18.022 Problem set 6

. (a) By the Implicit Function Theorem, it suffices to prove that
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at the point (z,y, z,w) = (3,—1,1,0). By assumption,
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which is indeed nonzero.

(b) Again by the Implicit Function Theorem, it suffices to prove that
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at the point (z,y, z,w) = (3,—1,1,0). By assumption,
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which is indeed nonzero.

(C) Write f(xvy) = (fl(x>y)7f2($7y)) To compute Df(?), _1)a we use
the chain rule:

0 = %Fl(x>y7flaf2):%+%%+%%
= 1+2%,

0 = %Fﬂ%y,fl,fz):%jt%% %%
— —1+2%+%,

0 = %F1($>y>f1,f2)=%+%—§%+%—f%
— —2+2%—22,

0 = %Fz(fb’,y,fbh):%jL%—‘g%jL%—f%



We conclude that
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To compute Dg(3,1), the same approach yields the equation
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2. (Exercise 3.1.15)
With x(t) = te~'i + €*j, we obtain that
v(t) = (1 —t)e i + 3e¥j.
t = 0 yields the equation
1(t) =x(0) +tv(0) = j + t(i+ 3j) = ti+ (1 + 3t)].

3. (Exercise 3.1.19)
(a)

(b) We have that v(t) = (1,3t> — 2); hence the line tangent to x(t)
when t = 2 equals

1(t) = x(2) + (t — 2)v(2) = (2,5) + (¢t — 2)(1,10) = (¢, 10t — 15).
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(c) We have that (z,y) = (¢,t> — 2t + 1) is equivalent to

y=2°—2x+1.

(d) With y = 23 —2x+1, we have that y' = 322 —2. Note that y(2) =5
and y/(2) = 10. Hence the tangent line of the curve y = 23 — 2x + 1
when x = 2 equals

y=5+10(x —2) = 10z — 15 <> (z,y) = (¢, 10t — 15).

. (Exercise 3.1.20)

We want to show that the following parametric equations define a
parabola:

x = (vg cos ),
y = (vosinO)t — Lg%,

To see this, note that t = x/(vg cos @), which yields that
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This is indeed a parabola.

. (Exercise 3.2.7)
The path x(t) = (acos®t, asin®t) has the following shape:
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The length of the path is given by
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x'(t) = (—3acos’tsint,3asin®tcost) = 3acostsint - (—cost,sint)

3
= 7@ sin 2t - (— cost, sin t);

thus

3 3
I ()] = 5 sin2t]/(— cost)? + sin? ¢ = = sin2t].

It is clear that ||x'(t 4+ 7/2)|| = ||x'(t)|| for all ¢; hence

/2 3m/2 T 2w
/ I/ ()1t = / ()1t = / () dt = / 1 (8) .
0 T w/2 3m/2

As a consequence,
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. (Exercise 3.2.8)

We want to compute the length of the curve y = f(x), which in para-
metric form becomes
{ T =1,
y=[f(1).

'@ = v+ (f(8)>
As a consequence, the length of the curve y = f(z) from (a, f(a)) to
(b, f(b)) is equal to

We obtain that

/ V 1+ (f(z))%d.

. (Exercise 3.2.18)
(a) First method. We have that
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Since x is parametrized by arclength, we get that

k=[x xx"|.



Now,
i
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As a consequence, k = |z'y” — 2”y/| as desired.

Second method. Since the curve is parametrized by arclength, we get

that T
= @) )

hence
/{2 _ (ZL‘”)2 + (y//)2.
We want to prove that
(SL’//)2 4 (y//)2 — (l’/y// o x"y')2 — (x/>2(y//)2 4 (I//>2(y/>2 . 2$/l’//y/y//
Now, since (z')? + (y')? = 1, we obtain that
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we obtain the desired identity.
(b) We have that

X(s) — <—s,%(— LY/ w S )>

which implies that
X = (s + (VI @)=+ 15 = 1

hence the curve is parametrized by arclength.

Now,



Using (a), we obtain that
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8. We have that

r'(t) = (abe” cost — ae sint, abe” sint + ae® cost)

ac”(bcost — sint, bsint 4 cost).

As a consequence,

') = ae”\/(bcost —sint)? + (bsint + cost)?

= ae’Vb? + 1.

(a) We have that

Jim v ()] = Jim ac’ V2 +1=aVb? +1- lim e’ =0,

because b < 0.

(b)
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recall that b < 0. As a consequence,
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This limit being finite means that the arc length of the curve {r(¢) :
0 <t < oo} is finite.

9. (a) We have that

1
) = (cost, —sint + —).

"(t) = t,—sint
r(t) = (cost, —sint + 2tan(t/2) cos?(t/2) sint




Since sint > 0 whenever ¢ € (0,7), this is deﬁned for all t. cost =0
if and only if ¢ = /2, in which case —sint + —-- = 0. For all other
values on t, r'(t) is nonzero.

(b) Vector parametric equation for the tangent line at r(t):

I(t) = r(to) + (¢ —to)r' (o) <
1(t) = (sintp,costy+ Intan t2 )+ (t —to) - (costy, —sinty +

)-

sin tg

(c) The line intersects the y-axis when
sintg + (t — tg) costy = 0 <= t =ty — tanty.
The distance between the points 1(tg) and 1(tg — tanty) is

|to — (to — tanto)| - ||Ir'(to)]|
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