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The purpose of this note is to give a detailed exposition of the construction of
norm maps in Milnor K-theory following the original papers of Bass and Tate [1]
and Kato [4]. Needless to say that we make no claim of originality.

The Milnor K-theory of a field k is defined to be the graded ring

KM
∗ (k) = TZ(k∗)/(x⊗ (1 − x) | x ∈ k r {0, 1})

and the class of x1 ⊗ · · · ⊗ xn is denoted by {x1, . . . , xn} and called a symbol. We
derive some immediate consequences of the relation that {x, 1−x} = 0. First, since
we can write −x = (1 − x)/(1 − x−1), we have

{x,−x} = {x, 1 − x} + {x−1, 1 − x−1} = 0.

This shows

{x, y} + {y, x} = {x,−x} + {x, y} + {y, x} + {y,−y} = {xy,−xy} = 0

so the Milnor ring is anti-symmetric. However, we have

{x, x} = {x,−(−x)} = {x,−1} + {x,−x} = {x,−1},

which is generally non-zero, so the Milnor ring is generally not alternating.

Proposition 1. Let K be a field, and let v be a normalized discrete valuation
on K. Let Ov ⊂ K be the valuation ring, let mv ⊂ Ov be the maximal ideal, and
let k(v) = Ov/mv be the residue field. Then there is a unique homomorphism

∂v : KM
n (K) → KM

n−1(k(v))

such that for all u1, . . . , un−1 ∈ O∗
v and x ∈ K∗,

∂v({u1, . . . , un−1, x}) = v(f){ū1, . . . , ūn−1},

where ūi is the class of ui in k(v)∗.

Proof. The uniqueness is clear since the symbols {u1, . . . , un−1, x} generate
KM

n (K) as a abelian group. To prove the existence, we choose a generator π ∈ mv

and show that there is map of graded rings

θπ : KM
∗ (K) → KM

∗ (k(v))[ε]/(ε2 − {−1}ε)

that to {πiu} with u ∈ O∗
v assigns {ū} + iε. An easy calculation then shows that

the homomorphism ∂v : KM
n (K) → KM

n−1(k(v)) defined by the formula

θπ(z) = ψπ(z) + ∂v(z)ε
1



maps {u1, . . . , un−1, x} to v(x){ū1, . . . , ūn−1} as desired. We have

θπ({πi1ui, π
i2u2}) = {ū1, ū2} + (i2{ū1} − i1{ū2} + i1i2{−1})ε

and must show this expression is zero whenever πi1ui + πi2u2 = 1. There are four
cases to consider. If i1 > 0, then i2 = 0 and ū1 = 1. So θπ({πi1u1, π

i2u2}) = 0.
Similarly, if i1 = 0, and i2 > 0, we have θπ(πi1u1, π

i2u2}) = 0. If i1 = i2 = 0,
then ū1 + ū2 = 1, so θπ({πi1u1, π

i2u2}) = 0. Finally, if i1 < 0, then i2 = i1 and
ū1 + ū2 = 0. In this case, we have

θπ({πi1u1, π
i2u2}) = {ūi,−ū1} + (i1{ū1} − i1{−ū1} + i21{−1})ε

= 0 + (i1{ū1} + i1{−1} − i1{ū1} + i21{−1})ε

= i1(i1 + 1){−1}ε

which is zero, since i1(i1 + 1) is even. This proves the claim. It is now an easy
calculation to see that the map ∂v given by the formula

θπ(x) = ψπ(x) + ∂v(x)ε

is given by the stated formula and, in particular, is independent of the choice of
generator π ∈ mv. �

By definition, ∂v : KM
1 (K) → KM

0 (k(v)) takes {x} to v(f). It is also not difficult
to see that ∂v : KM

2 (K) → K1(k(v)) takes {x, y} to {(x, y)v}, where

(x, y)v = (−1)v(x)v(y)yv(x)x−v(y)

is the tame symbol.

Lemma 2. Let K be a field, and let v be a discrete valuation on K. Let L be
a finite extension field K, and let w be a discrete valuation on L that extends v.
Suppose that mvOw = m

ew/v
w . Then the following diagram commutes:

KM
n (L)

∂w
// KM

n−1(k(w))

KM
n (K)

∂v
//

jL/K∗

OO

KM
n−1(k(v)).

ew/vjk(w)/k(v)∗

OO

Proof. Indeed, if u1, . . . , un−1 ∈ O∗
v and x ∈ K∗, then

∂w({u1, . . . , un−1, x}) = w(x){ū1, . . . , ūn−1} = ew/vv(x){ū1, . . . , ūn−1}

as stated. �

We shall now state the theorem of Kato that characterizes the norm homomor-
phisms associated with a finite field extension; the proof occupies the rest of this
note. Let k(t) be the field of rational functions in one variable over a field k. Then

v∞(f) = − deg(f)

is a discrete valuation on k(t) that is trivial on k and for which t−1 is a generator of
mv∞

. Every other discrete valution v on k(t) that is trivial on k determines and is
determined by a monic irreducible polynomial πv ∈ k[t] that is a generator of mv,
and the residue field k(v) is k[t]/(πv).
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Theorem 3. There exists a unique family of natural homomorphisms

Nk′/k : KM
n (k′) → KM

n (k)

associated with finite field extensions k′/k such that Nk/k = id and such that the
reciprocity formula holds: Let k(t) be the field of rational functions in one variable
over a field k. Then, for all x ∈ KM

∗ (k(t)), the sum
∑

v Nk(v)/k(∂v(x)) that ranges
over all discrete valuations v of k(t) that are trivial on k is equal to zero.

Remark 4. We first note that for n = 0, we must define Nk′/k to be multipli-
cation by the index [k′ : k]. Indeed, this is the statement that for every f ∈ k(t)∗,

∑

v

[k(v) : k]v(f) = 0.

To see this, we recall that k[t] is a unique factorization domain with quotient field
k(t). Hence, for every f ∈ k(t)∗, we have

f = lead(f)
∏

v 6=v∞

πv(f)
v

where lead(f) ∈ k is the leading coefficient of f . Hence,
∑

v 6=v∞

[k(v) : k] · v(f) =
∑

v 6=v∞

deg(πv) · v(f) = deg(f),

and since v∞(f) = − deg(f), the statement follows.

We also note that for n = 1, we must define Nk′/k({x}) = {Nk′/k(x)} where on
the right-hand side Nk′/k is the usual norm that to x ∈ k′∗ assigns the determinant
of the endomorphism of the k-vector space k′ that is given by multiplication by x.
Indeed, if v is a valuation on k(t) that is trivial on k, then

∂v({f, g}) = {(f, g)v},

where (f, g)v is the tame symbol, and hence, the statement is equivalent to the Weil
reciprocity formula ∏

v

Nk(v)/k((f, g)v) = 1.

A proof is given in [1, Thm. 5.6].

We now begin the construction of the norm maps in general following Bass and
Tate [1]. The starting point is the following theorem of Milnor and Tate.

Theorem 5. There is an exact sequence of graded KM
∗ (k)-modules

0 → KM
∗ (k)

jk(t)/k∗

−−−−−→ KM
∗ (k(t))

(∂v)
−−−→

⊕

v 6=v∞

KM
∗−1(k(v)) → 0

where, on the right-hand side, the sum ranges over all discrete valuations v on k(t)
that are trivial on k and that are different from v∞.

Proof. We first note that the map

ψt−1 : KM
∗ (k(t)) → KM

∗ (k)

that takes {f1, . . . , fr} to {lead(f1), . . . , lead(fr)} defines a retraction of the left-
hand map of the statement. Now, let d be a non-negative integer, and let

Fild K
M
∗ (k(t)) ⊂ KM

∗ (k(t))
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be the subring generated by the symbols {f} ∈ KM
1 (k(t)) such that f ∈ k[t]∩k(t)∗

and deg(f) 6 d. The subring Fil0K
M
∗ (k(t)) is identified with the image of the map

jk(t)/k∗ : KM
∗ (k) → KM

∗ (k(t)),

which is split injective. We claim that, for d positive, Fild K
M
∗ (k(t)) is generated

as a left KM
∗ (k)-module by the symbols {π1, . . . , πr}, where π1, . . . , πr are monic

irreducible polynomials and 0 < deg(π1) < · · · < deg(πr) 6 d. Granting this for
the moment, we see that the maps ∂v induce an isomorphism

grdK
M
∗ (k(t))

∼
−→

⊕
KM

∗ (k(v))

onto the sum the KM
∗ (k(v)) such that v 6= v∞ and such that [k(v) : k] = d. Indeed,

if x = {π1, . . . , πr}, where π1, . . . , πr ∈ k[t] are monic irreducible polynomials and
0 < deg(π1) < · · · < deg(πr) 6 d, then ∂v(x) is non-zero if and only if πr = πv, and
in this case, ∂v(x) = {π̄1, . . . , π̄r−1}.

We prove the claim by induction on d starting from the case d = 1 which is
trivial. To prove the induction step, it suffices to show that if π, π′ ∈ k[t] are two
irreducible monic polynomials of degree d, then

Fild−1K
M
∗ (k(t)) · {π, π′} ⊂ Fild−1K

M
∗ (k(t)) · {π} + Fild−1K

M
∗ (k(t)) · {π′}.

To this end, we write π = π′ + f where f ∈ k[t] and deg(f) < d. If f = 0, then we
have {π, π′} = {π, π} = {−1, π}. And if f 6= 0, then (π′/π) + (f/π) = 1, so

({f} − {π})({π′} − {π}) = {
f

π
,
π′

π
} = 0,

and hence,

{π, π′} = {f, π′} − {f, π} + {−1, π}.

This completes the proof. �

Addendum 6. Let k be a field with the property that the degree of every finite
extension of k is a power of a fixed prime p, and let k′ be a finite extension of k of
degree p. Then KM

n (k′) is generated by symbols of the form {x, y2, . . . , yn} where
x ∈ k′∗ and y2, . . . , yn ∈ k∗.

Proof. In general, an extension k′/k is generated by a single element a ∈ k′

if and only if the set of intermediate extensions k ⊂ L ⊂ k′ is finite. In the case
at hand, there are no non-trivial intermediate extensions, since [k′ : k] is a prime,
and hence k′ = k(a), for some a ∈ k′. Let π be the minimal polynomial of a, and
let v be the discrete valuation on k(t)/k with πv = π. Hence, the proof of Thm. 5
shows that, as a KM

∗ (k)-module, KM
∗ (k′) is generated by symbols of the form

{π1(a), . . . , πr(a)}, where π1, . . . , πr−1 ∈ k[t] are irreducible monic polynomials
and 0 < deg(π1) < · · · < deg(πr−1) < p. Since there are no finite extensions of k of
degree prime to p, we have r−1 = 1 and deg(πr−1) = 1. The statement follows. �

It follows from Thm. 5 that there are unique homomorphisms

Nv : KM
n−1(k(v)) → KM

n−1(k)

such that Nv∞
= id and such that the composite map

KM
n (k(t))

(∂v)
−−−→

⊕

v

KM
n−1(k(v))

P

Nv
−−−−→ KM

n−1(k)
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is equal to zero.

Definition 7. Let k be a field, and let k′ = k(a) be a finite simple extension
with minimal polynomial π. Let v be the unique discrete valuation on k(t) such
that mv ⊂ k[t] is generated by π, and let jk′/k(v) : k(v) → k′ be the isomorphism
that maps the class of t to a. Then the norm map

Na/k : KM
n (k′) → KM

n (k)

is defined to be the composition of j−1
k′/k(v)∗ and Nv.

Lemma 8 (Projection formula). Let k be a field, and let k′ = k(a) be a finite
simple extension. Then for all x ∈ KM

∗ (k′) and y ∈ KM
∗ (k),

Na/k(x · jk′/k∗(y)) = Na/k(x) · y.

In particular, the composite Na/k ◦ jk′/k∗ is multiplication by [k′ : k′].

Proof. The projection formula is a reformulation of the fact that the norm
maps Nv are KM

∗ (k)-linear. The projection formula shows in particular that the
composite Na/k ◦ jk′/k∗ is multiplication by Na/k(1) ∈ KM

0 (k), and Rem. 4 shows
that Na/k(1) = [k′ : k]. �

Corollary 9. If k′ = k(a) = k, then Na/k is the identity map.

Proof. Indeed, the map jk/k∗ and the composite Na/k ◦ jk/k∗ both are the

identity map of KN
∗ (k). �

We use the projection formula to prove the following result. I thank Tyler Lawson
for help with the proof.

Lemma 10. Let k be a field, and let p be a prime. Then there exists an algebraic
extension L of k such that every finite extension of L has order a power of p and
such that the map jL/k∗ : KM

n (k)(p) → KM
n (L)(p) is injective.

Proof. We let ka be an algebraic closure of k and consider the partially or-
dered set S defined as follows. An element of S is a pair (α, {Lβ | β 6 α}) of an
ordinal α and, for every ordinal β 6 α, an extension field k ⊂ Lβ ⊂ ka such that
L0 = k, such that for every β < α, Lβ+1 is a non-trivial finite extension of Lβ of
degree prime to p, and such that for every limit ordinal γ 6 α, Lγ is the union of
the fields Lβ, where β < γ. Since the cardinality of the ordinal α is necessarily less
than or equal to the cardinality of ka, S is indeed a set. We define

(α, {Lβ | β 6 α}) 6 (α′, {L′
β′ | β′

6 α′})

to mean that α 6 α′ and that, for all β 6 α, Lβ = L′
β. The set S is non-empty

since (0, {k}) is an element. We use Zorn’s lemma to show that S has a maximal
element. We must show that every non-empty totally ordered subset

T = {(α(i), {Lβ(i) | β 6 α(i)}) | i ∈ I} ⊂ S

has an upper bound (α, {Lβ | β 6 α}). We define α to be the smallest ordinal such
that, for all i ∈ I, α(i) 6 α, and we define Lβ , for β 6 α, to be the union of all Lβ(i)

with β(i) 6 β. Then (α, {Lβ | β 6 α}) is an upper bound of T in S. By Zorn’s
lemma, the partially ordered set S has a maximal element (α, {Lβ | β 6 α}). It is
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then clear that the field L = Lα does not have any finite extensions L ⊂ L′ ⊂ ka

of degree prime to p. We show by transfinite induction that the map

jL/k∗ : KM
n (k)(p) → KM

n (L)(p)

is injective. The composite

KM
n (Lβ)(p)

jLβ+1/Lβ∗

−−−−−−−→ KM
n (Lβ+1)(p)

NLβ+1/Lβ
−−−−−−−→ KM

n (Lβ)(p)

is given by multiplication by the index [Lβ+1, Lβ], and therefore, is an isomorphism.
Hence, the left-hand map is injective. If γ 6 α is a limit ordinal, then the map

colim
β<γ

KM
n (Lβ)(p) → KM

n (Lγ)(p)

induced by the maps jLγ/Lβ∗ is an isomorphism, and the canonical map

KM
n (Lβ)(p) → colim

β<γ
KM

n (Lβ)(p)

is injective since the limit system is filtered and since the structure maps in the
limit system are injective. �

Lemma 11. Let k′ = k(a) be a finite extension of k, and let π ∈ k[t] be the
minimal polynomial of a. Let L be an extension of the field k, and let

π =
∏

i

πei

i

be the decomposition of π into a product of irreducible monic polynomials in L[t].
Let L′

i = L[t]/(πi), let ai ∈ L′
i be the class of t, and and let jL′

i/k be the embedding

of k in L′
i that maps a to ai and that maps k to L by the embedding jL/k. Then

the following diagram commutes:

KM
n (k′)

(eijL′

i
/k∗

)
//

Na/k

��

⊕
i K

M
n (L′

i)

P

Nai/L

��

KM
n (k)

jL/k∗

// KM
n (L).

Proof. Let v be a discrete valuation on k(t) that is trivial on k, and let w
range over all extension of v to a valuation on L(t) that is trivial on L. If v = v∞,
then w = w∞ is the only extension, and t−1 is a uniformizer for both v∞ and w∞.
If v 6= v∞, then the the monic irreducible polynomial πv that generates the kernel
of the canonical projection k[t] → k(v) decomposes in L[t] as a product of monic
irreducible polynomials

πv =
∏

w/v

π
ew/v
w .

The map k[t]/(πv) → L[t]/(πw) that maps t to t and k to L by the embedding
jL/k defines an embedding jk(w)/k(v) of k(v) in k(w). We prove that the following
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diagram commutes:

0

��

0

��

KM
n (k)

��

jL/k∗

// KM
n (L)

��

KM
n (k(t))

(∂v)

��

jL(t)/k(t)∗
// KM

n (L(t))

(∂w)

��⊕
v K

M
n−1(k(v))

P

Nv

��

L

v(ew/vjk(w)/k(v)∗)
//
⊕

v

⊕
w/v K

M
n−1(k(w))

P

Nw

��

KM
n−1(k)

��

jL/k∗

// KM
n−1(L)

��

0 0.

The top square commutes since Milnor K-theory is a functor, and one immediately
verifies from the definitions that the middle square commutes. Since the columns
in the diagram are exact, it follows that there exists a unique map

h : KM
n−1(k) → KM

n−1(L)

that makes the lower square commutes. We must show that h = jL/k∗. In particu-
lar, the following square commutes:

KM
n−1(k(v∞))

jk(w∞)/k(v∞)∗
//

Nv∞

��

KM
n−1(k(w∞))

Nw∞

��

KM
n−1(k)

h
// KM

n−1(L).

But jk(w∞)/k(v∞) = jL/k and Nv∞
and Nw∞

are the respective identity maps.
Hence, the diagram commutes as stated. The lemma follows. �

Corollary 12. Let k be a field, and let k′ = k(a) be a finite extension.

(i) If k′/k is Galois, then jk′/k∗ ◦Na/k =
∑

σ∈Gk′/k
σ∗.

(ii) If k′/k is purely inseparable, then jk′/k∗ ◦Na/k = [k′ : k].

Proof. If k′/k is Galois, then the minimal polynomial π ∈ k[t] of a ∈ k′

decomposes in k′[t] as the product

π =
∏

σ∈Gk′/k

(t− σ(a)).
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Hence, Lemma 11 gives a commutative square

KM
n (k′)

(σ∗◦jk′/k∗
)

//

Na/k

��

⊕
σ∈Gk′/k

KM
n (k′)

P

Nσ(a)/k′

��

KM
n (k)

jk′/k∗

// KM
n (k′).

Since jk′/k′ is the identity map of k′, the projection formula shows that Nσ(a)/k′

is the identity map of KM
n (k′). The statement (i) follows. Similarly, if k′/k is a

purely inseparable extension, then k and k′ are both of positive characteristic p
and [k′ : k] = pr, for some r > 0. The minimal polynomial π ∈ k[t] of a ∈ k′ is
π = tp

r

− α, where α = apr

∈ k. It decomposes as the product

π = tp
r

− α = tp
r

− apr

= (t− a)pr

in k′[t]. Hence, Lemma 11 gives a commutative square

KM
n (k′)

pr

//

Na/k

��

KM
n (k′)

Na/k′

��

KM
n (k)

jk′/k∗

// KM
n (k′).

Again, Na/k′ is the identity map, and the statement (ii) follows. �

Proposition 13. Let k be a field, let k′ be a finite extension of prime degree,
and let a ∈ k′ be an element such that k′ = k(a). Then the map

Na/k : KM
n (k′) → KM

n (k)

is independent of the choice of generator a ∈ k′.

Proof. Since [k′ : k] = p is a prime, there exists a ∈ k′ such that k′ = k(a).
Suppose first that, for some prime p, all finite extensions of k have degree a power
of p. Then Addendum 6 shows that the abelian group KM

n (k′) is generated by
symbols of the form {x, y2, . . . , yn}, where x ∈ k′∗ and y2, . . . , yn ∈ k∗, and the
projection formula and the Weil reciprocity formula show that

Na/L({x, y2, . . . , yn}) = {NL′/L(x), y2, . . . , yn}.

It follows that, in this case, the norm map Nk′/k = Na/k is independent of the
choice of generator a ∈ k′.

Let k be any field. It will suffice to show that, for every prime p, the map

Na/k : KM
n (k′)(p) → KM

n (k)(p)

does not depend on a. By Lemma 10, there exists an extension L of k such that
every finite extension of L has order a power of p and such that the map

jL/k∗ : KM
n (k)(p) → KM

n (L)(p)

is injective. Hence, it suffices to show that the composite map

KM
n (k′)(p)

Na/k
−−−→ KM

n (k)(p)

jL/k∗

−−−→ KM
n (L)(p)

is independent of a. Since [k′ : k] is a prime, the extension k′/k is either separable
or purely inseparable.
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Suppose first that k′ is separable over k. Then the ring L ⊗k k
′ is a product

of fields, and since [k′ : k] is a prime, this ring is either a field L′ or product of
copies of L. If L⊗k k

′ = L′ is a field, then [k′ : k] = p, since otherwise, L′/L would
be a finite extension of degree prime to p. By Lemma 11, there is a commutative
diagram

KM
n (k′)

jL′/k′
∗

//

Na/k

��

KM
n (L′)

NL′/L

��

KM
n (k)

jL/k∗

// KM
n (L),

and hence, the composite jL/k∗ ◦Na/k is independent of a. If L⊗k k
′ is a product

of copies of L, then Lemma 11 gives a commutative diagram

KM
n (k′)

(σ∗)
//

Na/k

��

⊕
σ K

M
n (L)

P

NL/L

��

KM
n (k)

jL/k∗

// KM
n (L),

where the sum in the upper right-hand term ranges over the possible embeddings
σ of k′ in L [3, Chap. V, §2, Prop. 4]. So jL/k∗ ◦Na/k is independent of a.

Suppose next that k′ is a purely inseparable extension of k. Then k has positive
characteristic ℓ, and k′ = k[t]/(tℓ − a). If a /∈ Lℓ, then L ⊗k k

′ = L′ is a purely
inseparable extension of L of degree ℓ, and if a ∈ Lℓ, then L ⊗k k

′ is a product of
copies of L. In the former case, Lemma 11 gives a commutative diagram

KM
n (k′)

jL′/k′
∗

//

Na/k

��

KM
n (L′)

NL′/L

��

KM
n (k)

jL/k∗

// KM
n (L)

which shows that jL/k∗ ◦Na/k is independent of a. In the latter case, we have

L⊗k k
′ = L[t]/(tℓ − a) = L[t]/((t− α)ℓ),

where α ∈ L is the unique ℓth root of a. Hence, in this case, Lemma 11 gives a
commutative diagram

KM
n (k′)

ℓ·jL/k′
∗

//

Na/k

��

KM
n (L)

NL/L

��

KM
n (k)

jL/k∗

// KM
n (L)

which shows that, also in this case, jL/k∗◦Na/k is independent of a. This completes
the proof. �

It follows from Prop. 13 that we have well-defined norm map

Nk′/k = Na/k : KM
n (k′) → KM

n (k),

for every finite extension k′ = k(a) of k of prime degree. Before we state the next
result, we recall from [5, Chap. II, §2] that, if K is a complete discrete valution field,
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and if L is a finite extension of K, then the discrete valuation onK extends uniquely
to a discrete valuation on L and L is complete with respect to this valuation.
Moreover, if kL/kK is the extension of residue fields, then

[L : K] = eL/K · [kL : kK ],

where eL/K is the ramification index defined by mKOL = m
eL/K

L .

Lemma 14. Let K be a complete discrete valuation field, and let K ′ be a finite
normal extension of K of prime degree. Let k and k′ be the residue fields of K and
K ′, respectively. Then the following diagram commutes:

KM
n (K ′)

∂K′

//

NK′/K

��

KM
n−1(k

′)

Nk′/k

��

KM
n (K)

∂K
// KM

n−1(k).

Proof. We wish to show that the map

δK′/K = ∂K ◦NK′/K −Nk′/k ◦ ∂K′

is equal to zero. We first show that pδK′/K is zero. We consider several cases.
Suppose first that K ′/K is unramified. If K ′/K is separable, then the extesion
k′/k is normal [5, Chap. I, §7, Prop. 20]. If, in addition, k′/k is separable, then the
Galois groups GK′/K and Gk′/k are canonically isomorphic, and we have

jk′/k∗(δK′/K(z)) = jk′/k∗(∂K(NK′/K(z))) − jk′/k∗(Nk′/k(∂K′(z)))

= ∂K′(jK′/K∗(NK′/K(z))) − jk′/k∗(Nk′/k(∂K′(z)))

=
∑

σ∈GK′/K

∂K′(σ∗(z)) −
∑

σ̄∈Gk′/k

σ̄∗(∂K′(z))

which is equal to zero, since ∂K′ is a natural homomorphism. Here the second
equality uses Lemma 2, and the third equality uses Cor. 12(i). If, instead, k′/k is
a purely inseparable extension, we find as above that

jk′/k∗(δK′/K(z)) =
∑

σ∈GK′/K

∂K′(σ∗(z)) − p∂K′(z).

But σ ∈ GK′/K induces the identity map of k′ [3, Chap. V, §6, Prop. 3], so this
expression is equal to zero. If K ′/K is purely inserable, then k′/k is also purely
inseparable [5, Chap. I, §6, Prop. 16], so

jk′/k∗(δK′/K(z)) = ∂K′(pz) − p∂K′(z) = 0.

Suppose next that K ′/K is totally ramified. If K ′/K is Galois, then

pδK′/K(z) = p∂K(NK′/K(z)) − p∂K′(z)

= ∂K′(jK′/K∗(NK′/K(z))) − p∂K′(z)

=
∑

σ∈GK′/K

∂K′(σ∗(z)) − p∂K′(z)

10



which is zero, since GK′/K acts trivially on k′ = k. Finally, if K ′/K is purely
inseparable, then

pδK′/K(z) = ∂K′(jK′/K∗(NK′/K(z))) − p∂K′(z)

= ∂K′(pz) − p∂K′(z)

which again is zero. We conclude from the above that pδK′/K(z) is zero. Therefore,

if suffices to show that, for every z ∈ KM
n (K ′), there exists an integer m prime to

p such that mδK′/K(z) is zero.

Suppose that L is an extension of K of degree prime to p, and let L′ be the
compositum of L and K ′ in an algebraic closure of K. Since K ′/K is a normal
extension whose degree is prime to the degree of the extension L/K, the extension
L′/L is again normal of degree p. By Lemma 11, the diagram

KM
n (K ′)

jL′/K′
∗

//

NK′/K

��

KM
n (L′)

NL′/L

��

KM
n (K)

jL/K∗

// KM
n (L)

commutes. Moreover, the discussion before the statement shows that the ramifica-
tion indices eL′/L and eK′/K are equal and that the canonical map from k′ ⊗k kL

to kL′ is an isomorphism. Therefore, we conclude from Lemma 11 that there is a
commutative diagram

KM
n (k′)

jk
L′ /k′

∗

//

Nk′/k

��

KM
n (kL′)

Nk
L′/kL

��

KM
n (k)

jkL/k∗

// KM
n (kL),

and from Lemma 2 that there is a pair of commutative diagrams

KM
n (L)

∂L
// KM

n (kL) KM
n (L′)

∂L′

// KM
n (kL′)

KM
n (K)

∂K
//

jL/K∗

OO

KM
n (k)

eL/KjkL/k∗

OO

KM
n (K ′)

∂K′

//

jL′/K′
∗

OO

KM
n (k′).

eL/Kjk
L′ /k′

∗

OO

We now fix an element z ∈ KM
n (K ′) and consider the difference

δK′/K(z) = ∂K(NK′/K(z)) −Nk′/k(∂K′(z))

which we wish to show is zero. Then the diagrams above show that

eL/KjkL/k∗δK′/K(z) = δL′/L(jL′/K′∗(z)),

where δL′/L(w) is defined similarly. We claim that for a given z ∈ KM
n (K ′), there

exists L/K such that the right-hand side is zero. The projection formula then
shows that [L : K] · δK′/K(z) is zero which complete the proof of the proposition.

It remains to prove the claim. It follows from Lemma 10 that there exists a
finite extension L/K of degree prime to p such that jL′/K′∗(z) ∈ KM

n (L′) is a
sum of symbols of the form {x, y2, . . . , yn}, where x ∈ L′∗ and y2, . . . , yn ∈ L∗.
Hence, we may assume that z is a sum of symbols {x, y2, . . . , yn} with x ∈ K ′∗

and y2, . . . , yn ∈ K∗ and show that δK′/K(z) is zero in this case. This, in turn, is
11



proved by direct calculation. The extension K ′/K is either unramified or totally
ramified. We consider the latter case and leave the former to the reader.

Let πK′ and πK be uniformizers of K ′ and K, respectively. Then

πp
K′ + θK′/K(πK′)πK = 0

where θK′/K(X) ∈ OK [X ] is a polynomial of degree at most p − 1 such that
θK′/K(0) ∈ O∗

K . Since O′
K is m′-adically complete, it follows that θK′/K(πK′) ∈

O∗
K′ such that

πK = −θK′/K(πK′)−1πp
K′ .

By using the K-basis 1, πK′ , . . . , πp−1
K′ of K ′, one shows that

NK′/K(πK′) = (−1)pθK′/K(0)π.

We show that, if x ∈ K ′∗ and y ∈ K∗, then

∂K′({x, y}) = ∂K(NK′/K({x, y}));

the general case is only notationally more complicated. We write x = πi
K′u with

u ∈ O∗
K′ and y = πj

Kv with v ∈ O∗
K . Then

{x, y} = {πi
K′u, π

j
Kv} = {πi

K′u, (−θK′/K(πK′)−1πp
K′)

jv}

= ij{πK′ ,−1} − ij{πK′, θK′/K(πK′)} + pij{πK′ , πK′} + i{πK′ , v}

+ j{u,−1} − j{u, θK′/K(πK′)} + pj{u, πK′} + {u, v},

and hence,

∂K′({x, y}) = (p+ 1)ij{−1}+ ij{θK′/K(πK′)} − i{v̄} + pj{ū}.

On the other hand,

NK′/K({x, y}) = {NK′/K(x), y} = {((−1)pθK′/K(0)πK)iNK′/K(u), πj
Kv}

= pij{−1, πK} + ij{θK′/K(0), π} + ij{πK , πK} + j{NK′/K(u), π}

+ pi{−1, v}+ i{θK′/K(0), v} + i{πK , v} + {NK′/K(u), v},

and hence,

∂K(NK′/K({x, y})) = (p+ 1)ij{−1}+ ij{θK′/K(0)} + j{NK′/K(u)} − i{v̄}.

To finish the proof we must show that

NK′/K(u) = (ū)p.

But this is easily seen by using 1, πK′ , . . . , πp−1
K′ as a K-basis of K ′. �

Proposition 15. Let k be a field, and let k′ be a finite normal extension of k
of prime degree p. Let F = k(a) be a finite extension, and suppose that F ′ = k′(a)
is a field. Then the following diagram commutes:

KM
n (F ′)

Na/k′

//

NF ′/F

��

KM
n (k′)

Nk′/k

��

KM
n (F )

Na/k
// KM

n (k).
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Proof. Let v be a discrete valuation on k(t)/k, and let k(t)v be the completion
of k(t) at v. Since k(t)v is a separable extension of k(t), the minimal polynomial
Π ∈ k(t)[x] of a generator α of k′(t)/k(t) decomposes as a product

Π =
∏

w/v

Πw/v

where Πw/v ∈ k(t)v[x] are distinct monic irreducible polynomials, and where w
ranges over the possible extensions of v to a discrete valuation on k′(t)/k′. We then
consider the following diagram:

KM
n+1(k

′(t))
(jk′(t)w/k′(t)∗)

//

Nk′(t)/k(t)

��

⊕
w/v K

M
n+1(k

′(t)w)

P

Nk′(t)w /k(t)v

��

L

∂w
//
⊕

w/v K
M
n (k(w))

P

Nk(w)/k(v)

��

KM
n+1(k(t))

jk(t)v /k(t)∗
// KM

n+1(k(t)v)
∂v

// KM
n (k(v)).

It follows from Lemma 2 that the left-hand square commutes and from Lemma 14
that the right-hand square commutes. Now let π ∈ k[t] and π′ ∈ k′[t] be the
minimal polynomials of a over k and k′, respectively. Given x′ ∈ KM

n (F ′), Thm. 5
shows that there exists y′ ∈ KM

n+1(k
′(t)) such that ∂wπ′

(y′) = x′, and such that
∂w(y′) = 0, if w 6= wπ′ and w 6= w∞. Then, by definition,

Na/k′(x′) = −∂w∞
(y′).

We define x = NF ′/F (x′) and y = Nk′(t)/k(t)(y
′). The diagram above then shows

that ∂vπ (y) = x and that ∂v(y) = 0, if v 6= vπ and v 6= v∞, such that

Na/k(x) = −∂v∞
(y).

Applying the diagram again for v = v∞ gives

∂v∞
(Nk′(t)/k(t)(y

′)) = Nk′/k(∂w∞
(x′))

which shows that Na/k(NF ′/F (x′)) = Nk′/k(Na/k′(x′)) as desired. �

Definition 16. Let k be a field, and let k′ = k(a1, . . . , ar) be a finite field
extension of k. Then the norm map

Na1,...,ar/k : KM
n (k′) → KM

n (k)

is defined to be the composite map

Na1,...,ar/k = Na1/k ◦Na2/k(a1) ◦ · · · ◦Nar/k(a1,...,ar−1).

Proof of Thm. 3. Suppose k′ = k(a1, . . . , an). We show that the map

Na1,...,ar/k : KM
n (k′) → KM

n (k)

does not depend on the choice of generators a1, . . . , an ∈ k′. The proof is by
induction on the degree d = [k′ : k]. The case d = 1 was proved in Cor. 9. So
we assume that the statement has been proved for all finite extensions of degree
strictly smaller than d and let k′/k be a finite extension of degree d. It will suffice
to show that, for every prime number p, the map

Na1,...,ar/k : KM
n (k′)(p) → KM

n (k)(p)

13



does not depend on the choice of generators a1, . . . , an ∈ k′. By Lemma 10, there
exists an extension L of k such that every finite extension of L has degree a power
of p and such that the map

jL/k∗ : KM
n (k)(p) → KM

n (L)(p)

is injective. Hence, it suffices to show that the composite map

KM
n (k′)(p)

Na1,...,ar/k

−−−−−−−→ KM
n (k)(p)

jL/k∗

−−−→ KM
n (L)(p)

is independent of a1, . . . , ar ∈ k′.

The ring L′ = L ⊗k k
′ is an artinian L-algebra. Let p1, . . . , pm be the minimal

prime ideals of L′, let L′
i = L′

pi
/piL

′
pi

be the residue field at pi, and let

ei = lengthL′

pi
(L′

pi
).

Suppose that L′ is not a field. Then [L′
i : L] < d, for all 1 6 i 6 m, and hence, we

have a well-defined norm map NL′

i/L : KM
n (L′

i) → KM
n (L). Moreover, iterated use

of Lemma 11 shows that the following diagram commutes:

KM
n (k′)

(eijL′

i
/k′

∗
)

//

Na1,...,ar/k

��

⊕
16i6mKM

n (L′
i)

P

N
L′

i
/L

��

KM
n (k)

jL/k∗

// KM
n (L).

Hence, the composite jL/k∗ ◦Na1,...,ar/k does not depend on a1, . . . , ar ∈ k′ in this
case. It remains to consider the case where L′ is a field. We claim that, in this
case, there exists a sequence of field extensions

L = E0 ⊂ E1 ⊂ · · · ⊂ Em = L′

such that, for all 1 6 i 6 m, Ei is a finite normal extension of Ei−1 of degree p.
Given this, iterated use of Prop. 15 shows that

Na1/L ◦ · · · ◦Nar/L(a1,...,ar−1) = NE1/E0
◦ · · · ◦NEm/Em−1

,

and the right-hand side is independent of the choice of a1, . . . , ar ∈ k′. This proves
the induction step and hence the theorem.

It remains to prove the claim. We first decompose the extension L′/L as a purely
inseparable extension F/L followed by a separable extension L′/F . The extension
F/L is simple and the minimal polynomial π ∈ L[t] of a generator a takes the form

π = tp
s

− α,

where α = aps

∈ L. We define Ei, 0 6 i 6 s, to be the subfield L(aps−i

) of F . Then
Ei is a normal extension of Ei−1 of degree p for 0 6 i 6 s. We next choose a finite
Galois extension M of F that contains L′ as a subfield. Then L′ is the subfield
of M fixed by the subgroup GM/L′ of the Galois group GM/F . Since every finite
extension of L, and hence F , has degree a power of p, the Galois group GM/L is a
finite p-group. We recall from [2, Chap. I, §6, Prop. 12] that every proper subgroup
of a finite p-group is contained in a normal subgroup of index p. It follows that
there exists a sequence of subgroups

GM/F = Gs ⊃ Gs+1 ⊃ · · · ⊃ Gm = GM/L′

14



such that Gi is a normal subgroup of Gi−1 of index p, s+ 1 6 i 6 m. We define Ei

to be the subfield of M fixed by the subgroup Gi ⊂ GM/L. Then Ei is a normal
extension of Ei−1 of degree p, for all s+ 1 6 i 6 m, as desired. �
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