eisenstein series, App.2.5

γu , canonical generator, Discr.1.4
�θ , theta group, Mdlar.3.3
�0(N) , congruence subgroup, Mdlar.3.1
H , upper half plane, Möb.1.8

h(α) , invariant of matrix, Möb.2.2
IC(f ) , path integral, Autm.8.1
J (γ, z) , denominator, Möb.1.1
j (z) , Klein’s invariant, Autm.2.5
jη(γ, z) , the η-factor, Autm.2.3
jθ (γ, z) , the θ -factor, Autm.2.6
κu , parameter, Autm.3.3
µ(�) , invariant of �, Discr.5.6
µn , group of nth roots of unity, Mdlar.1.1
M(�, j) , meromorphic forms, Autm.4.8
νe(�) , number of orbits, Discr.5.6
ord�u , the �-order, Autm.4.5
ωu , sign, Autm.3.3
℘(u) , Weierstrass function, App.3.4
PicX , Picard group, App.4.2
q = e2πiz/h , local parameter, Autm.5.2
ρl , reflection, Möb.3.15
s , speciel matrix, Möb.1.1
σ
χ
k (r) , divisor sum, App.2.2

S(�, j) , cusp forms, Autm.4.8
SL(D) , stabilizer of disk, Möb.1.8
t , special matrix, Möb.1.1
θ(z) , theta function, Autm.2.6
τ(χ, ζ ) , Gauss sum, App.2.1
th , translation matrix, Discr.1.2
τQP , translation, Möb.3.15
u , special matrix, Möb.1.1
χ(X) , Euler characteristic, Discr.5.1
χ4 , Dirichlet character, Poinc.3.1
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