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1. (Exercise 6.2.5)

(a) The region under consideration is defined by the inequalities 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1. Green’s theorem yields that the integral equals

∫ 1

0

∫ 1

0

(

∂

∂x

(

x2
)

− ∂

∂y

(

y2
)

)

dxdy =

∫ 1

0

∫ 1

0

(2x − 2y)dxdy

=

∫ 1

0

∫ 1

0

2xdxdy −
∫ 1

0

∫ 1

0

2ydydx = 0.

(b) The path C consists of four line segments C1, C2, C3, C4:

• C1 is defined by {(t, 0), 0 ≤ t ≤ 1}. We obtain that dx = dt and
dy = 0; hence

∫

C1

y2dx + x2dy =

∫ 1

0

0dt = 0.

• C2 is defined by {(1, t), 0 ≤ t ≤ 1}. We obtain that dx = 0 and
dy = dt; hence

∫

C2

y2dx + x2dy =

∫ 1

0

dt = 1.

• C3 is defined by {(1 − t, 1), 0 ≤ t ≤ 1}. We obtain that dx = −dt
and dy = 0; hence

∫

C3

y2dx + x2dy = −
∫ 1

0

dt = −1.

• C4 is defined by {(0, 1 − t), 0 ≤ t ≤ 1}. We obtain that dx = 0
and dy = −dt; hence

∫

C4

y2dx + x2dy = −
∫ 1

0

0dt = 0.

Summing, we obtain that

∮

C

=

∫

C1

+

∫

C2

+

∫

C3

+

∫

C4

= 0 + 1 + (−1) + 0 = 0.
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2. (Exercise 6.2.6)

The region under consideration is defined by the inequalities 0 ≤ x ≤ 2
and −2 ≤ y ≤

√

1 − (x − 1)2. Green’s theorem yields that the integral
equals

∫ 2

0

∫

√
1−(x−1)2

−2

(

∂

∂x

(

2x2
)

− ∂

∂y
(3xy)

)

dydx

=

∫ 2

0

∫

√
1−(x−1)2

−2

xdydx =

∫ 2

0

(
√

1 − (x − 1)2 + 2)xdx

=

∫ 2

0

(

√

1 − (x − 1)2 · (x − 1) +
√

1 − (x − 1)2 + 2x
)

dx

=

[

−1

3
(1 − (x − 1)2)3/2 + x2

]2

0

+

∫ 2

0

√

1 − (x − 1)2 dx

= 4 +

∫ 2

0

√

1 − (x − 1)2 dx.

Defining x − 1 = sin t, we obtain dx = cos t dt and 0 ≤ x ≤ 2 ⇐⇒
−π/2 ≤ t ≤ π/2. Hence

∫ 2

0

√

1 − (x − 1)2 dx =

∫ π/2

−π/2

√

1 − sin2 t cos t dt

=

∫ π/2

−π/2

cos2 tdt =

∫ π/2

−π/2

cos 2t + 1

2
dt

=

[

sin 2t

4
+

t

2

]π/2

−π/2

=
π

2
.

Summing, we obtain that the integral equals 4 + π/2.

To compute the integral directly, we note that the path C consists of
three line segments C1, C2, C4 and a half-circle C3:

• C1 is defined by {(t,−2), 0 ≤ t ≤ 2}. We obtain that dx = dt and
dy = 0; hence

∫

C1

3xydx + 2x2dy =

∫ 2

0

(−6t)dt = −3t2 = −12.

• C2 is defined by {(2, t),−2 ≤ t ≤ 0}. We obtain that dx = 0 and
dy = dt; hence

∫

C2

3xydx + 2x2dy =

∫ 0

−2

8dt = 16.
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• C3 is defined by {(cos t + 1, sin t), 0 ≤ t ≤ π}. We obtain that
dx = − sin t dt and dy = cos t dt; hence

∫

C3

3xydx + 2x2dy

=

∫ π

0

(3(cos t + 1) sin t(− sin t) + 2(cos t + 1)2 cos t)dt

=

∫ π

0

(−3 cos t sin2 t + 2 cos3 t − 3 sin2 t + 4 cos2 t + 2 cos t)dt

=

∫ π

0

(−5 cos t sin2 t + 2 cos t − 3 + 7 cos2 t + 2 cos t)dt

=

[−5 sin3 t

3
+ 2 sin t − 3t +

7 sin 2t

4
+

7t

2
+ 2 sin t

]π

0

=
π

2
.

• C4 is defined by {(0,−t), 0 ≤ t ≤ 2}. We obtain that dx = 0 and
dy = −dt; hence

∫

C4

3xydx + 2x2dy =

∫ 2

0

0(−dt) = 0.

Summing, we obtain that

∮

C

=

∫

C1

+

∫

C2

+

∫

C3

+

∫

C4

= −12 + 16 +
π

2
+ 0 = 4 +

π

2
.

3. (Exercise 6.2.7)

The region under consideration is defined by the inequalities 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1. Taking into account the orientation of the boundary,
Green’s theorem yields that the integral equals

−
∫ 1

0

∫ 1

0

(

∂

∂x
(x2 + y2) − ∂

∂y
(x2 − y2)

)

dxdy

= −
∫ 1

0

∫ 1

0

(2x + 2y)dxdy = −
∫ 1

0

[

x2 + 2xy
]1

0
dy

= −
∫ 1

0

(1 + 2y)dy = −
[

y + y2
]1

0
= −2.
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4. (Exercise 6.2.8)

Let D be the region bounded by the ellipse x2 + 4y2 = 4 ⇐⇒ (x/2)2 +
y2 = 1. The area of D equals 2 · 1 · π = 2π. Green’s theorem yields
that the integral equals

∫ ∫

D

(

∂

∂x
(x − 4y) − ∂

∂y
(4y − 3x)

)

dxdy

=

∫

D

(−3)dxdy = −3 · Area(D) = −6π.

5. (Exercise 6.2.9)

Let C be the boundary of the rectangle oriented counterclockwise. By
Green’ theorem, we have that the area of the rectangle equals

∮

C
xdy.

The path C consists of four line segments C1, C2, C3, C4:

• C1 is defined by {(t, 0), 0 ≤ t ≤ a}. We obtain that dx = dt and
dy = 0; hence

∫

C1

xdy = 0.

• C2 is defined by {(a, t), 0 ≤ t ≤ b}. We obtain that dx = 0 and
dy = dt; hence

∫

C2

xdy =

∫ b

0

adt = ab.

• C3 is defined by {(a − t, b), 0 ≤ t ≤ a}. We obtain that dx = −dt
and dy = 0; hence

∫

C3

xdy = 0.

• C4 is defined by {(0, b − t), 0 ≤ t ≤ b}. We obtain that dx = 0
and dy = −dt; hence

∫

C4

xdy = −
∫ a

0

0dt = 0.

Summing, we obtain that

∮

C

=

∫

C1

+

∫

C2

+

∫

C3

+

∫

C4

= 0 + ab + 0 + 0 = 0.
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6. (Exercise 6.2.10)

The region under consideration is bounded by the closed path consisting
of the line segment C1 = {(t, 0) : 0 ≤ t ≤ 2π} and the path C2 =
{(a(t − sin t), a(1 − cos t)) : 0 ≤ t ≤ 2π}. On the first path, dy = 0.
On the second path, dy = a sin t dt. Using Green’s theorem, we obtain
that the area of the region equals

∫

C1

xdy −
∫

C2

xdy = 0 −
∫ 2π

0

a(t − sin t) · a sin t dt

= −a2

∫ 2π

0

(t sin t − sin2 t)dt

= −a2

∫ 2π

0

(

t sin t − 1 − cos 2t

2

)

dt

= −a2

[

sin t − t cos t − t

2
− sin 2t

4

]2π

0

= −a2(−2π − π) = 3πa2.

7. (Exercise 6.2.12)

We have that the area of the region D is given by

1

2

∫

∂D

xdy − ydx.

Since dx = −3a sin t cos2 t dt and dy = 3a cos t sin2 t dt, we obtain that

1

2

∫

∂D

xdy − ydx

=
1

2

∫ 2π

0

(

a cos3 t · (3a cos t sin2 t) − a sin3 t · (−3a sin t cos2 t)
)

dt

=
3a2

2

∫ 2π

0

(

cos4 t sin2 t + cos2 t sin4 t
)

dt

=
3a2

2

∫ 2π

0

cos2 t sin2 t dt =
3a2

2

∫ 2π

0

1 + cos 2t

2
· 1 − cos 2t

2
dt

=
3a2

2

∫ 2π

0

1 − cos2 2t

4
dt =

3a2

2

∫ 2π

0

(

1

4
− 1 + cos 4t

8

)

dt

=
3a2

2

[

t

4
− t

8
− sin 4t

32

]2π

0

=
3a2

2
· 2π

8
=

3πa2

8
.
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8. (Exercise 6.2.13)

(a)

(b) The region under consideration is bounded by the path

C = {(1 − t2, t3 − t) : −1 ≤ t ≤ 1}.

Note that this path has a clockwise orientation.

By Green’s Theorem, the area is given by
∮

C

ydx =

∫ 1

−1

(t3 − t) · (−2t)dt = −2

∫ 1

−1

(t4 − t2)dt

= −2

[

t5

5
− t3

3

]1

−1

= −2

(

2

5
− 2

3

)

=
8

15
.

9. (Exercise 6.2.19)

Assume that C is oriented counterclockwise; if C is oriented clockwise,
then just reorient it and switch sign of the integral. C is the boundary
of a region D. Applying Green’s theorem, we obtain that the integral
equals

∫ ∫

D

(

∂

∂x
(x3) − ∂

∂y
(3x2y)

)

dxdy =

∫ ∫

D

(3x2 − 3x2)dxdy

=

∫ ∫

D

0dxdy = 0.
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10. (Exercise 6.2.24)

Let D be the region bounded by C. Applying Green’s theorem, we
obtain that

∮

C

∂f

∂y
dx − ∂f

∂x
dy =

∫ ∫

D

(

−∂2f

∂x2
− ∂2f

∂y2

)

dxdy

= −
∫ ∫

D

(

∂2f

∂x2
+

∂2f

∂y2

)

dxdy = −
∫ ∫

D

0 · dxdy = 0.
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