Norm maps in Milnor K-theory

Lars Hesselholt

The purpose of this note is to give a detailed exposition of the construction of
norm maps in Milnor K-theory following the original papers of Bass and Tate [1]
and Kato [4]. Needless to say that we make no claim of originality.

The Milnor K-theory of a field k is defined to be the graded ring
KM (k) = To(k*) /(2 @ (1~ ) | @ € k~ {0,1})

and the class of 1 ® - - ® x,, is denoted by {z1,...,2,} and called a symbol. We
derive some immediate consequences of the relation that {«,1—x} = 0. First, since
we can write —z = (1 —x)/(1 — 271), we have

{z,—z}={z,1—a}+{z7 1 -2 '} =0.
This shows
{z,y} +{y, 2} = {&, —o} +{z, 4} + {y, 2} + {y, —y} = {zy, —2y} = 0
so the Milnor ring is anti-symmetric. However, we have
{z,2} = {2, —(-0)} = {z, -1} + {2, —2} = {z, -1},

which is generally non-zero, so the Milnor ring is generally not alternating.

PROPOSITION 1. Let K be a field, and let v be a normalized discrete valuation
on K. Let O, C K be the valuation ring, let m, C O, be the maximal ideal, and
let k(v) = O, /my, be the residue field. Then there is a unique homomorphism

Oui KM (K) — KM, (k(v)
such that for all ui, ..., un—1 € O} and x € K*,
Op({ur, .. ytupn—1,2}) =v(f){t1,...,4n-1},
where u; 1s the class of u; in k(v)*.
PROOF. The uniqueness is clear since the symbols {uq,...,u,—1,2} generate

KM(K) as a abelian group. To prove the existence, we choose a generator m € m,,
and show that there is map of graded rings

Or: KY(K) — KX (k(v)[e]/(e* — {~1}e)

that to {m'u} with u € O} assigns {4} + ie. An easy calculation then shows that
the homomorphism 8, : KM (K) — KM ,(k(v)) defined by the formula

977(2) = lﬂw(z) + av(Z)E
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maps {u1,...,up—1,2} to v(x){U1,...,Un_1} as desired. We have
eﬂ({ﬁilui,ﬂw’UQ}) = {1_1,1, ’l_LQ} + (ig{ﬂl} — il{ﬁg} + 7:17:2{71})5
and must show this expression is zero whenever 71 u; + m%2uy = 1. There are four
cases to consider. If ;1 > 0, then 73 = 0 and up = 1. So O ({71 uy, m2us}) = 0.
Similarly, if ¢; = 0, and é2 > 0, we have 0, (7" uy, 72us}) = 0. If iy = iy = 0,
then iy + 1z = 1, so O, ({7 uy, 72us}) = 0. Finally, if i; < 0, then iy = i; and
41 + e = 0. In this case, we have
Or({m"rur, m2uz}) = {ts, —tn} + (i {wn} — in{—a} + 3 {-1})e
=0+ (i{u} + i {1} —ir{a} + 3 {-1})e
= ’L'l(’L'l + 1){—1}6
which is zero, since i1(i; + 1) is even. This proves the claim. It is now an easy
calculation to see that the map J, given by the formula

9#(1') = 1/)71‘(1") + 8U(SC)€

is given by the stated formula and, in particular, is independent of the choice of
generator m € m,,. (|

By definition, 8, : KM (K) — K} (k(v)) takes {z} to v(f). It is also not difficult
to see that 8, : KM (K) — Ki(k(v)) takes {z,y} to {(z,y)y}, where
(@,y)p = (—1)" P Wyrl)g=ely)
is the tame symbol.

LEMMA 2. Let K be a field, and let v be a discrete valuation on K. Let L be
a finite extension field K, and let w be a discrete valuation on L that extends v.

€w /v

Suppose that m,O,, = my"'". Then the following diagram commutes:

KM(L) =2 KM | (k(w)

TjL/K* Tew/vjk(w)/k(v)*

KM(K) 2 KM (k(v)).

PROOF. Indeed, if uy,...,un—1 € O} and z € K*, then
Ow({ur, .. up_1,2}) = w(@){ts, ..., Un_1} = €y pv(@){t1,...,Un_1}
as stated. O

We shall now state the theorem of Kato that characterizes the norm homomor-
phisms associated with a finite field extension; the proof occupies the rest of this
note. Let k(t) be the field of rational functions in one variable over a field k. Then

Voo (f) = — deg(f)

is a discrete valuation on k(t) that is trivial on & and for which t~! is a generator of
m,__. Every other discrete valution v on k(t) that is trivial on k& determines and is
determined by a monic irreducible polynomial 7, € k[t] that is a generator of m,,
and the residue field k(v) is k[t]/ ().
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THEOREM 3. There exists a unique family of natural homomorphisms
Nk//k: K,r]lw(kl) — K;lw(k)

associated with finite field extensions k'/k such that Ny, = id and such that the
reciprocity formula holds: Let k(t) be the field of rational functions in one variable
over a field k. Then, for all x € KM (k(t)), the sum Y, Ny(v)/x(0y(2)) that ranges
over all discrete valuations v of k(t) that are trivial on k is equal to zero.

REMARK 4. We first note that for n = 0, we must define Ny to be multipli-
cation by the index [k’ : k]. Indeed, this is the statement that for every f € k(t)*,

> k() : Klo(f) = 0.

To see this, we recall that k[t] is a unique factorization domain with quotient field
k(t). Hence, for every f € k(t)* we have

= lead(f H 7o)
VH Voo
where lead(f) € k is the leading coefficient of f. Hence,
Y (k@) k] o(f) = Y deg(m) - o(f) = deg(f),
VH Voo VFEVoo
and since v (f) = — deg(f), the statement follows.

We also note that for n = 1, we must define Ny ({z}) = { Ny /x(7)} where on
the right-hand side Ny /. is the usual norm that to € k' assigns the determinant
of the endomorphism of the k-vector space k' that is given by multiplication by x.
Indeed, if v is a valuation on k(t) that is trivial on k, then

dw({f,9}) =1{(f,9)v},

where (f, g), is the tame symbol, and hence, the statement is equivalent to the Weil
reciprocity formula

]:[Nk(v)/k((fa g)v) =1.
A proof is given in [1, Thm. 5.6].

We now begin the construction of the norm maps in general following Bass and
Tate [1]. The starting point is the following theorem of Milnor and Tate.

THEOREM 5. There is an evact sequence of graded KM (k)-modules

EMk(n) 2L @ KM, -0

V# Voo

Jk(t)/k*
Y

0— KM(k)

where, on the right-hand side, the sum ranges over all discrete valuations v on k(t)
that are trivial on k and that are different from voo.

PROOF. We first note that the map
i KM k() — KM (k)
that takes {f1,..., fr} to {lead(f1),...,lead(f,)} defines a retraction of the left-
hand map of the statement. Now, let d be a non-negative integer, and let
Fila K (k(1)) © KM (k(2))
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be the subring generated by the symbols {f} € KM (k(t)) such that f € k[t]Nk(t)*
and deg(f) < d. The subring Filg KM (k(t)) is identified with the image of the map

ey K2 (k) — KM (k(t)),

which is split injective. We claim that, for d positive, Filg KM (k(t)) is generated
as a left KM (k)-module by the symbols {r,..., 7.}, where 7,..., 7, are monic
irreducible polynomials and 0 < deg(m;) < --- < deg(m,) < d. Granting this for
the moment, we see that the maps 9, induce an isomorphism

grg K (k(1) = D KM (k(v)

onto the sum the KM (k(v)) such that v # v and such that [k(v) : k] = d. Indeed,
if & = {m,..., 7}, where m,..., 7 € Ek[t] are monic irreducible polynomials and
0 < deg(m) < --- < deg(m,) < d, then 9, (z) is non-zero if and only if 7, = m,, and
in this case, 0y(z) = {71,...,Tr_1}.

We prove the claim by induction on d starting from the case d = 1 which is
trivial. To prove the induction step, it suffices to show that if 7,7’ € k[t] are two
irreducible monic polynomials of degree d, then

Filg_1 KM (k(t)) - {m, 7'} C Filg_1 KM (k(t)) - {x} + Filg_1 KM (k(t)) - {7'}.

To this end, we write 7 = 7’ + f where f € k[t] and deg(f) < d. If f =0, then we
have {m, 7'} = {m,n} = {-1,7}. And if f # 0, then (x'/7) + (f/7) =1, so

(U~ e — e = 1L, Ty =0,
and hence,
{m, 7'} ={f,7'} = {fim} +{-L 7}
This completes the proof. ([

ADDENDUM 6. Let k be a field with the property that the degree of every finite
extension of k is a power of a fized prime p, and let k' be a finite extension of k of
degree p. Then KM (k') is generated by symbols of the form {x,ya,...,yn} where
e k™ and yo,...,y, € k*.

PROOF. In general, an extension k’/k is generated by a single element a € &’
if and only if the set of intermediate extensions k C L C k' is finite. In the case
at hand, there are no non-trivial intermediate extensions, since [k’ : k] is a prime,
and hence k' = k(a), for some a € k’. Let 7 be the minimal polynomial of a, and
let v be the discrete valuation on k(t)/k with 7, = m. Hence, the proof of Thm. 5
shows that, as a K (k)-module, KM (k') is generated by symbols of the form
{m(a),...,mr(a)}, where m,...,m,—1 € k[t] are irreducible monic polynomials
and 0 < deg(m;) < -+ < deg(my—1) < p. Since there are no finite extensions of k of
degree prime to p, we have r—1 = 1 and deg(m,—1) = 1. The statement follows. O

It follows from Thm. 5 that there are unique homomorphisms
No: KpLy(k(v)) — KLy (k)
such that N,__ = id and such that the composite map
D) XNy
K (k(t) === D K1 (k(v) == KL (k)
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is equal to zero.

DEFINITION 7. Let k be a field, and let &’ = k(a) be a finite simple extension
with minimal polynomial 7. Let v be the unique discrete valuation on k(t) such
that m, C k[t] is generated by m, and let ji k() : k(v) — &’ be the isomorphism
that maps the class of ¢ to a. Then the norm map

Ny K)'(K) — K (k)
is defined to be the composition of jl;}k(v)* and N,,.

LEMMA 8 (Projection formula). Let k be a field, and let k' = k(a) be a finite
simple extension. Then for all v € KM(K') and y € KM (k),

Na/k('r ’ ]k//k*(y)> = Na/k(z) Y.
In particular, the composite Ng i, © ji /g is multiplication by [k' : K'].

PRrROOF. The projection formula is a reformulation of the fact that the norm
maps N, are KM (k)-linear. The projection formula shows in particular that the
composite N/ © jir ks is multiplication by Ny, (1) € KM (k), and Rem. 4 shows
that N, (1) = [k : k] O

COROLLARY 9. If k' = k(a) = k, then Ny, is the identity map.

PrROOF. Indeed, the map ji i« and the composite Ng i, o ji 1k« both are the
identity map of K2 (k). O

We use the projection formula to prove the following result. I thank Tyler Lawson
for help with the proof.

LEMMA 10. Let k be a field, and let p be a prime. Then there exists an algebraic
extension L of k such that every finite extension of L has order a power of p and
such that the map jpjp: KM (k) — KM (L)) is injective.

PROOF. We let k® be an algebraic closure of k£ and consider the partially or-
dered set S defined as follows. An element of S is a pair (o, {Lg | 8 < a}) of an
ordinal o and, for every ordinal 8 < «, an extension field £ C Lg C k* such that
Lo = k, such that for every 8 < «, Lgy1 is a non-trivial finite extension of Lg of
degree prime to p, and such that for every limit ordinal v < «, L., is the union of
the fields Lg, where 3 < ~. Since the cardinality of the ordinal « is necessarily less
than or equal to the cardinality of k%, S is indeed a set. We define

(e, {Lg|B<a}) < (o {Ly | B <a'})
to mean that a < o' and that, for all 8 < a, Lg = Lj;. The set S is non-empty

since (0,{k}) is an element. We use Zorn’s lemma to show that S has a maximal
element. We must show that every non-empty totally ordered subset

T ={(a(i), {Lp(@) | B<a(i)}) [i €I} C S
has an upper bound («, {Ls | 8 < a}). We define a to be the smallest ordinal such
that, for all i € I, a(i) < o, and we define Lg, for § < a, to be the union of all Lg,)
with 8(¢) < 8. Then (o, {Lg | # < «}) is an upper bound of T' in S. By Zorn’s

lemma, the partially ordered set S has a maximal element (o, {Lg | 8 < a}). It is
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then clear that the field L = L, does not have any finite extensions L C L’ C k®
of degree prime to p. We show by transfinite induction that the map

Jre: Kt (K) ) — K31 (L))
is injective. The composite

Negia/Lg

JLgqy/Lg*
P KM (L) () ———2 KM (Lg)(p)

K)Y(Lg)p)

is given by multiplication by the index [Lg4+1, Lg], and therefore, is an isomorphism.
Hence, the left-hand map is injective. If v < « is a limit ordinal, then the map

. M M
colim K" (Lg) ) — K (L) )

induced by the maps jr. /1.« is an isomorphism, and the canonical map
Ky (Lg) ) — Cglgganfj(Lﬁ)(p)

is injective since the limit system is filtered and since the structure maps in the
limit system are injective. O

LEMMA 11. Let k' = k(a) be a finite extension of k, and let m € k[t] be the
minimal polynomial of a. Let L be an extension of the field k, and let

— €4
w11
[

be the decomposition of m into a product of irreducible monic polynomials in Llt].
Let L; = L[t]/(m;), let a; € Lj be the class of t, and and let jr: ;. be the embedding
of k in Lj that maps a to a; and that maps k to L by the embedding jr, ;.. Then
the following diagram commutes:

(eing/k*

K (k) : &, K, (L))

J/Na/k JZ Na,/L
JL )k

KM (k) — 2 kM(L).

PROOF. Let v be a discrete valuation on k(t) that is trivial on &, and let w
range over all extension of v to a valuation on L(¢) that is trivial on L. If v = v,
then w = weo is the only extension, and ¢t~! is a uniformizer for both vs, and wee.
If v # v, then the the monic irreducible polynomial 7, that generates the kernel
of the canonical projection k[t] — k(v) decomposes in L[t] as a product of monic
irreducible polynomials

Ty = H T,

w/v

The map k[t]/(m,) — L[t]/(my) that maps t to t and k to L by the embedding
Jr/k defines an embedding j(w) k() Of k(v) in k(w). We prove that the following
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diagram commutes:

0 0
JL )k
K} (k) KM(L)
KM k(1)) O KM(L(t)
(9w) (Ow)
M D, (ew/vib(w)/k(w)) M
@v K’nfl(kj(v)) @v @w/v anl(k(w))
>Ny S Ny
KM (k) KM (L)
0 0.

The top square commutes since Milnor K-theory is a functor, and one immediately
verifies from the definitions that the middle square commutes. Since the columns
in the diagram are exact, it follows that there exists a unique map

h: Kyjzw—1(k/’) - Kfzw—1(L)

that makes the lower square commutes. We must show that i = jr /3. In particu-
lar, the following square commutes:

Jk(woo )/ k(voo)*

KM (k(vse) KM (k(ws))
lmw le
KM (k) - KM (D).

But Jr(we)/k(vee) = Jrsi and N, and N, are the respective identity maps.
Hence, the diagram commutes as stated. The lemma follows. (I

COROLLARY 12. Let k be a field, and let k' = k(a) be a finite extension.
(i) If k' /k is Galois, then j /g © Noji = deak,/k Os.
(i) If k' [k is purely inseparable, then j /. 0 Nojp = [K' 2 K].

Proor. If k'/k is Galois, then the minimal polynomial © € k[t] of a € £’
decomposes in k'[t] as the product



Hence, Lemma 11 gives a commutative square

(0201t /1)

KM W) Bec,,, KN (K)

lz No(ay/w/
KM (k) KM ().

Since ji /s is the identity map of &', the projection formula shows that Ny(q)/p
is the identity map of KM (k’). The statement (i) follows. Similarly, if k'/k is a
purely inseparable extension, then k and k' are both of positive characteristic p
and [k’ : k] = p", for some r > 0. The minimal polynomial = € k[t] of a € k' is
7 =1t" — o, where o = a?" € k. It decomposes as the product

r=tF —a=t" —a? =(t—a)’

in k'[t]. Hence, Lemma 11 gives a commutative square
K (k) —— K} ()

Na/k Ny

Ik 1w

Kt (k) —— K} (k).
Again, N,/ is the identity map, and the statement (ii) follows. O

PROPOSITION 13. Let k be a field, let k' be a finite extension of prime degree,
and let a € k' be an element such that k' = k(a). Then the map

Noji: K (K — K} (k)
is independent of the choice of generator a € k.

PROOF. Since [k’ : k] = p is a prime, there exists a € k' such that k¥’ = k(a).
Suppose first that, for some prime p, all finite extensions of k have degree a power
of p. Then Addendum 6 shows that the abelian group K (k') is generated by
symbols of the form {z,ya,...,yn}, where z € k'* and ya,...,y, € k*, and the
projection formula and the Weil reciprocity formula show that

NG/L({xa Y2, ... ayn}) = {NL’/L(‘T)’QQ’ v 7y7l}

It follows that, in this case, the norm map Ny, = N/ is independent of the
choice of generator a € k'.

Let k be any field. It will suffice to show that, for every prime p, the map
Nasi: K31 (K) ) — K" (k)

does not depend on a. By Lemma 10, there exists an extension L of k such that
every finite extension of L has order a power of p and such that the map

Jryest Knt (k) gy — KN (L) ()

is injective. Hence, it suffices to show that the composite map

P)

KN () ) —L5 KM (k)

is independent of a. Since [k : k] is a prime, the extension k’/k is either separable
or purely inseparable.

JL/kx M
o — K (L))



Suppose first that k' is separable over k. Then the ring L ®; k' is a product
of fields, and since [k’ : k] is a prime, this ring is either a field L’ or product of
copies of L. If L® k' = L’ is a field, then [k’ : k] = p, since otherwise, L' /L would
be a finite extension of degree prime to p. By Lemma 11, there is a commutative
diagram

JL! /k!

Ky (k) K)'(L)
lNa/k lNL’/L
KM (k) — s KM(L),

and hence, the composite jz /i« © Ny is independent of a. If L ®j k' is a product
of copies of L, then Lemma 11 gives a commutative diagram

KM — " @ kML)

J/Na/k lz Np/L
JL )k

Kt (k) ————— K/(L),

n

where the sum in the upper right-hand term ranges over the possible embeddings
o of k" in L [3, Chap. V, §2, Prop. 4]. So jr k. © Ny is independent of a.

Suppose next that &’ is a purely inseparable extension of k. Then k has positive
characteristic £, and k' = k[t]/(t* — a). If a ¢ L, then L ® k' = L’ is a purely
inseparable extension of L of degree ¢, and if a € L*, then L ®; k' is a product of
copies of L. In the former case, Lemma 11 gives a commutative diagram

JL? k!«

K (k) KH(L)
lNW lzm
KN () — s KM (L)
which shows that jr k.« © Ny is independent of a. In the latter case, we have
Leyk' = L[t]/(t —a) = LIt)/((t — a)"),

where o € L is the unique ¢th root of a. Hence, in this case, Lemma 11 gives a
commutative diagram

I

KM (k) — " kM (L)
lNa/k \LNL/L

KM (k) — s kM(L)

which shows that, also in this case, ji, /i« 0 N,/ is independent of a. This completes
the proof. 0

It follows from Prop. 13 that we have well-defined norm map
Nijie = Naji: KY(K) — K (k),

for every finite extension k¥’ = k(a) of k of prime degree. Before we state the next
result, we recall from [5, Chap. II, §2] that, if K is a complete discrete valution field,
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and if L is a finite extension of K, then the discrete valuation on K extends uniquely
to a discrete valuation on L and L is complete with respect to this valuation.
Moreover, if kr,/kk is the extension of residue fields, then

[L : K] = eL/K . [I{/’L : k/’K],

where e,/ is the ramification index defined by mxOp, = m

LEMMA 14. Let K be a complete discrete valuation field, and let K' be a finite
normal extension of K of prime degree. Let k and k' be the residue fields of K and
K’, respectively. Then the following diagram commutes:

KM(K') —5 KM\ (K)

lNK//K lNk//k

KM (K) " KM (k).

n

Proor. We wish to show that the map
O/ = Ox © Ngrjx — Ny yp © O
is equal to zero. We first show that pdx/ /i is zero. We consider several cases.
Suppose first that K’'/K is unramified. If K’/K is separable, then the extesion
k' /k is normal [5, Chap. I, §7, Prop. 20]. If, in addition, k¥’ /k is separable, then the
Galois groups Gk, and Gy, are canonically isomorphic, and we have
I s (O /16 (2)) = G piex (O (Nicr 11 (2))) = i g1 (N 71 (91 (2)))
= O/ (Jr'/k«(Ni /5 (2))) = i e (N (O (2)))
= Y @) - Y a0k (2)

O'EGK//K 6€Gk’/k

which is equal to zero, since Jk- is a natural homomorphism. Here the second
equality uses Lemma 2, and the third equality uses Cor. 12(i). If, instead, k' /k is
a purely inseparable extension, we find as above that

e Oy (2)) =Y Ok(04(2)) — Ok (2).

G'GGK//K

But 0 € G/ /i induces the identity map of k' [3, Chap. V, §6, Prop. 3], so this
expression is equal to zero. If K'/K is purely inserable, then k’/k is also purely
inseparable [5, Chap. I, §6, Prop. 16], so

Jr w0 /i (2)) = Ok (pz) — pOxc(2) = 0.
Suppose next that K'/K is totally ramified. If K’/K is Galois, then

Porr/x(2) = pOx (Ngr /i (2)) — pOK:(2)
= Ok (Jr' /k«(Niry K (2))) — pOkr (2)
=S Olon(s) — P (2)
0€Gkr Kk
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which is zero, since G/ acts trivially on k' = k. Finally, if K'/K is purely
inseparable, then
POk /K (2) = O (Jk ik« (NK /i (2))) — POk (2)
= Ok (pz) — pOK-(2)
which again is zero. We conclude from the above that pd,k (2) is zero. Therefore,
if suffices to show that, for every z € KM(K'), there exists an integer m prime to
p such that mdg.,x(2) is zero.

Suppose that L is an extension of K of degree prime to p, and let L’ be the
compositum of L and K’ in an algebraic closure of K. Since K’/K is a normal
extension whose degree is prime to the degree of the extension L/K, the extension
L'/L is again normal of degree p. By Lemma 11, the diagram

JL/ /K«

KK K (L)

lNK//K \LNL’/L
JL) K«

KN (K) ————— K}(L)

commutes. Moreover, the discussion before the statement shows that the ramifica-
tion indices er//; and e/ /i are equal and that the canonical map from k' @k
to kr is an isomorphism. Therefore, we conclude from Lemma 11 that there is a
commutative diagram

Thy ./

K (k') ———— K3 (kw)

n
lNk//k

lNkL//kL
Jky, /kx

Kt (k) ————— K" (kp),

and from Lemma 2 that there is a pair of commutative diagrams

oIy
KM(L) =25 KM (ky) KM(L) =22 KM (ky)
TjL/K* TGL/KjkL/k* TjL//K/* TGL/KJ%L/ e
Orer
KM(K) —2s KM (k) EM(K') = KM (k).

We now fix an element 2z € KM (K') and consider the difference
O Kk (2) = Ok (Nkr /K (2)) — Ny 1 (0rc/ (2))
which we wish to show is zero. Then the diagrams above show that
er/Kiky k0K )k (2) = 0 /(x4 (2)),
where 07,/ (w) is defined similarly. We claim that for a given z € K} (K’), there

exists L/K such that the right-hand side is zero. The projection formula then
shows that [L : K- dg/ i (2) is zero which complete the proof of the proposition.

It remains to prove the claim. It follows from Lemma 10 that there exists a
finite extension L/K of degree prime to p such that jr.,x.(z) € KM(L') is a
sum of symbols of the form {z,y2,...,yn}, where © € L'* and ya,...,y, € L*.
Hence, we may assume that z is a sum of symbols {z,ys,...,yn} with © € K'*
and ya,...,yn € K* and show that dx,x(2) is zero in this case. This, in turn, is
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proved by direct calculation. The extension K’/K is either unramified or totally
ramified. We consider the latter case and leave the former to the reader.

Let g/ and mx be uniformizers of K’ and K, respectively. Then
W%/ + GK’/K(WK’)WK =0

where 0/ (X) € Or[X] is a polynomial of degree at most p — 1 such that
Ok Kk (0) € OF. Since O is m’-adically complete, it follows that O,k (7x/) €
O3 such that

T = 79K’/K(7rK/)717T€(/'

By using the K-basis 1,7, ... ,71'?(_,1 of K’, one shows that

Ny () = (=1)P0kr/r (0).
We show that, if € K'* and y € K*, then
O ({z,y}) = Ok (Ngryx({Z,9}));

the general case is iny notationally more complicated. We write z = 7%, u with
u € Oy, and y = mjv with v € Of. Then
{z,y} = {mieu, v} = {mheu, (—Oxr /i (mie )~ e, ) 0}
=ij{nr, =1} —ij{mr, O ) (T )} + pijimrs, mr } + i{mrr, v}
+ J{ua _1} - J{u’ GK//K(T‘-K’)} + pj{ua ﬂ-K’} + {ua U}a
and hence,
O ({z,y}) = (p+ Vij{-1} + ij{0x/x (rx)} — i{v} + pj{u}.
On the other hand,
Ny s ({2, 9}) = {Nkryic (@), 4} = {(=1)P 0k (0)mr ) Nicry e (), v}
= pij{-1, 7k} + ij{0r/x(0), 7} + ij{mr, 7x} + j{Nk/r (v), 7}
+pi{—1,v} + {0k )k (0),v} +i{7r, v} + {Ngr/k(u),v},
and hence,
Ok (Nrryx ({7, y})) = (p + 1)ig{—1} + ij{0k//k (0)} + j{Ng/x (u)} — i{v}.

To finish the proof we must show that

But this is easily seen by using 1,7k, ... ,ﬂ%_/l as a K-basis of K’. O

PROPOSITION 15. Let k be a field, and let k' be a finite normal extension of k
of prime degree p. Let F' = k(a) be a finite extension, and suppose that F' = k'(a)
is a field. Then the following diagram commutes:

Mgy Nels o
K (F') —— K, (K)
J/NF’/F Nt /i
Na/k

12



PROOF. Let v be a discrete valuation on k(t)/k, and let k(t), be the completion
of k(t) at v. Since k(t), is a separable extension of k(¢), the minimal polynomial
IT € k(t)[x] of a generator v of k'(t)/k(t) decomposes as a product

IT= H Hw/v
w/v

where II,,,, € k(t),[z] are distinct monic irreducible polynomials, and where w
ranges over the possible extensions of v to a discrete valuation on k'(¢)/k’. We then
consider the following diagram:

(Tn? (tya /7 (2)+) @ 0w
KM (K () =5 @y Kby (K (1)) D,/ K (k(w))
J{Nk’(t)/k(t) lZ Nt () / k()0 \LZ Ni(w)/k ()

Jk(t)w /()= By

KL (k(1) —————— K4, (k(t)o) K3 (k(v))-

It follows from Lemma 2 that the left-hand square commutes and from Lemma 14
that the right-hand square commutes. Now let # € k[t] and 7' € E/[t] be the
minimal polynomials of a over k and k', respectively. Given 2’ € KM (F’), Thm. 5
shows that there exists y' € KM (k'(t)) such that 0, ,(y') = 2/, and such that
Ow(y') =0, if w # wy and w # ws. Then, by definition,

Na/k’ (:L'/) = 7811130 (y/)

We define 2 = Np//p(2') and y = Ny 1)k (y'). The diagram above then shows
that 9,_(y) = z and that 9,(y) = 0, if v # v, and v # v, such that

Nayi(z) = =00, ().
Applying the diagram again for v = v, gives
Ovoe N () /1) (Y')) = N /(O (7))
which shows that Ny, (Np//p(2')) = Ny ji(Nayw (2')) as desired. O
DEFINITION 16. Let k be a field, and let ¥’ = k(aq,...,a,) be a finite field
extension of k. Then the norm map
Na1 ..... a./k* K’r]z\/j(kl) - K;zw(k)

is defined to be the composite map

Nay,..ar/k = Nay /i © Nag/k(ar) © -+ © Na, /k(as,..oar-1)-

PROOF OF THM. 3. Suppose k' = k(aq,...,a,). We show that the map

Na1 ..... a./k* K’rlz\/f(k/) - Ky(k)
does not depend on the choice of generators ai,...,a, € k’. The proof is by
induction on the degree d = [k’ : k]. The case d = 1 was proved in Cor. 9. So

we assume that the statement has been proved for all finite extensions of degree
strictly smaller than d and let &’/k be a finite extension of degree d. It will suffice
to show that, for every prime number p, the map

Nayoaryies KN () = KN (K) ()

13



does not depend on the choice of generators ay,...,a, € k’. By Lemma 10, there
exists an extension L of k such that every finite extension of L has degree a power
of p and such that the map

. M M

ek Ky (R) ) = K37 (L))
is injective. Hence, it suffices to show that the composite map

JL k%

Nay,..., ar/k
() ) ——= Kl (k) ) = K3 (L))
is independent of a1, ...,a, € k'
The ring L' = L ®j k' is an artinian L-algebra. Let pi,...,p, be the minimal
prime ideals of L', let L = Ly, /p;Lj, be the residue field at p;, and let

Suppose that L’ is not a field. Then [L} : L] < d, for all 1 < i < m, and hence, we
have a well-defined norm map Np,p: K3 (L;) — K}'(L). Moreover, iterated use

of Lemma 11 shows that the following diagram commutes:

(eijL[L/k’*)

K (K) D1cicm K (LY)
lNal ,,,,, ar/k lZNL;/L
K () —— s KM (D),
Hence, the composite jr, /x« © Na, ... 4. /k does not depend on ay,...,a, € k' in this

case. It remains to consider the case where L’ is a field. We claim that, in this
case, there exists a sequence of field extensions

L=FEyCcE,C---CE,=1'

such that, for all 1 < ¢ < m, E; is a finite normal extension of E;_; of degree p.
Given this, iterated use of Prop. 15 shows that

Nal/L ©---0 NaT/L(al,...,anﬂ = NE1/E0 0--:0 NEm/Em—l’

and the right-hand side is independent of the choice of a1, ..., a, € k’. This proves
the induction step and hence the theorem.

It remains to prove the claim. We first decompose the extension L'/L as a purely
inseparable extension F'/L followed by a separable extension L’/F. The extension
F/L is simple and the minimal polynomial m € L[t] of a generator a takes the form

.
=t —aq,

where a = a?” € L. We define E;, 0 <i < s, to be the subfield L(apkl) of F. Then
E; is a normal extension of F;_; of degree p for 0 < 7 < s. We next choose a finite
Galois extension M of F that contains L’ as a subfield. Then L’ is the subfield
of M fixed by the subgroup G/ of the Galois group Gy /p. Since every finite
extension of L, and hence F, has degree a power of p, the Galois group Gy/r, is a
finite p-group. We recall from [2, Chap. I, §6, Prop. 12] that every proper subgroup
of a finite p-group is contained in a normal subgroup of index p. It follows that
there exists a sequence of subgroups

GM/F =G°D can D---DGEM" = GI\/[/L’
14



such that G* is a normal subgroup of G*~! of index p, s +1 < i < m. We define E;
to be the subfield of M fixed by the subgroup G* C G- Then E; is a normal
extension of F;_; of degree p, for all s + 1 < i < m, as desired. O
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