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1. (Exercise 6.2.5)

(a) The region under consideration is defined by the inequalities 0 <
x<1land 0 <y <1. Green’s theorem yields that the integral equals
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(b) The path C' consists of four line segments C1, Co, Cs, Cy:
e () is defined by {(¢,0),0 < ¢ < 1}. We obtain that dx = dt and

dy = 0; hence
1
/ yidr + 2*dy = / 0dt = 0.
el 0

e (U5 is defined by {(1,¢),0 <t < 1}. We obtain that dr = 0 and

dy = dt; hence
1
/ yide + 2idy = / dt = 1.
Co 0

e (U5 is defined by {(1 —1¢,1),0 <t < 1}. We obtain that dr = —dt
and dy = 0; hence

1
/ y2dx+x2dy:—/ dt = —1.
Cs 0

e (U, is defined by {(0,1 —¢),0 <t < 1}. We obtain that dz = 0
and dy = —dt; hence

1
/ yide + 2idy = —/ 0dt = 0.
Cy 0

Summing, we obtain that
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2. (Exercise 6.2.6)

The region under consideration is defined by the inequalities 0 < x < 2
and —2 <y < /1 — (x — 1)2. Green’s theorem yields that the integral
equals
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Defining x — 1 = sint, we obtain dxr = cost dt and 0 < z < 2 <
—m/2 <t <m/2. Hence
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Summing, we obtain that the integral equals 4 4 /2.
To compute the integral directly, we note that the path C' consists of
three line segments C', Cy, Cy and a half-circle Cl:

e () is defined by {(t,—2),0 <t < 2}. We obtain that dz = dt and
dy = 0; hence

2
/ 3zyder + 22%dy = / (—6t)dt = —3t* = —12.
Cq 0

o () is defined by {(2,t), —2 <t < 0}. We obtain that dz = 0 and
dy = dt; hence

0
/ 3zydr + 22°dy = / 8dt = 16.
Ca
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e (5 is defined by {(cost + 1,sint),0 < ¢ < w}. We obtain that
dr = —sint dt and dy = cost dt; hence
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e (, is defined by {(0,—t),0 <t < 2}. We obtain that dz = 0 and
dy = —dt; hence

2
/ 3rydr + 2x3dy = / 0(—dt) = 0.
Cy 0

Summing, we obtain that
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3. (Exercise 6.2.7)

The region under consideration is defined by the inequalities 0 < z < 1
and 0 < y < 1. Taking into account the orientation of the boundary,
Green’s theorem yields that the integral equals
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4. (Exercise 6.2.8)

Let D be the region bounded by the ellipse 2% + 4y* = 4 < (2/2)> +
y? = 1. The area of D equals 2 -1-7 = 27. Green’s theorem yields
that the integral equals

// <ax v —4y) —83(4?; Sm)) dxdy

= /D 3)dxdy = —3 - Area(D) = —6.

5. (Exercise 6.2.9)

Let C be the boundary of the rectangle oriented counterclockwise. By
Green’ theorem, we have that the area of the rectangle equals fc xdy.
The path C' consists of four line segments C, Cy, C3, Cy:

e () is defined by {(¢,0),0 <t < a}. We obtain that dx = dt and

dy = 0; hence
/ xdy = 0.
C1

e () is defined by {(a,t),0 <t < b}. We obtain that de = 0 and

dy = dt; hence
b
/ xdy:/ adt = ab.
Co 0

e (U5 is defined by {(a —t,b),0 <t < a}. We obtain that dr = —dt

and dy = 0; hence
/ xdy = 0.
Cs

e (U, is defined by {(0,b —¢),0 < ¢t < b}. We obtain that dz = 0
and dy = —dt; hence

/ :)sdy:—/ 0dt = 0.
Cy 0

Summing, we obtain that
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6. (Exercise 6.2.10)

The region under consideration is bounded by the closed path consisting
of the line segment C7; = {(¢,0) : 0 < t < 27} and the path Cy =
{(a(t —sint),a(l —cost)) : 0 <t < 2x}. On the first path, dy = 0.
On the second path, dy = asint dt. Using Green’s theorem, we obtain
that the area of the region equals
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7. (Exercise 6.2.12)
We have that the area of the region D is given by

1
—/ xdy — ydz.
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Since dx = —3asintcos®t dt and dy = 3acostsin®t dt, we obtain that
1
5 xdy — ydx
oD
1 2
=5 / (acos®t- (3acostsin®t) — asin®¢ - (—3asint cos® t)) dt
0
3@2 2
= 5 (cos4 tsin?t 4 cos? t sin’ t) dt
0
3a? [T 3a? [*"1 2t 1 — cos2t
- 2 cos? tsin?t dt = o eoset O
2/, 2/, 2 2
_ 3_&2 2”1—00822tdt:3_a2 2m 1 1+ cosdt gt
2 Jo 4 2 Jo 4 8
_3a* [t t  sindt °n _ 3a® 27 3ma®
2 4 8 3], 2 8 8



8. (Exercise 6.2.13)
(a)

(b) The region under consideration is bounded by the path
C={1—-—t): 1<t <1}
Note that this path has a clockwise orientation.

By Green’s Theorem, the area is given by

%Cydx = /_ll(t3 —t) - (—2t)dt = —2 /_ll(zt‘l —t)dt

9. (Exercise 6.2.19)

Assume that C' is oriented counterclockwise; if C' is oriented clockwise,
then just reorient it and switch sign of the integral. C' is the boundary
of a region D. Applying Green’s theorem, we obtain that the integral
equals
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10. (Exercise 6.2.24)
Let D be the region bounded by C'. Applying Green’s theorem, we

obtain that
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