18.022 Problem set 9

1. 4.3.3
Vfi=(5,2)

Vg = (10z,4y)

so 10z = A5 and 4y = A2. Solving this gives x = y. Now requireing
that g(x,y) = 14 gives critical points (z,y) = £(v/2,v/2).

2. 4.3.8
Vf=(111)
v.gl = <—2$, 2y7 O>
VQQ = <17 07 2>
we want to solve Vf = A\;Vg1 + A\2Vg,. Looking at the second com-
ponent gives A\; = =. Looking at the third component gives \y = %

2y
This leaves us with the following equation from the first component:

z 1
l=—+-=
y 2
so y = —2x and z is unconstrained. We must now put this into our two

constraint equations g; = 1 and go = 1. The first gives the equation

422 — 22 =1

—X

SO xr = :I:%. The second equation says that z = IT, so we have the
following 2 critical points:

12 1¥ 5
xr,Yy,z) = :l:_7:|:_7
(@9,2) ( V3 37 2

3. 4.3.17

We wish to maximise the function f(z,y, z) = xyz subject to the con-
straint that g(z,y,2) =x+y+z2z=18and 2 >0,y > 0, z > 0.
Vg=(1,1,1)

solving Vf = AVg gives that xy = yz = zx and therefore x =y = 2
if these numbers are non zero. Our critical point will then be (6,6, 6),
giving f = 63. The value of f on the boundary of our region is 0 so
this must be the maximum value of f.
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4. 4.3.18 f is a continuous function, and therefore on any compact set, it
will some maximum and minimum.

Vi=(11-1)

Vg = (2z,2y,2z)

Solving V f = AVg gives that (z,y, z) = (z,z, —x). Satisfying the con-
straint equation g(z,y,z) = 81 gives critical points at +3v/3(1,1, —1).
The values of f at these points must be the maximum and minimum
values. They are f = +£9/3.

5. 4.3.19
Vf={Q2x+y,2y+x)

The only critical point of our unconstrained f is at 0, where it has the
value 0. We must now look for critical points of f constrained to the
boundary, where g(z,y) = z* + y* =4

Vg = (2z,2y)
so we need to solve

2z +y = A\(22)

x+ 2y = \2y)

If x =0, y =0, which doesn’t obey the constraint equation, so we can
divide the first equation by x and the second by y to obtain

so we have critical points (£v/2, £v/2), and (£v/2, Fv/2). At +(v/2,/2),
f=6. At +(v/2,—v2), f = 2. So the maximum and minimum values
of f are 6 and 0.

6. 4.3.31

(a)
Vi={(11)

Vg =(y,z)
Solving Vf = AVg gives x = y. To satisfy xy = 6, we have
(z,y) = £V6(1,1).



10.

11.

(®) 6 6

flo, )=z +—
We can see that this has no maximum by sending x — oo. It has
no minimum because lim,_._« f(z, $) = —ooc.

5.2.1 (b) The region D is symmetric with respect to reflection in the
y axis. Given some partition of D, we can reflect it to obtain another
partition. The boxes of this new partition will have the same area, but
the function z® will have the opposite sign. Therefore, the Riemann
sum using the reflected integral partition will be (—1) times the original
Riemann summ. So [ [, #3dA = — [ [, 2°dA therefore,

//x3dA=O
D

. 5.2.10 The depth will be less than

4x124+10x114+10x 1046 X9 +5Xx8+5XT+5X6+5 x5 =442
and greater than
2x104+9%x9+12x84+T7TXT+5X6+5x5+5x44+5x3 =336

so to the nearest 100f%3, the pool has a volume of 400 3.

2 2w 2 1 1
/ / (1 — zy)dydr = / 2—2—-2(2—2)%)dr = =
z=0 Jy=0 0 2 3

5.2.16
V3
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(a)
/02 /;(2”3 +1)dydz = /02(290 — ) 2r+V)de=4+8—-8=4

(b) Region of integration
y

(c)
LoV 4 2 16 1
// (2x+1)dmdy:/(y—y—+\/_—g)dy=4+———6:4
0 Jy YTy 2 33

12. 5.3.3




2 d—2z 1 16
/ / ydydx = / 2(2 — 2)%dr = —
0 0 0 3

4 27‘5 4 2
Y 32 16
/0/0 ydrdy /O(y 2)3/ T =3

13. 5.34

2 iy 21 32 16 128
dxdy = (A —)dy =16 — =+ — =
/0/0 rarey /02( y7)dy 55 T 15

A ! ! 64 64 128
/ / xdxdy = / V4 — xdx = / (4—u)u%du - _ - -
0o J1 0 0 3 5 15

14. 5.3.7



15. 5.3.12

12—y 1
/ / sin xdxdy = / (—cos(2 —y) + cosy)dy = 2sin1 — sin 2
0 Y 0



