Appendix I: Forudsaetninger, Notation

1.1 Logiske tegn

Fra logikken bruges fglgende tegn (konnektiver og kvantorer): (negation, “non”),
V (disjunktion, “eller”), A (konjunktion, “og”), = (implikation, “hvis-sa”), < (bi-
implikation, “hvis og kun hvis”), V (alkvantor, “for alle”) og 3 (eksistenskvantor,
“der findes”, “der eksisterer”).

Vi minder om at P V @ er sand, hvis og kun hvis mindst ét af udsagnene P
og @ er sande samt at P = () er sand, hvis og kun hvis 'P V @ er det. Her star
TPV Q for ("P) V @, idet " binder staerkere end V (og A). Konnektiverne 7,V og
A binder staerkere end = og <.

Notationsmaessigt benyttes ofte komma i stedet for A. F.eks. kan vi i visse
sammenhaenge skrive “P, () og R” i stedet for P A Q A R. Vedrgrende brug af
kvantorer indszttes ofte et kolon til tydeliggorelse, f.eks. Vz : P(x) ogVx3y : P(z,y).
En anden notationsmulighed er at bruge parenteser, f.eks. (Vz)Az). Vi bruger ofte
notation a la “Vz sa P(z) : Q(x)” for “Vz : P(x) = Q(z)”.

1.2 Konkrete maengder

f : Den tomme mengde. Har ingen elementer (Vx : z ¢ 0)

N : Mangden af naturlige tal: N = {1,2,---}

Ny : Naturlige tal og 0: Ny = {0,1,2,---}

Z: Hele tal: Z={---,-1,0,1,---}

Q : Rationale tal: Q = {p/q|p € Z,q € N}

R : Reelle tal: R = {z|x reel }

R : Udvidede reelle tal: R = R U {00}

R, : Positive reelle tal: R, = {z € Rjz > 0}

R, : Udvidelse af R, : R, = R, U {0, ¢}

R" : n-dimensionale reelle talrum: R® = {(z1, - ,2,)|z1 € R, -+ ,z, € R}

C : Komplekse tal: C = {a+ ibla € R,b € R}



C" : n-dimensionale komplekse talrum: C* = {(21,--- ,2,)|21 € C,--- , 2, € C}

[a,b] : Lukkede interval {z € Rja < z < b}
[a, b[: Halvabne interval {z € Rla < z < b}
la, b] : Halvabne interval {z € Rla < z < b}

Ja,b[: Abne interval {z € Rla < = < b}.

Med mindre andet papeges, er intervaller forudsat begraensede.

Vedrgrende regning med de udvidede reelle tal bruges “naturlige” vedtaegter samt
vedtaegterne 0- (+o00) =0, 0- “ikke defineret” = 0 og oo+ (—oc) = “ikke defineret”.

For a € R, er a* = max(a,0), a = —min(a,0), |a| = a* +a~. Vi har
a=a" —a".

Mangder noteres pa listeform, f.eks. x = {a, b, c}, eller ved brug af abne udsagn:
X = {z|P(z)}, f.eks. for det abne udsagn P(z): = ¢ z finder vi X = 0. To
maengder er identiske safremt de indeholder de samme elementer. Med brug af
sedvanlig notation for inklusion har vi derfor sekvivalensen

A=B& ACBANBCA.

En singleton er en mangde med kun ét element.

1.3 Maengdeoperationer

Foreningsmengde, fellesmaengde, produktmaengde, potensmaengde, differensmaeng-
de, symmetrisk differens, komplementermaengde og kvotientmaengde defineres ved

U4 = {zFiel:ze A},

i€l

(A4 = {zViel:ze A},

i€l

EIIAZ = {($1)261|V’L el:x; € Az};

P(X) = {AlAc X},
A\ B = {zlzr€ ANz ¢ B},
AAB = (A\B)U(B\A4)
CA = X\ A (nér det er underforstiet, at A C X),
X/R = {=kvivalensklasser} (nar R er given skvivalensrelation pa X).

Er (An)n>1 en fplge af meengder, skriver vi A, 1 A safremt A; C A, C --- og
A= Ap, og vi skriver A, | Asafremt Ay D Ay D --- og A= A,.



Er (A4;);cs en indiceret familie af maengder, siger vi, at familien er opad filtrerende,
hhv. nedad filtrerende, safremt der for alle endelige delmangder I af indeksmaengden
I findes et indeks iy € I saledes, at e, Ai C Aig, hhv. [, A 2 Ay, Disse
begreber indfgres ogsa for ikke-indicerede familier, se §5.

Vi skriver A; 1T A sifremt (A;)icr er opad filtrerende og A = J;.; A;. Vi skriver
A; | A safremt (A;)ie; er nedad filtrerende og A = [),; Ai.

Hvis maengderne i familien (A;);c; er parvis disjunkte, skrives af og til >, ., A; i
stedet for (., A; for at udtrykke dette forhold (varianter af notationen som A+ B
og A + Ay + - - - kan ogsa forekomme).

Hvis A D B, kaldes A\ B en egte differens og undertiden skrives A — B i stedet
for A\ B.

Der gelder en raekke oplagte maengdeteoretiske relationer (AUB = BU A, ---).
Der er grund til eksplicit at hafte sig ved de Morgans regler:

C (UAi) =()C4; C (ﬂA,-) = JC4, (1.1)

el el el el

1€l

og de distributive regler (i generel form): Lad I vaere en maengde (en indeksmaengde),
lad (J;)ier veere en familie af mengder (indeksmaengder) og lad (A;;)ier, jes; veere
et skema af maengder. Sa er

NUE; = UMNEu (1.2)

iel jed; (i) i€l
U ﬂ Ei,j = ﬂ UEi,jw (1'3)
i€l je; (i) i€T

hvor forenings- og faellesmaengde over (j;) er over alle (j;);cr sa j; € J; for alle i € I,
dvs. over alle (j;) € 'HIJi' Specielt, for I = N, J; = N for alle 7, er
1€

ﬂ U E"’m = U ﬂ En,mn: (14)

neNmeN (mp)eNN neN
UNEm = [ UEum. (1.5)
neENmeN (mp)eNN neN

Er A en delmangde af en “grundmeengde” X, og er Xy C X, defineres sporet
af A 1 Xy ved
tI"XO (A) =AnN X()

(“tr” = “trace”, spor).

1.4 Afbildninger

Skrives f : X — Y betyder det, at f er en afbildning af X ind ¢+ Y, dvs., vi
forudseaetter, at definitionsmeangden er hele X: Dm(f) = X. Verdimengden er
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Vm(f) = {y|Fx : y = f(x)}. Grafen for f (der kan identificeres med selve afbildnin-
gen) er maengden

graf (f) = {(z,y) € X x Yy = f(z)}.

Afbildningen er injektiv hvis vi af f(z;) = f(z2) kan slutte z; = x4, surjektiv
hvis Vy € Y3z : y = f(x) og bijektiv hvis den bade er injektiv og surjektiv. Billede
af A C X og urbillede af B C Y er givet ved f(A) = {f(a)la € A} og f1(B) =
{z|f(z) € B}. Visatter f'(y) = f'({y}), y-fiberen af f. Der gelder:

f(_LEJIAZ- = LJf(AZ-), (1.6)
f (QAZ- C OI f(4;) (“=7 hvis f er injektiv), (1.7)
! (UIB = LEJIf—l(Bi), (1.8)
7 (ﬂBi = (/7B (1.9)
foI(BB) = E]E;l(B). (1.10)

En injektiv afbildning af X ind i Y kaldes ogsa en indlejring af X i Y og vi
skriver f : X — Y for at udtrykke dette.

For afbildninger bruges ogsa m som notation. F.eks. kan vi sige, at aftbildningen
x ~ {x} er en indlejring af X ind i P(X) og vi kan definere den identiske afbildning
pa X, @dx ved forskriften x ~ x; x € X. Er Xy C X, defineres den naturlige
indlejring af Xo 1 X som indlejringen Xy <— X givet ved x ~ z; z € Xj.

Med A2 betegnes mangden af afbildninger af B ind i A. Idet n € N ofte identi-
ficeres med en standard n-mangde, gerne {0,1,--- ,n — 1} (eller {1,2,--- ,n}), er
X" meangden af afbildninger f : {0,1,--- ;,n—1} — X, hvilket kan identificeres med
mangden af n-tupler (zg, 1, - -, Tn_1) af elementer fra X. Der er altsa overensstem-
melse med den generelle eksponentnotation A og velkendt notation som X™. Idet
2 ={0,1} (faktisk er dette definitionen af 2 i den strgmlinede maengdelzere, men vi
kan ogsd teenke pa det blot som en identifikation), er 2% mengden af indikatorfunk-
tioner pa X, funktioner der kun kan antage vaerdierne 0 og 1. Indikatorfunktionen
hgrende til A C X betegnes 14 og er givet ved (14)(z) =1forz € A, (14)(z) =0
for x € CA. Med A ~ 14 har vi en naturlig bijektion mellem P(X) og 2%, hvorfor
vi kan identificere disse to maengder.

Sammensetningen af f 1Y — Zogg: X — Yer fog: X — Z givet ved

(fog)(z) = f(g9(x));x € X. Der gelder

(fog)(A) = f(g(A));

ACX, (1.11)
(fog)™C) = g (f C

CZ. (1.12)



Er Z = X og f o g = idx, er g en hgjre invers til f og f en wvenstre invers til
g. Af f o g = idx sluttes, at f er surjektiv og at g er en indlejring af X i Y. Er
g : X — Y givet, findes en venstre invers til g, og er f: Y — X givet og surjektiv,
findes en hgjre invers til f. Det sidste kraever udvalgsaksiomet. Er g :— Y en
bijektion, skrives ¢! for den entydigt bestemte inverse til f (det er underordnet,
om vi her taenker pa hgjre- eller venstre invers).

For f: X — Y og Xo C X betegner f|X, restriktionen af f til X, givet ved
(f1Xo)(z) = f(z); x € Xp eller, aekvivalent, f|Xy = f oidx,.

Lad X vere en produktmaengde: X = IL;;X;. X kan sa identifiseres som
mengden af afbildninger f : I — (J,; X; sa f(i) € X; for alle i € I. Teaenker vi pa
denne made, kan projektionsafbildningerne defineres ved at se pa restriktionerne til
delmangder af I. Praecist: Lad Iy C I og st X, = lg X;. Sa er projektionen af X

0

pad X, defineret som afbildningen f ~ f|Iy; f € X, altsa (z;)ier ™~ (Z4)ict,-
Lad f: X 2 Yogladnmx : X XY = Xognmy : X XY — Y vare de to
projektionsafbildninger hgrende til X x Y. Sa er

f(A) = @y (graf (f)N(AxY)); ACXK, (1.13)
f7H(B) = mx(graf (f)N(X x B)); BCY. (1.14)

Lad f; : X; = Y;; 1 € I veere en familie af afbildninger. Ved produktafbildningen
F = .IE—IIf,- forstas afbildningen F : .I;IIXZ- — .I;IIY;- givet ved F((z;)icr) = (fi(2s))icr-
Antag nu, at X; = X for alle 1 € I. Sa defineres diagonalafbildningen hgrende til
familien (f;)icr som afbildningen

Af,: X — 1IY,
el

i€l

givet ved x ~ (fi())ser- Vi har

Afi=1fio,
i€l

il
hvor 6 betegner diagonalindlejringen af X i 'HIXi = X! givet ved z ~ (;)ic;r med
1€

z; = x for alle ; € I. T gvrigt er Vm(6) diagonalen i X',

For kvotientmaengder X/R (R en @kvivalensrelation i X) og afbildninger skal
vi kun indfgre ét begreb nemlig den naturlige projektion af X pa X/R som er
afbildningen 6 : X — X/R karakteriseret ved x € 6(z) for alle z € X.

For afbildninger ind i R (eller andre maengder med ordningsstruktur, f.eks. R)
er det undertiden bekvemt at bruge en notation med opad- og nedad pile. F.eks.
indikerer notationen f, 1 f typisk, at (fn)n>1 er en folge af reelle funktioner pa X,
sa fi < fo < --- ogsa lim f,(x) = f(x) for alle x € X. Som saedvanlig betyder
f<g,at f(z) < g(x) for alle x € X.

Mere generelt kan vi se pa opad- og nedad filtrerende familier af funktioner. Lad
I veere en indeksmaengde og (f;)icr en familie af reelle funktioner defineret pa X. Vi
siger, at familien er opad filtrerende, hhv. nedad filtrerende, safremt der for enhver
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endelig delmaengde I, af I findes et indeks iy € I sa f; < f;,, hhv. f; > f;,, for
alle i € Iy. Vi skriver f; T f for at udtrykke, at (f;);cr er opad filtrerende og at
f(z) = sup{fi(z) | i € I} for alle x € X. Tilsvarende indfgres notationen f; | f.
Hvis f; T f, hhv. f; | f, siger vi, at f; filtrerer opad mod f, hhv. at f; filtrerer nedad
mod f. Notationen er i overensstemmelse med tidligere notation idet der gaelder
biimplikationerne 14, t 14 < A, T Aog 14, 1 14 & A, | A

1.5 Brolaegninger

Lad X vaere en maengde. En brolegning pa X er en ikke-tom delmaengde af P(X).
Eksempelvis er {#} og P(X) brolseegninger pa X. Er £ en brolaegning pa X, kaldes
(X, ) et brolagt rum. Undertiden omtales maengderne i £ som stenene i brolaegnin-
gen. For forenings- og faellesmaengde bruges enten kort notation: |JE& og [ & eller
mere udfgrlig notation: (J{E|E € £} og ({E|E € £}. Brolegningen & er en
overdekning af A C X safremt A C (JE. Og & er en klassedeling af X safremt
& er en overdaekning af X med ikke-tomme parvis disjunkte mangder (X C (J¢&,
EclE=E#0EcENFe&ENE#F=FENF=0). Som bekendt er der en
naturlig forbindelse mellem akvivalensrelationer og klassedelinger.

Er € en brolaegning pa X og X, en delmaengde af X, defineres sporbrolegningen
som brolegningen med sten Xo N E; F € &:

trxo(g) = {XO N E|E € g} = {tI‘XOE|E € g}
Er £ en brolaegning pa X defineres co-brolegningen som
co€ = {CEIE € &}.

Er € og F brolegninger pa X, er £ en delbrolaegning af F, hvis £ C F. Vi siger
ogsa, at £ er grovere end F eller at F er finere end £, hvis dette gaelder.

Er (X1,&1),- -+, (X, &) brolagte rum, betegner vi med (X, €) produktet af disse
rum, givet ved at X er produktmaengden X; x Xy x---x X, og & er produktbrolegnin-
gen

2(152' = {E1 X Fg X+« X EnlEl € 51, - B, € gn} (115)

Er (X;, & )icr en familie af brolagte rum og er indeksmzngden I uendelig, de-
fineres produktet af disse rum som (X, &), hvor X er produktmaengden .HIX,- og £
S

er produktbrolegningen
({i € I|A; # X;} er endelig)}. (1.16)



Til at udtrykke forskellig struktur for en brolaegning benyttes en kombination af
fglgende tegn:

C, \, —, A, Uf, Ue, Ua, Nf, N¢, Na, Lf, Xe, Xa, Ue, Ua, Ne, Na. (1.17)

Til forklaring: “0” = komplement; “\” = differens; “~” = =gte differens;
“A” = symmetrisk differens; “Uf” = endelig foreningsmangdedannelse (“f” =

(1Pl

“finite”. endelig); “Uc” = teellelig foreningsmaengdedannelse (“¢” = ”countable”,
teellelig); “Ua” = vilkarlig foreningsmaengdedannelse (“a” = “arbitrary”, vilkarlig);
“Nf” hhv. “Nc” og “Na” = tilsvarende begreber, men for fallesmangdedannelse;
“Sf7 hhv. “¥c¢” og “¥a” = disjunkt foreningsmangdedannelse for endelig hhv.
teellelig og vilkarlig mange mangder; “Uc” = stigende foreningsmaengdedannelse
for fglger; “Ua” = stigende foreningsmaengdedannelse, men for vilkarlige opad filtre-
rende systemer; “N¢” = dalende feellesmaengdedannelse for fglger; “Na” = dalende
faellesmaengdedannelse, men for vilkarlige nedad filtrerende systemer.

Til yderligere forklaring tjener fglgende eksempler: En (C, Uf)-brolaegning eller
en (C,Uf)-lukket broleegning eller en broleegning lukket under (C,Uf) er en brolseg-
ning &, der er lukket under komplementaermangdedannelse (4 € £ = (A € €) og
endelig foreningsmaengdedannelse (n € N4, € £,--- A, € E = A U---UA, €
E). En (Nf,Ua)-lukket brolegning er en brolaegning &£, der er lukket under en-
delig feellesmaengdedannelse (£, C &,& endelig = (& € &) og vilkarlig for-
eningsmaengdedannelse (&g C &€ = (J& € &). En (Zc¢,Ne)-lukket brolegning
er en brolaegning, der er lukket under teallelig disjunkt foreningsmaengdedannelse
(A, € &€ for n > 1, (A,)p>1 parvis disjunkte = XA, = 7T A, € &) og dal-
ende fxllesmaengdedannelse for folger (A, € Eforn > 1, A, | A = A € §).
En (Ua, Na)-lukket brolaegning er en brolsegning der er lukket under stigende foren-
ingsmaengdedannelse og dalende feellesmaengdedannelse (A; € £ forallei € I, A; 1+ A
eller A; | A= A€é).

I tilslutning til det sidste eksempel indfgres fglgende notation for broleegninger:
E 1T Abetyder, at A =] €& og at & er opad filtrerende, dvs., for & C £ og &, endelig,
findes Ey € &, sa |JE C Ey. Tilsvarende betyder £ | A at A =€ og at £ er
nedad filtrerende, dvs. & C &, & endelig = JE, € € : Ey C ()&

Vi kan ogsa inddrage faste maengder, typisk @ eller grundmaengden X, i vores
notationssystem. Hvis f.eks. £ er en brolsegning, der er (Uf, Nf)-lukket og indeholder
() og X, kan vi give udtryk for dette ved at sige, at £ er (0, X, Uf, Nf)-lukket.

Er X en mangde, kan man tale om typer af brolegninger pa X. F.eks. er
typen af (C, Uf)-brolaeegninger p4 X maengden af (C, Uf)-lukkede brolaegninger pa X .
Bemark, at P(X) tilhgrer enhver type af brolseegninger pa X og at faellesmaengden
af en vilkarlig familie af brolaegninger tilhgrende samme type igen tilhgrer denne
type. Derfor giver det for en vilkarlig type 7 (7 kunne f.eks. vaere givet ved listen
(G, Uf) eller en vilkarlig anden liste fra vores udvalg (17) af symboler) og en vilkarlig
brolaegning £ pa X mening at tale om den groveste brolegning af type 7, der er
finere end £. Denne kalder vi 7-brolegningen frembragt af £ eller T-afslutningen af
& og vi bruger herfor betegnelsen cl.(£) (“cl” = “closure”, afslutning). F = cl(£)
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er karakteriseret ved de tre krav

ECF
F er af type 7
ECG, Gaftyper = F CG.

F.eks. er clg ) (€) den groveste brolegning, finere end £, som er lukket under
komplementaermangdedannelse og endelig foreningsmaengdedannelse.

Hvis « star for enten “f”, “c” eller “a”, skriver vi tit £, i stedet for cl,,(E)
0g Ena 1 stedet for cln,(€). Tillige er det anerkendt standard at skrive &,, hhv.
Es 1 stedet for £, hhv. En.. Sa &, = Eu. = cluc(€). Meengderne i &, kaldes
E,-meaengder (“E-sigma-maengder”); det er maengder der kan skrives som tallelige
foreningsmeengder af maengder i £. Tilsvarende er & = &, = ¢l (€), 0g mangderne
i & kaldes Es-maengder (“E-delta-maengder”) og er maengder, der kan skrives som
taellelige faellesmaengder af maengder i €.

Brolaegninger som &5, og £,4 star for hhv. (&), og (€,)s og en maengde i &y,
hhv. &,5 hedder en &s,-mengde (“E-delta-sigma-maengde”), hhv. en E,5-mengde
(“E-sigma-delta-maengde” ).

Af de distributive love (2) og (3) ses, at safremt « star for enten “f”, “c” eller
“a”, geelder

Cluf,ma(g) = 5uf,ma, (1-18)
Clmf,Ua (8) = gﬂf,Ua (1-19)
F.eks. har vi
Cluf,mf(g) guf,mf = gﬂf,va (1-20)
Cluf,mc(g) = gUf,ﬁc = gUf,(Sa (1-21)
Clnf,Uc (5) = gﬂf,Uc = gﬂf,oa (1-22)
Clﬂf,Ua(g) = gﬂf,Ua- (1-23)

1.6 Ordningsrelationer

Lad (X, <) veere en mangde med en relation “<”. Vi taler om en preordning, hvis
< er refleksiv (Vx : x < ) og transitiv (x < y,y < z =z < z), om en ordning hvis
< tillige er antisymmetrisk (x < y,y < x = x = y) og om en total ordning, hvis
yderligere VaVy : x < yVy < z gelder. Af og til tales om en partiel ordning i stedet
for blot en ordning. Vi skriver x < y, hvis 2 < y og (y < z).

Den diffuse preordning i X er givet ved at x < y for alle z,y € X. Den
sedvanlige ordning i R betegnes < (z <y < y—x € Ry U{0}). Den punktvise
ordning i RT er givet ved f < g & Vt € T : f(t) < g(t). Inklusion “C” er en
ordning i P(X). Er (X, <) og (Y, <) totale ordninger, defineres den leksikografiske



ordning i X x Y ved (z,y) < (,y) ez <2 V(e=2" ANy <y). Er (X,<)en
praeordning og Xy C X, definerer restriktionen af < til X, en praeordning i Xy, den
inducerede praeordning i Xj.

Lad (X, <) vere en praeordning. Sa er x € X et maksimalt element i X safremt
Vy € X :(y > z). Og x er en gure grense eller majorant for A C X safremt
Va € A :a < x og en mindste gure grense for A safremt x er en gvre graense for A
og x < z' for enhver anden gvre graense z’ for A. Safremt (X, <) er en ordning, er en
mindste gvre graense entydigt bestemt og vi kan sa anvende velkendt notation som
sup A eller sup{z|z € A}. Tilsvarende begreber indfgres i forbindelse med notation
som inf A. Ordningen (X, <) er fuldstendig safremt enhver delmzengde A C X der
har en gvre graense har en mindste gvre granse og enhver delmangde, der har en
nedre granse, har en stgrste nedre graense.

Som bekendt er R fuldstendig i den saedvanlige ordning, mens Q eller R\ Q ikke
er det.

Zorn’s Lemma er folgende resultat: Safremt den praeordnede maengde (X, <)
er induktivt ordnet dvs. enhver delmaengde X, C X, der er totalt ordnet har en
gvre greense i X, sa har X et maksimalt element. Resultatet heenger sammen med
udvalgsaksiomet.

Hvis relationen < pa X er antisymmetrisk og opfylder betingelsen, at enhver
ikke-tom delmaengde A af X indeholder et forste element (A C X A A # (0 =
da € AVb € A : a < b), kaldes < en velordning. En velordning er en total ordning.
Eksempelvis er (N, <) en velordning.

Er (X, <) en velordnet maengde og z et element i X, defineres venstreafsnittet
V(z) bestemt ved x som maengden af y € X med y < z.

Teorien for velordnede maengder udnyttes til at opbygge ordinaltallene. Teorien
ligger ogsa bag principperne for transfinit induktion og rekursion. Vi skal i neeste §
ngjes med at se pa et specielt ordinaltal. For en mere generel diskussion, se f.eks.
(Hrbacek og Jech, 1978) eller (Topsge, 1998).

1.7 Isser om ordinaltallet w;, induktion og rekur-
sion

Der galder folgende resultat (bygger pa udvalgsaksiomet): Der findes en overtellelig
velordnet maengde (X, <), sa ethvert venstreafsnit er telleligt.

Man kan vise, at denne mangde er entydigt bestemt, i den forstand, at en-
hver anden mangde med samme egenskaber er ordensteoretisk isomorf med maeeng-
den. Maengden X er pr. vores definition simpelthen lig med ordinaltallet w,. En
strgmlinet behandling af maengdelaeren vil vise, hvordan w; kan defineres helt prae-
cist, sa man ved, preecis hvilken udgave af X — der jo kun er bestemt pa naer isomorfi
— man far fat pa.

Elementerne i X (nogle af dem) har bestemte navne. Da X # (), har X et forste
element. Det kaldes 0 (i den strgmlinede maengdelzere, er det elementet 0). Dette



element er karakteriseret ved at V(0) = (). Da X \ {0} # 0, har denne mangde et
forste element. Det kaldes 1 (det er 1). Saledes fortsattes og man finder elementer
med navnene 0,1,2,---, ja det er tallene 0,1,2,---. Bemark, at for alle n er

V(n)=40,1,---,n— 1},

sa V(n) indeholder praecis n elementer; n =0,1,---.

Da X \ {0,1,---} = X \ Ny er ikke-tom (thi X er overtellelig), findes et fgrste
element i X \ Ny. Det hedder w. Elementerne i X er alle ordinaltal. Vi siger, at
et ordinaltal z € X er endeligt, teelleligt eller evt. har en anden egenskab, safremt
venstreafsnittet har den pagaldende egenskab. Vi kan sa karakterisere w som det
forste uendelige ordinaltal (V(w) = Ny er jo uendelig og for n < w er V(n) =
{0,---,n — 1} endelig).

Da X er stor (overtzllelig), kan vi fortsaette med at give elementerne i X navne:
wH+lw+2,-- w2,w2+1,--- w3, wd+1,---,--- ,w2,--- ,w3,--- JwY e
w*,--+ g1, -. Se evt. (Topsge, 1998). Pracis, hvordan det sker er ikke vaesentligt
for os. Pa denne made far vi et billede af X som en lang raekke, ordinalraekken (op

til wy). Hvis vi tilfgrer w; som “rosinen i pglseenden”, ser billedet nogenlunde sadan
ud:

Figur 1

Bemaerk, at alle konstruerede ordinaltal er tallelige. Fgrst nar vi nar helt ud
til wy; — som vi, trods det, at w; &€ X, ogsa vil opfatte som et ordinaltal — fas et
overtalleligt ordinaltal idet V (w;) = X som er overtallelig. Vi kunne fortsaette ud
over wy og indfgre nye ordinaltal. Men w; er allerede “godt langt ude” og vi far
ikke brug for stgrre ordinaltal i elementaer malteori.

Vi bruger tit interval-notation, f.eks. [0, o[ for V(o) = {z|z < a}, hvor « er et
ordinaltal. Vi har:

(1) [0, w] er overteaellelig,

(ii) Ya < wy : [0, af er teellelig,

(iii) YA C [0,w[: A teellelig = I <wiVa € A:a < S,
(iv) VA C [0,w[: A teellelig = sup A < wy.

Egenskaberne (i) og (ii) er gentagelser, men med brug af intervalnotationen. Den
centrale egenskab (iii) vises som fplger: Lad A = {a4, as,---}. Da hvert a, er < wy,
er maengderne [0, a,[; n > 1 alle teellelige. Sa er ogsa A* = |J7°[0, a,| teellelig. Da
X = [0, w] er overtallelig, er X \ A* ikke tom. Veelg f € X \ A*. Saer f < w; (thi
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B € X) og for alle n, ma a,, < 8 (var § < a,, ville 3 € A*!). Herved er (iii) vist.
Egenskaben (iv) er blot en lille skaerpelse af (iii), der fremstar ved i beviset for (iii)
at se pa det forste element 51 X \ A*.

Ordinaltallene deles i tre kategorier: 0, efterfalgere og grenseordinaltal. Der
er altsa kun ét ordinaltal af forste kategori, nemlig 0. I anden kategori har vi alle
efterfglgere, dvs. alle ordinaltal «, der kan skrives som 3+ 1 (dvs. der findes (3, sa «
er det forste ordinaltal, der er stgrre end 3). I sidste kategori har vi graenseordinal-
tallene, der simpelthen er ordinaltal, der ikke tilhgrer en af de to fgrste kategorier
(sa v er et greenseordinaltal betyder, at v > 0 og Vo < y3B: a < B < 7).

Ethvert ordinaltal o kan pa entydig made skrives pa formen v + n, hvor v enten
er 0 eller et greenseordinaltal og n € Ny. Hvis n er lige, er a et lige ordinaltal, mens
a er et ulige ordinaltal, hvis n er ulige.

Induktion og rekursion kan gennemfgres over et vilkarligt ordinaltal. For or-
dinaltallet w fas sedvanlig induktion og rekursion. Induktion udnyttes til at bevise
egenskaber, rekursion til at konstruere objekter. Det er let at pracisere, hvad in-
duktion gar ud pa:

Lad « vaere et ordinaltal (tilfzeldene @ = w og o = wy er seerligt vigtige). Hvis
A C [0, af og implikationen [0, B[C A = (3 € A gelder for alle § < « (obs.: ogsa
for 5 =0), sa er A = [0,[. Hvis vi i stedet for ovenstaende implikation om A
forlanger, at 0 € A, at € A = [+ 1 € A og at det for ethvert graenseordinaltal
v < a geelder, at [0,7[C A = v € A, sa kan vi ligeledes slutte, at A = [0, . Disse
resultater, her anfgrt i to varianter, er induktionsprincippet for induktion over a. Er
a = w fas velkendte principper for induktion over N (eller Ny).

Lad igen « veere et ordinaltal. Princippet for rekursion over « vil vi kun for-
mulere lgst. Onsket er, i en given situation, at knytte et entydigt bestemt objekt
til ethvert ordinaltal 3 < «. Rekursionsprincippet siger, at hvis vi pa ethvert trin
ved, hvordan vi kommer videre, vil vort forehavende lykkes. Mere pracist skal det
galde for ethvert f < «, at safremt vi allerede har konstrueret alle de objekter,
der hgrer til ordinaltal i [0, 3], sa skal vi kunne angive objektet knyttet til 3. Ofte
vil dette krav veere opfyldt ved at vi 1) angiver, hvilket objekt der skal knyttes til
ordinaltallet 0, 2) for ethvert # < « angiver, hvordan objektet knyttet til 3 + 1
kan konstrueres ud fra objektet knyttet til § (forudsat § + 1 < «) og endelig 3)
for ethvert greenseordinaltal v < « angiver, hvorledes objektet knyttet til v kan
konstrueres ud fra objekterne knyttet til ordinaltal mindre end .

1.8 Uendelige maengder, kardinaltal

To mangder X og Y har samme megtighed, eller er @kvipotente, og vi skriver
card (X) = card (Y), safremt der findes en bijektion f : X — Y. Vi skriver
card (X) < card (Y), hvis der findes en indlejring f : X < Y og vi skriver card (X) <
card (Y) hvis card (X) < card (Y) og "(card (X) = card (Y)).

Udover banale egenskaber navnes Cantors Setning: card (X) < card P(X) og
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Cantor-Bernsteins ekvivalenssetning: card (X) < card (Y) A card (Y) < card (X) =
card (X) = card (Y).

Er card (X) = card (N), skrives card (X) = ¥y (“aleph-nul”), er card (X) =
card (R), skrives card (X) = 2% og hvis card (X) = card P(R), skrives card (X) =
22 Her er 2% kontinuets megtighed. Kardinaltallene Ry, 2% og 22 or de tre
vigtigste kardinaltal for uendelige mangder. Maske burde ogsa N;, som er givet
ved card ([0, w;[) = Ry henregnes til denne kategori. Kontinuumshypotesen siger, at
Nl == ZNO.

For endelige maengder bruges sseedvanlig notation, f.eks. card ({0,1,--- ,n—1}) =
n.

Ovenfor er Xy osv. rene skrivemader. I den strgmlinede maengdelzere er kar-
dinaltallene visse ordinaltal (nemlig de « for hvilke card ([0, 3[) < card ([0, «[) for
ethvert f < «) og man indfgrer szrlige navne til de uendelige kardinaltal. Uden at
vi skal diskutere det i detaljer naevnes, at man ved rekursion (i en meget generel
udgave) kan indfgre navne (X, ), hvor « kan veere et vilkarligt ordinaltal, saledes, at
enhver uendelig maengde X far tilknyttet et entydigt bestemt «, sa card (X) = N,
Fremgangsmaden er fglgende: Ny = w, for a er N,,; = fgrste ordinaltal 3, sa
card ([0, B[) > card (][0, R,[) og endelig er R, = sup{R,|a < v}, hvis 7 er et graense-
ordinaltal.

For kardinaltal k og )\ indfgres sum & + A\, produkt k- \ og eksponentiering k
pa fglgende made: Valg disjunkte maengder X og Y, sa card (X) = &, card (Y) = A.
Saer k+ X =card(XUY), k- A =card (X-Y) og k* = card (XY). Udover banale
regneregler navnes, at for et vilkarligt uendeligt kardinaltal , er k- Kk = k. Det er
nok den vigtigste regneregel for uendelige kardinaltal. Ud fra den kan man let vise
folgende regler, der forudsatter, at x er uendelig og, i (25), at A > 2:

K+ A = k-A=max(k,\), (1.24)
A<k = 2°=)% (1.25)

Beviset for (25) fores ved at udnytte den banale (?) regneregel (k*)* = k** (ud-
nyt, at der er en naturlig bijektion mellem (X¥)? og XY*#) sammen med overve-

jelsen:
ok S AE S (2A)n — 2)\-n — 9K

Fglgende sprogbrug er valgt og anvendes (forhabentlig!) konsekvent: “numer-
abel” star for “af kardinalitet Ny” og “tallelig” star for “af kardinalitet < N;”.

1.9 Fglger og net

Ved en mengde med retning forstas en pracordnet maengde (I, <) sa enhver endelig
delmengde af I har en gvre grense. F.eks. er (N, <) en mangde med retning.

Lad X veare en maengde. Ved et net i X eller en generaliseret folge i X forstas
en afbildning af en meengde med retning ind i X. Vi foretraekker en notation som
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(Za)aer for et net i X. Lad Xy C X. Vi skriver z, € Xy fv.t. (fra et vist trin)
safremt Jay € IVa > g : x4 € Xy. Vi skriver z, € Xy uv.0. (uendelig ofte) safremt
Yoo € Ida > oy : x, € Xy. Vi har

Wzy € Xo fvit.) & x4 € 0(X) uoo., (1.26)
Wz € Xp 1.0.) & x4 € 0(Xg)fv.t.. (1.27)

Er (I, <) og (J, <) to maengder med retning og er 3 ~ as en afbildning af J ind
i I saledes, at Yag € I : ag > ap f.v.t. (altsa: Yoo € 136y € JVB > [y ag > o),
siges (Za,)pes at veere et delnet af (T )acr-

Lad (@n)n>1 veere en sedvanlig folge i X. For enhver mengde £ C X kan
vi udtynde fplgen (xn)n>1 til en delfplge (z,,,)m>1 saledes, at enten vil delfglgen
“bekende sig” til maengden E eller til komplementet CE i den forstand, at enten
vil x,,, € E f.v.t. eller ogsa vil x,,,, € CF f.v.t. Ved et diagonalrsesonnement indses
sa, at fplgende resultat geelder: Lad X veare en mangde, lad (z,,) vaere en folge i X
og lad £ vare en numerabel brolaegning pa X. Sa findes en delfglge (x,,,) saledes,
at det for enhver mezengde E € & enten geelder, at z, € E f.v.t. eller at z,, € (F
fv.t.

Nar man i stedet for fglger ser pa net, kan ovenstaende generaliseres kraftigt,
idet man som & kan tillade hele potensmaengden P(X). Vi siger, at et net i X er et
universalnet i X safremt det for enhver delmaengde E af X enten galder, at nettet
f.v.t. ligger i E eller, at nettet f.v.t. ligger i komplementseermaengden CE. Der geelder
sa, at ethvert net har et universelt delnet (V(zo) net i X 3 delnet (zq,) : (Tay) er et
universalnet). Dette resultat kreever udvalgsaksiomet.

1.10 Begreber fra den generelle topologi

Et topologisk rum er en maengde X med en (0, X, Ua, Nf)-broleegning. Brolagnin-
gen hedder topologien pa X og maengderne i brolaegningen hedder de abne mengder.
Ofte taler man om “det topologiske rum X”. Brolaegningen af abne mangder beteg-
nes G(X) (“G” for “Gebiet”).

Brolaegningen F(X) = coG(X) er brolaegningen af lukkede eller afsluttede maengder
(“F” for “fermé”).

Er X et topologisk rum og A C X, betegner vi med int(A) = A den stgrste
abne maengde indeholdt i A og med A den mindste lukkede maengde indeholdende
A; int(A) er det indre af A og A er afslutningen af A. Hvis A = X, er A tet i X.
Findes en teellelig taet maengde, er X separabelt.

Er G(X) = clgx,uant)(Go), er Go en subbasis for topologien. Af (23) ses, at sa
bestar G(X) af ) og X samt alle foreningsmeengder af endelige faellesmaengder af
meangder i Gy. Brolaegningen Gy er en basis for topologien G(X) safremt G(X) bestar
af () samt alle foreningsmaengder af maengder i Gy. Er £ en brolegning pa X, er £
en basis for en topologi, hvis og kun hvis (J{E|E € £} = X ogvi af x € E; N E,
med F; € £ og Fy € € kan slutte, at x € £ C E; N E; for en maengde F € £.
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Hvis der findes en tallelig basis for en topologi, siger vi, at topologien opfylder 2’det
tellelighedsaksiom.

Opfylder X 2’det teallelighedsaksiom, er X separabelt og et hereditert Lin-
deldfrum, dvs. for alle G C G(X) findes Gy taellelig, sa Go C G og UG = UJG.

Ved en omegn til et punkt z i det topologiske rum forstas en maengde N, for
hvilken der findes GG aben, sa x € G C N. Ofte er det underforstaet, at en maengde,
der betegnes N(z) er en omegn af z (IV for “neighbourhood”, omegn). Et Hausdorff-
rum er et topologisk rum sa Vz # z'dN(z)aN(z') : N(z) N N(z') = (. Generelt
galder, at

A = {213N(z): N(z) C A}, (1.28)
A = {z|VN(z): N(z)n A #0}. (1.29)

Lad (z4) = (%q)acs veere et net i det topologiske rum X og lad = € X. Vi siger,
at (x4) er konvergent med grensepunkt r safremt VN (z) : z, € N(z) fv.t. og i
sa fald skrives lim;z, = z, limz, = z eller z, — z. Er X et Hausdorffrum, er
graensepunktet entydigt bestemt (z, — A 24 = 2 = 2 = 2').

En maengde F' C X er lukket, hvis og kun hvis graensepunktet for ethvert kon-
vergent net pa F tilhgrer F' ((z,) C F A o, — x = © € F). Mere generelt har vi,
for en vilkarlig delmaengde A C X:

A={z|3(z,) CA:1q — 1z}, (1.30)
og den “duale” egenskab
A={o|V(z4) : 2a = 7= 3, € Afvt.}. (1.31)

Er X = (X,6(X)) og Y = (Y,G(Y)) topologiske rum, siges f : X — Y at
veere kontinuert safremt VG € G(Y) : f1(G) € G(X). Dette er kvivalent med
at konvergens bevares for net, dvs. af (z,) net pa X med z, — z folger f(z,) —
f(z). Visiger, at f: X — Y er kontinuert i zo € X safremt VN(f(x))3IN (o) :
f(N(z9)) € N(f(x0))- Dette er aekvivalent med at vi af z, — o kan slutte, at
f(@a) = [ (o).

Som bekendt er (X, d) et metrisk rum safremt d : X x X — R opfylder kravene
Va1, 2o @ d(z1,29) > 0; d(x1,22) = 0 & 21 = 295 V1,29 @ d(x1,22) = d(z9,21);
Va1, 2o, x3 1 d(z1,23) < d(z1,22) + d(z2,23). Den dbne kugle med centrum z € X
og radius 7 > 0 er maengden B(x,r) = {y|d(z,y) < r}. Brolaegningen af endelige
feellesmeengder af abne kugler er basis for en topologi, den metriske topologi eller
topologien induceret af metrikken d. I denne geelder, at x, — x hvis og kun hvis
d(zq,x) = 0. Er (Y, p) ogsa et metrisk rum, er en afbildning f : X — Y kontinuert
(m.h.t. de metriske topologier) hvis og kun hvis VzVe > 036 > 0 : f(B(z,9)) C
B(f(z),e). Et topologisk rum er metriserbart, hvis der findes en metrik pa rummet
som inducerer topologien.

Talrummene R har en naturlig metrik, den Euklidiske metrik, givet ved d(z,y) =
(0 (z; — ;)22 for z = (x4, ,Zn), ¥y = (Y1, -+ ,yn). NAr vi taler om topologiske
egenskaber for R”, taenkes altid pa topologien induceret af denne metrik.
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En afbildning f : X — R, hvor X er et topologisk rum er nedad halvkontinuert
(Ls.c., “lower semi comtinuous”) safremt maengderne {f > a} er abne for allea € R.
Er f ls.c. og (z,) en konvergent folge pa X, lad os sige z, — =z, vil f(z) <
liminf f(z,). En tilsvarende egenskab gelder for konvergente net og egenskaben
udvidet til net karakteriserer l.s.c. egenskaben. Afbildningen f : X — R er opad
halvkontinuert (u.s.c., “upper semi continuous”) safremt maengderne {f < a} er
abne. Hvis f er u.s.c. og z,, = x, vil limsup f(x,) < f(z). Viser, at f er kontinuert
hvis og kun hvis f er savel l.s.c. som u.s.c.

En delmangde K af et topologisk rum X er kompakt safremt ethvert universalnet
pa K konvergerer mod et punkt i K. Dette er ensbetydende med at ethvert net
pa K har et delnet, der konvergerer mod et punkt i K og egenskaben kan ogsa
karakteriseres ved at enhver overdakning af K med abne mangder har en endelig
deloverdackning (Heine-Borel’s overdekningsegenskab). Hvis X € K(X), er X et
kompakt topologisk rum. Er K kompakt og F' lukket, er K N F kompakt. Er X
metriserbar, er K C X kompakt, hvis og kun hvis K er lukket og falgekompakt, dvs.
enhver fglge pa K har en konvergent delfglge.

Brolaegningen af kompakte delmaengder af X bensevnes K(X). Er X et Hausdorff
rum, er K(X) en (0, Uf, Na)-lukket delbrolegning af F(X) og endvidere er K(X)
en kompakt brolegning, dvs. safremt Ky C K(X) har den endelige fellesmengdee-
genskab (Koo C Ko, Koo endelig = (Koo # 0), sa er (Ko # 0 (denne egenskab er
akvivalent med at man af Ko C K(X) og Ko | 0, kan slutte § € Ky).

Er K; og K, disjunkte mangder i et Hausdorff rum, findes disjunkte abne
mangder G og G sa G; 2 K1,Gy O K.

I R" er KL(R™) brolaegningen af lukkede og begraensede mengder. Er (X, d) et
metrisk rum og er metrikken fuldstendig, dvs. er enhver Cauchy-folge konvergent
(limy, 5 00,m—00 A(Tn, Tm) = 0 = 3z : x, — ), sa er K C X kompakt, hvis og kun
hvis K er lukket og totalt begranset (dvs. Ve > 03X endelig: K C |J{B(z,¢)|z €
Xo})-

Man kan danne “nye”topologiske rum ud fra “gamle”. Vi navner kun to kon-
struktioner. Er X et topologisk rum og Xy C X, er try,(G(X)) en topologi pa Xo,
sportopologien eller den relative topologi pa Xo. 1 denne er (pr. definition) G(X,) =
trx, (G(X)) og F(Xp) = trx,(F(X)). Derimod er kompakthed et “absolut” begreb
i den forstand, at for en delmaengde A C X, gelder: A € K(X,) & A € K(X).

Er (X;, G(X;))ics en familie af topologiske rum, defineres produkttopologien
(X,G(X)) ved at X = IT;c; X; og ved at X;c;G(X;) er en basis for G(X). Topologien
kan ogsa beskrives som topologien for koordinatvis konvergens idet konvergens for
et net pa X kommer ud pa konvergens for ethvert af de net, der kan dannes pa
koordinatrummene X;. For produkttopologien gezlder Tychonof’s Setning, at X
er kompakt hvis og kun hvis X; er kompakt for alle # € I. Er alle rummene X;
Hausdorffrum, da ogsa X = ILX;.
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1.11 Uendelige summer

Lad I vaere en maengde og i ~ a; en afbildning af 7 ind i R (eller i R, der dog
krzever visse modifikationer nedenfor). Lad D vare mangden af endelige ikke-tomme
delmangder af I. For o € D defineres afsnitssummen s, ved s, = X{a; | i € a}.
Idet vi forsyner D med ordningen “inklusion”, altsa o < f < a C 3, bliver D en
mangde med retning og (sq)eecp dermed et net pa R. Hvis dette net er konvergent
med en grenseveerdi s i R, kaldes symbolet Ya; = X;c;a; konvergent, s kaldes
summen (af a;’erne) og vi skriver ¥;cra; = s og tilleegger ¥;cra; vaerdien s.

Hvis a; > 0; i € I, er Xa; konvergent, hvis og kun hvis sup{s, | @« € D} < o0
og veerdien af summen er netop dette supremum. I dette tilfzelde (a; > 0; @ € 1)
skriver vi altid Xa; = sup{s,|a € D} ogsa hvis supremum er co.

Generelt er Ya; konvergent, hvis og kun hvis a; og Za; begge er konvergente.
Hvis enten Ya; = oo A Xa; < oo eller Yaf < oo A Xa; = oo, tilleegger vi ogsa
Ya; en vaerdi, nemlig 400 i fgrste, og —oo i andet tilfaelde. I alle tilfaelde, hvor Xa;
tilleegges en veerdi, er Ya; = Ya] — Ya; .

Er Ya; konvergent, er {i € I | a; # 0} tellelig, sa i en vis forstand reducerer
generelle uendelige summer til seedvanlige summer, hvor 7 = N.

Advarsel: Det indfgrte begreb for konvergens af uendelige summer ¥;c;a; som
indfgrt her svarer til absolut konvergens for ssedvanlige summer X,>a, og ikke
til saedvanlig konvergens af X,>1a, (her kan konvergensen jo veere betinget). I
malteorien er det indfgrte konvergensbegreb, altsa svarende til absolut konvergens,
det vigtigste — og i gvrigt giver betinget konvergens ingen mening for uendelige
summer over en abstrakt meengde I. For I = N udnyttes jo ordningen for at
indfgre betinget konvergens. Det saedvanlige konvergensbegreb for summer over N
er fastlast standard, hvorfor vi altid, nar I = N, med 3,,>1a,, 3,>1 f,(2) og lignende
sigter til det saedvanlige sum-begreb for uendelige raekker og eksplicit ma naevne,
hvis vi forlanger absolut konvergens.

At vores sumbegreb svarer til absolut konvergens ses ogsa af fglgende to vigtige
resultater: Er ¢ m~ (i) en bijektion af I pa I, er ¥cja; = Yicrapu). Er I =
Uje 7 I; en klassedeling af I, er ¥ic;a; = ¥jcsYicr;a;- Begge resultater skal forstas
i den staerkest taenkelige form (venstresiderne er veldefinerede, hvis og kun hvis
hgjresiderne er det, og er dette tilfaeldet gaelder, at de to sider er ens). Resultaterne
svarer til to klassiske resultater for absolut konvergente raekker: Dels, at leddenes
orden er vilkarlig, dels at vi kan satte parenteser efter behag i sadanne rackker.
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Appendix II. Malteoriens abstrakte brolsegninger,
en oversigt

I nedenstaende skema definerer de to farste sgjler forskellige typer af broleegninger
A; forst anfgres betegnelsen for brolaegninger af den betragtede type, dernaest defini-
tionen, der angiver hvilke operationer, denne type brolegninger er lukkede overfor (i
to tilfzelde anfgres saerlige ekstra betingelser, der indgar i definitionen). Tredie sgjle
angiver eventuel notation for en brolaegning af den betragtede type frembragt af
£. Endelig henvises i sidste sgjle til relevante steder i noterne, hvor brolaegningerne
optraeder.

Praecisering af definitionerne pa en semiring og en semialgebra: En semiring
hhv. semialgebra er en (), Nf)-lukket brolaegning, sa enhver differensmaengde af to
mangder fra brolaegningen, hhv. enhver komplementaermaengde til en maengde i
brolaegningen, kan skrives som en endelig disjunkt foreningsmangde af mangder fra
brolaegningen.

BETEGNELSE DEFINITION NOTATION HENVISNINGER
gruppe nf

ring \,Uf

gitter Juf,nf

semiring Nf; differenser € clye(.A)
semialgebra 0,nf, co(A) C clse(A)

algebra C,uf a(€)
monoton klasse Ue, Nc

Dynkin system C,>c

normal klasse Ye,Ne

o-gitter, Borelsk brol. Ue, Ne Bor(€)
o-Tring \, Uc

o-algebra, Borelstruktur C,Uc o(€)
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Appendix III. Uligheder i L,-rum

3.1 Funktionsrummene £,=L,(X,E, u),1 <p<oc.

Lad (X, E, ) veere et malrum med X # (), medens p er et reelt tal, 1 < p < oo.
En reel (eller kompleks) funktion f defineret pa X siges at veere p-dobbelt inte-
grabel med hensyn til p, hvis f er E-malelig og

[ 157 < 0.

Mangden af p-dobbelt integrable funktioner f : X — R (eller f : X — C)
betegnes £, = L,(u) = L,(X, E, p).

Bemark, at £ = £1(X, E, u) netop er maengden £ = L(X,E, u) af p-integrable
funktioner pa X. — I stedet for 2-dobbelt integrabel siges ogsa kvadratisk integrabel.
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Appendix IV. Transformationssatningen
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