18.022 Problem set 3

- 1. (a) If $g \circ f$ is bijective, f must be injective (in other words one-one). If f(x) = f(y), then g(f(x)) = g(f(y)). f may not be surjective.
 - (b) g must be surjective (or in other words onto), but may not be injective if f is not surjective.
- 2. 1.7.39

(a)
$$\mathbf{e}_r \cdot \mathbf{e}_r = \cos^2 \theta + \sin^2 \theta = 1$$

$$\mathbf{e}_r \cdot \mathbf{e}_\theta = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0$$

$$\mathbf{e}_r \cdot \mathbf{e}_z = 0$$

$$\mathbf{e}_\theta \cdot \mathbf{e}_\theta = \sin^2 \theta + \cos^2 \theta = 1$$

$$\mathbf{e}_\theta \cdot \mathbf{e}_z = 0$$

$$\mathbf{e}_z \cdot \mathbf{e}_z = 1$$

so these are mutually perpendicular unit vectors.

(b)

$$\mathbf{e}_{\rho} \cdot \mathbf{e}_{\rho} = \sin^{2} \phi \cos^{2} \theta + \sin^{2} \phi \sin^{2} \theta + \cos^{2} \phi = \sin^{2} \phi + \cos^{2} \phi = 1$$

$$\mathbf{e}_{\rho} \cdot \mathbf{e}_{\phi} = \sin \phi \cos \phi \cos^{2} \theta + \sin \phi \cos \phi \sin^{2} \theta - \cos \phi \sin \phi$$

$$= \sin \phi \cos \phi - \cos \phi \sin \phi = 0$$

$$\mathbf{e}_{\rho} \cdot \mathbf{e}_{\theta} = -\sin \phi \cos \theta \sin \theta + \sin \phi \sin \theta \cos \theta = 0$$

$$\mathbf{e}_{\phi} \cdot \mathbf{e}_{\phi} = \cos^{2} \phi \cos^{2} \theta + \cos^{2} \phi \sin^{2} \theta + \sin^{2} \phi = \cos^{2} \phi + \sin^{2} \phi = 1$$

$$\mathbf{e}_{\phi} \cdot \mathbf{e}_{\theta} = -\cos\phi\cos\theta\sin\theta + \cos\phi\sin\theta\cos\theta = 0$$
$$\mathbf{e}_{\theta} \cdot \mathbf{e}_{\theta} = \sin^2\theta + \sin^2\theta = 1$$

so these are mutually perpendicular unit vectors.

3. 1.7.42

(a)
$$0 \le \rho \le 3$$

$$0 \le \phi \le \arcsin\left(\frac{1}{3}\right)$$

(b)
$$r \le \frac{1}{\sqrt{8}}z \le (9 - r^2)^{\frac{1}{2}}$$

- 4. 2.1.1
 - (a) The domain of f is \mathbb{R} the range of f is $[1, \infty)$.
 - (b) f is not injective. f(1) = f(-1)
 - (c) f is not surjective, as there is no point which maps to 0.
- 5. 2.1.13

$$f^{-1}(0)=\{0\}$$

$$f^{-1}(1)=\{(x^2+y^2)^{\frac{1}{2}}=1\} \text{ a circle of radius 1}$$

$$f^{-1}(2)=\{(x^2+y^2)^{\frac{1}{2}}=2\} \text{ a circle of radius 2}$$

This is a cone.

6. 2.1.14

$$f^{-1}(0)=\{0\}$$

$$f^{-1}(1)=\{4x^2+9y^2=1\} \text{ an ellipse}$$

$$f^{-1}(4)=\{4x^2+9y^2=1\} \text{ an ellipse of double the size}$$

7. 2.1.15

$$f^{-1}(0) = \{x = 0\} \cup \{y = 0\}$$
$$f^{-1}(1) = \{yx = 1\}$$
$$f^{-1}(-1) = \{yx = -1\}$$

- 8. 2.1.27 Two different level curves that represent different values for f cannot intersect if f is continuous because the intersection would represent f taking on two different values at the one point. A level curve representing a single value of f can sometimes look like several curves which intersect.
- 9. 2.2.1 This set is open.
- 10. 2.2.2 This set is closed.

- 11. 2.2.9 This limit does not exist. The function along the line y = 0 is 1 but the function along the line y = -x is 0.
- 12. 2.2.11 This limit does not exist. The limit along y=0 is 2 and the limit along the line x=0 is 1.
- 13. 2.2.23 Along the line y = cx, this limit is given by

$$\lim_{x \to 0} \frac{c^4 x^8}{(x^2 + c^4 x^4)^3}$$

This expression is greater than 0 but less than c^4x^2 , so this limit is 0. From this, we might expect the limit to be 0.

Along the path $x = y^2$, we have the limit

$$\lim_{x \to 0} \frac{x^6}{8x^6} = \frac{1}{8}$$

so this limit must not exist!

14. 2.2.28

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = \lim_{r\to 0} \frac{r^3\cos^2\theta\sin\theta}{r^2} = 0$$

15. 2.2.29

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2} = \lim_{r\to 0} \frac{r^2\cos^2\theta}{r^2}$$

This depends on θ so the limit does not exist.

16. 2.2.30

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2} = \lim_{r\to 0} \frac{r^2(\cos^2\theta + \sin\theta\cos\theta + \sin^2\theta)}{r^2}$$
$$= \lim_{r\to 0} (1 + \sin\theta\cos\theta)$$

This depends on θ , so the limit does not exist.

17. 2.2.32

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+y^2}{(x^2+y^2+z^2)^{\frac{1}{2}}} = \lim_{\rho\to 0} \frac{\rho^2 \sin \phi}{\rho} = 0$$

18. 2.2.39

f restricted to the line y = 0 is 1 when $x \neq 0$ but 0 when x = 0, so this is not continuous.

19. 2.2.42

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2 + 2x^2 + 2y^2}{x^2 + y^2} = 2 + \lim_{r\to 0} \frac{r^3(\cos^3\theta + \cos\theta\sin^2\theta)}{r^2} = 2$$

so setting g(0,0) = 2 will make this function continuous.

 $20. \ 2.2.45$

- (a) If $|x-5| < \delta$, then $2\delta > 2|x-5| = |(2x-3)-7|$ as required.
- (b) For any $\epsilon > 0$, if we choose $\delta = \frac{\epsilon}{2}$, then δ will also be positive and if $|x 5| < \delta$, then $|f 7| < \epsilon$ so $\lim_{x \to 5} f = 7$.