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Abstract. We introduce the notion of doubling and r-tupling for simplicial complexes, a

notion reminiscent to that of matching complexes in graph theory. We prove a connectivity
result for such complexes and relate r-tupling to stabilizing r times faster in homological

stability.

1. Introduction

Given a simplicial complex X, one can define a new simplicial complex, its double D(X),
whose vertices are the edges of X, and where a collection of p+ 1 edges form a p-simplex in
D(X) if they are disjoint, and together form a 2p+ 1-simplex of X. One can likewise define
the r-tupling Dr(X) of X for any natural number, where the vertices of Dr(X) are now the
(r − 1)-simplices of X. (See Definition 2.1.)

Recall that a simplicial complex is called weakly Cohen-Macaulay (wCM for short) of
dimension n if it is (n−1)–connected, and the link of any p–simplex is (n−p−2)–connected.
The goal of this note is to prove the following result:

Theorem A. Suppose X is wCM of dimension n. Then its r-tupling Dr(X) is wCM of

dimension
⌊
n−r+1
r+1

⌋
.

The doubling of a simplicial complex is closely related to the notion of a matching complex
in graph theory. Recall that the matching complex of a graph Γ is the simplicial complex
whose vertices are the edges of Γ, and higher simplices the disjoint collections; a top simplex in
that simplicial complex is a complete matching of the vertices in the graph. When X = ∆n is
the n-simplex, the double D(∆n) identifies with the matching complex of the complete graph
on n+1 vertices. More generally, the r-tupling Dr(∆n) identifies with what is known as the
matching complex of the complete r-hypergraph on n+ 1-vertices, see e.g. [1].

The connectivity properties of matching complexes of the complete graph and r-hypergraphs
have been studied by several authors, and the above result can be seen as a generalization
of [2, Cor 4.2] (when r = 2) and [1, Thm 1.2] (for all r’s) that give the case X = ∆n in our
theorem via the identification just explained. Our proof in fact relies on these earlier results.
When r = 2, the result is known to be sharp for ∆n, see [14, Thm 1.3, Thm 1.6], building on
[4].

Relationship to homological stability. Our study of r-tupling of simplicial complexes
arose in homological stability, in questions related to destabilization complexes. Recall that
a sequence of groups

G1 → · · · → Gn → Gn+1 → . . .

satisfies homological stability if the map Hi(Gn) → Hi(Gn+1) is an isomorphism when n is
large enough. Stability holds for example for Gn = GLn(R) for many rings R, or Gn = Σn

the symmetric group on n letters, or Gn = Aut(Fn) the automorphism group of the free
group of rank n, see e.g.; [13] or [17] for further examples, references and an introduction to
the subject.

Homological stability results for families of groups are typically proved using the action
of the groups on certain simplicial spaces, or simplicial complexes. As shown in [13], when
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the groups {Gn} together form a braided monoidal groupoid, as is most often the case in
examples, there is a family of semi-simplicial sets Wn, called the destabilization complexes,
whose connectivity properties govern homological stability in the sense that, if Wn is

(
n−a
k

)
–

connected for all n and some k ≥ 2, then the map Hi(Gn) → Hi(Gn+1) is an isomorphism
for all i ≤ n−a+1

k . See Theorems A and 3.1 in [13].
Conjecture C in the same paper states that a form of converse of this result should hold, in

the sense that if homological stability holds in such a fashion, then, at least homologically, the
destabilization complexesWn should be highly connected. As we will explain now, Theorem A
can be interpreted as proving this conjecture in the special case of “fast stabilization”.

We will use the following observation: if a sequence G1 → G2 → G3 → . . . satisfies
homological stability, so does the sequence G2 → G4 → G6 → . . . , or more generally
Gr → G2r → G3r → . . . for any r ≥ 1. The above conjecture, if true, would imply the
following: whenever the destabilization complex Wn associated to the standard “+1” sta-
bilization is highly connected, so should the destabilization complex W r

n associated to the
“+r” stabilization for any r. A consequence of Theorem A is that, under mild assumptions,
this is indeed the case. See Proposition 4.6 for a precise statement. To be able to apply our
main result, we will use that, in good conditions, the connectivity of the semi-simplicial sets
Wn and W r

n is determined by that of their underlying simplicial complexes Sn and Sr
n, see

Definition 4.2 and [13, Thm 2.10].
Note that, as detailed in Remark 4.7, the connectivity bounds for W r

n we obtain this way
do not give optimal stability results in general. For symmetric groups, taking Gn = Σn, the
simplicial complex Sn identifies with the n-simplex ∆n. In that particular case, we know
that the connectivity bounds we obtain for W r

n are optimal, but it also happens in this case
that the resulting stability slope remains optimal for any r. See the remark for more details.

The complexes W r
n and Sr

n come with an action of the group Grn. Hence their first non-
trivial homology defines a family of representations of the groups. In the particular case of
the symmetric groups, where Sn = ∆n, Bouc identifies the first non-trivial homology group
of the double D(Sn), as symmetric groups representations, as certain direct sums of Specht
modules, see [4, Sec 3.2].

A variant of the r-tupling construction has arisen in current work by Belmont, Quigley,
and Vogeli, who study an equivariant version of homological stability in the formalism of
[13]. In their case, for a group G, the G-equivariant analogue Wn(G) of the destabilization
complex Wn has p-simplices given by ordered (k0 + ...+ kp)-tuples of distinct vertices in the
non-equivariant Wn, where ki = |G/Hi| for some subgroup Hi ≤ G. They show, using a
similar argument to the one given here, that high connectivity of the complexes Wn implies
high connectivity of the complexes Wn(G).

Using the Ek–cells formalism of [8], homological stability can be proved using the splitting
complex instead of the destabilization complex. Connectivity properties of the destabilization
complex and splitting complex are essentially equivalent by [12, Prop 7.1]. It should thus be
possible to formulate and prove a version of our main result aimed at splitting complexes.

Organization of the paper: We define the doubling and r-tupling of a simplicial complex
in Section 2, and relate that notion to that of matching complexes. The proof of Theorem A
is given in Section 3. Finally Section 4 details the relationship to homological stability.
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grants EP/K032208/1, EP/R014604/1, and EP/Z000580/1). The last author was also sup-
ported by the Danish National Research Foundation through the Copenhagen Centre for
Geometry and Topology (DNRF151).
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Figure 1. Vertex of D(∆2) and edge of D(∆3)

2. Doubling, r-tupling, and matching complexes

Recall that a simplicial complex X = (X0,P) is the data of a set of vertices X0 together
with a collection P of subsets of X0 including all the singletons and closed under taking
subsets. A p-simplex of X is then a subset τ = {x0, . . . , xp} ∈ P of cardinality p + 1. We
denote by Xp the collection of p-simplices of X.

Definition 2.1. The r-tupling of a simplicial complex X = (X0,P) is the simplicial complex
Dr(X) = (Xr−1,Pr) with vertices the (r − 1)–simplices of X and p-simplices the collections
{τ0, . . . , τp} with the property that

⋃p
i=0 τi ∈ X(p+1)r−1. When r = 2, we call D2(X) = D(X)

the double of X.

For example, the double D(∆2) has three vertices and no edges, while D(∆3) has four
vertices and two (disjoint) edges (see Figure 1).

The matching complex of a graph Γ is the simplicial complex M(Γ) with vertices the edges
of Γ, and p–simplices the collections {e0. . . . , ep} of pairwise disjoint edges. (See eg., [5, Def
3.4].)

Matching complexes were first introduced by Bouc [4] to study posets of subgroups. The
poset of simplices of the double D(∆n) identifies with the poset of elementary abelian 2-
subgroups of the symmetric group Σn+1 that are generated by transpositions. Bouc began
the study of the connectivity properties of D(∆n) as well as the Σn+1-representation defined
by its first non-trivial homology group.

LetKn+1 be the complete graph on n vertices. Note that there is an isomorphismD(∆n) ∼=
M(Kn+1). Indeed, 1-skeleton of ∆n is the complete graph Kn+1, giving an isomorphism on
the set of vertices. And higher simplices are defined in the same way in both cases, since any
subset of vertices defines a simplex in ∆n.

In [1], Athanasiadis considers the more general r–hypergraph matching complexes Mn(r),
whereMn(2) = M(Kn) is the matching complex of the complete graph, andMn(r) is defined
more generally as the simplicial complex whose vertices are the subsets of [n] = {1, . . . , n}
of cardinality r, and simplices the collections of pairwise disjoint such. We have the more
general identification Dr(∆n) ∼= Mn+1(r).

Recall that simplicial complexX is called Cohen-Macaulay (abbreviated CM) of dimension
n if it is of dimension n, and the link of any p-simplex in X is (n− p− 2)–connected. We say
that X is weakly Cohen-Macaulay (or wCM) of dimension n if only the connectivity condition
for the links is satisfied. This is equivalent to requiring that the n-skeleton of X is CM of
dimension n since any wCM complex of dimension n has actual dimension at least n because
the links of (n− 1)–simplices in such a complex are required to be non-empty.

It was shown in [2] that Mn(r) is wCM of dimension ν(r) =
⌊

n−2
2r−1

⌋
, while in [1], it is

shown that its µn(r)–skeleton is shellable for

µn(r) =

⌊
n− r

r + 1

⌋
,
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where shellable is a condition known to be stronger than CM, see e.g. [3, App.]. When r = 2,
the two bounds agree, but for r > 2, the second bound is better.

In particular, it follows that

Theorem 2.2. [1] Dr(∆n) is wCM of dimension

⌊
n+ 1− r

r + 1

⌋
.

Proof. We have thatDr(∆n) is isomorphic toMn+1(r), which is wCM of dimension ⌊n+1−r
r+1 ⌋,

since its skeleton of that dimension is shellable by [1, Thm 1.2], and shellable implies (ho-
motopy) CM, see e.g. [3, App.], and hence wCM of dimension equal to the dimension of the
skeleton. □

Note that the non-trivial homology groups of the complexes Mn(r) have been studied as
symmetric groups representations, see e.g.; [4], [15] and [16], also for the relationship to other
complexes associated to groups.

3. Deducing the connectivity of Dr(X) from that of Dr(∆n)

Our proof of Theorem A is inspired by the proof of Theorem 3.6 in [9], and we will use as
input the known connectivity of Dr(∆n).

For a simplicial complex X, let sX denote its first barycentric subdivision. As in [9],
we denote by Xm the subposet of sX consisting of all the simplices of X with at least m
vertices (i.e. of dimension at least m − 1). From [9, Lem 3.8], we know that Xm is at least
(n − m)–connected if X is wCM of dimension n. The idea of the proof is to use X(k+2)r

as an intermediate space to show that the r-tupling of X is k–connected, because locally, in
X(k+2)r, we always have a simplex of X with at least r(k + 2) vertices, which corresponds
to a simplex of Dr(X) of dimension at least k + 1. And (k + 1)–simplices is exactly what is
needed to fill in a k-sphere with a disc.

We will consider Xm as a simplicial complex with vertices the simplices of X of dimension
at least m − 1, and simplices the chains of such. And we start with an enhancement of the
connectivity result of [9] just mentioned, that promotes “connectivity” to “wCM”.

Lemma 3.1. Suppose X is wCM of dimension n. Then Xm is wCM of dimension n−m+1.

Proof. We know from [9, Lem 3.8] that Xm is (n−m)–connected, so we are left to show that
the link of a p-simplex in Xm is at least (n−m− p− 1)–connected for any p ≥ 0.

A p–simplex of Xm is a simplex σ0 < · · · < σp of the first barycentric subdivision of X with
σ0 at least an (m− 1)–simplex of X. Suppose that σp is a q-simplex, where q ≥ p+m− 1.
The link of such a simplex is the join Ld ∗ Lm ∗ Lu with

- the “down-link” Ld: the subposet of Xm of simplices τ that are faces of σ0,
- the “middle-link” Lm: the subposet of simplices τ with σi < τ < σi+1,
- the “up-link” Lu: the subposet of simplices τ that contain σp as a face.

Write mi for the number of vertices of σi. Then m ≤ m0 < · · · < mp.
The down-link Ld identifies with (∂∆m0−1)m, which is (m0−m−2)–connected as ∂∆m0−1

is CM of dimension m0 − 2.
The middle-link Lm = L1 ∗ · · · ∗ Lp splits as the join of the sublinks Li of simplices τ

with σi−1 < τ < σi. Now we can write σi = σi−1 ∗ ∆mi−mi−1−1 and Li identifies with
∂∆mi−mi−1−1, as we can add any strict face of this extra simplex to σi−1. So Li is (mi −
mi−1 − 3)–connected.

Finally the up-link Lu identifies with the first barycentric subdivision of the link of σp inX,
since larger simplices are automatically large enough, and any larger simplex is obtained by
joining a simplex from the link. It is hence (n−mp− 1)–connected by our assumption on X.
Hence the whole link has connectivity at least

(m0 −m) +

p∑
i=1

(mi −mi−1 − 1) + (n−mp + 1)− 2 = n−m− p− 1
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as needed. □

The wCM property will allow us to use [7, Thm 2.4], which tells us that when we use the
connectivity of Xm to extend a map f : Sk → Xm from sphere Sk to a disc Dk+1, we can do
this in such a way that the map is simplexwise injective on the new simplices.

For σ a p-simplex of Dr(X), we will denote δ(σ) the underlying ((p + 1)r − 1)-simplex
of X.

Lemma 3.2. For τ a p-simplex of Dr(X),

LinkDr(X) τ ∼= Dr(LinkX δτ).

Proof. By definition, a simplex ν is in LinkDr(X) τ if and only if ν ∗ τ is a simplex of
Dr(X), which happens, again by definition, if and only if δ(ν) ∗ δ(τ) is a simplex of X.
This can be reformulated as saying that δ(ν) is in LinkX δτ , which happens if and only if
ν ∈ Dr(LinkX δτ). □

Proof of Theorem A. We will show that

Dr(X) is
n− 2r

r + 1
= (

n− r + 1

r + 1
− 1)-connected for any wCM complex X of dimension n.

This connectivity result gives the desired wCM property since, by Lemma 3.2, if τ is a p-
simplex of Dr(X), then LinkDr(X) τ ∼= Dr(LinkX δτ). Now if X is wCM of dimension n,
then LinkX δτ is wCM of dimension n − r(p + 1) − 1. Hence we can apply the connectivity

result to LinkX δτ , which gives that the link is at least n−r(p+1)−1−2r
r+1 -connected. Finally we

check that

n− r(p+ 1)− 1− 2r

r + 1
=

n− rp− 3r − 1

r + 1
≥ n− rp− 3r − 1− p

r + 1
=

n− r + 1

r + 1
− p− 2

giving the required connectivity condition on links.

So fix a simplicial complex X that is wCM of dimension n and let k ≤ n−2r
r+1 . Then

(r + 1)k ≤ n− 2r, or equivalently, k ≤ n− r(k + 2).
Let f : Sk → Dr(X) be a map, which we assume simplical for some triangulation K of Sk.

The plan of the proof is as follows:

step 1 Use f to construct a map f̂ : K1 → X(k+2)r, for K1 a subdivision of K. By [HW,

Lem 3.8], we know that f̂ extends to a map g : Dk+1 → X(k+2)r, simplicial with
respect to a triangulation L1 of the disc restricting to K1 on the boundary. We will
choose g to be simplexwise injective.

step 2 Use g to construct a map h : L2 → Dr(X), for L2 a subdivision of L1, with the
property that h|Sk ≃ f .

We start with step 1. We will build f̂ and K1 inductively on the skeleta of the first
barycentric subdivision sK of K, with the following property:

(∗) For each vertex v of K1 in the interior of a simplex σ0 < σ1 < · · · < σp of sK, we

have that δ(f(σ0)) ≤ f̂(v).

We start with the vertices of sK. Such a vertex corresponds to a simplex σ of K. Because X
is wCM of dimension n ≥ k+r(k+2), we can, if the dimension of δ(f(σ)) is not large enough,

pick a ((k + 2)r − 1)–simplex f̂(σ) containing δ(f(σ)) as a face, as any simplex in a wCM
complex of dimension n is the face of a simplex of dimension n. The injectivity condition is
automatically satisfied on vertices.

Now suppose that we have defined f̂ on the (m− 1)–skeleton of sK simplexwise injective
and satisfying (∗). Let σ = (σ0 < · · · < σm) be an m–simplex of sK. By induction, we have

thus defined f̂ on a subdivision of the boundary ∂σ, so that the image of f̂ on any vertex
always contains at least δf(σ0) as a face. Now σ0 is a p–simplex of K for some p ≤ k, with
f(σ0) a p′–simplex of Dr(X) for some p′ ≤ p, so that δf(σ0) is a simplex of X with r(p′ +1)



6 KATHRYN LESH, BRIDGET SCHREINER, AND NATHALIE WAHL

vertices for some p′ ≤ p ≤ k. Note that r(p′+1) ≤ r(k+1) < r(k+2). We can thus consider

the restriction of f̂ to ∂σ as a map

f̂ |∂σ = δf(σ0) ∗ f̂1 : ∂σ ≃ Sm−1 −→ Xr(k+2)

with f̂1 : ∂σ → LinkX(δf(s0))r(k+2)−r(p′+1). This latter complex is wCM of dimension

n − r(k + 2) + r(p′ + 1) + 1 by Lemma 3.1, so we can extend f̂1 to a map f̂2 : Dm →
Link(δf(σ0))r(k+2)−r(p′+1) in a simplexwise injective way as long as m− 1 ≤ n− r(k + 2) +
r(p′ + 1), which holds since m − 1 ≤ k − 1 ≤ n − r(k + 2) − 1 by assumption. Now define

f̂ = δf(σ0) ∗ f̂2 in the interior of the simplex. This satisfies condition (∗) by construction, is
still simplexwise injective, and hence gives the induction step, once this is done for all the m
simplices of sK.

By assumption k ≤ n − r(k + 2), so that [9, Lem 3.8] gives a null-homotopy g : Dk+1 →
X(k+2)r of f̂ , simplicial with respect to a triangulation L1, agreeing with K1 in the boundary
of the disc. By Lemma 3.1 and using [7, Thm 2.4], we can assume that g is simplexwise
injective.

For step 2, we want to use g to construct a map ĝ : Dk+1 → Dr(X), with Dk+1 now
triangulated by a subdivision L2 of L1. We build ĝ inductively on the skeleta of L1, satisfying
that

(∗∗) For each vertex v of L2 in the interior of a simplex τ of L1 with g(τ) = α0 < · · · < αp

in X(k+2)r, we have that ĝ(v) is an (r − 1)-face of αp. And if τ is in the boundary,
lying in the interior of the simplex σ0 < · · · < σj of sK, we require more specifically
that ĝ(v) = f(w) for w a vertex of σ0.

Note that the condition on the boundary is compatible with the condition on all simplices
by condition (∗): if v is in the interior of a simplex τ of L1 and in the interior of the simplex
σ0 < · · · < σj of sK, then the vertices of τ are necessarily interior to faces of σ0 < · · · < σj ,
and hence by (∗), each αi contains at least δf(σ0) as a face, so faces of δf(σ0) are also faces
of g(αp).

To start the induction, let v be a vertex of L1. If v ∈ K1, we set ĝ(v) = f(w) with w
chosen as in (∗∗), and if not, we pick ĝ(v) to be some (r− 1)-face of the simplex g(v), which
is possible as (k + 2)r ≥ r. This satisfies (∗∗) by construction.

Note that this choice of ĝ on the vertices of K1 ⊂ L1 extends linearly to a map

ĝ|K1
: K1 −→ Dr(X)

since any simplex τ = {v0, . . . , vj} of K1 lies inside a simplex σ0 < · · · < σj of sK, and
ĝ(vi) = f(asi) for asi some vertex of σj . For the same reason, the map ĝ||K1| is homotopic
to f , by linear interpolation.

Now suppose that we have defined ĝ on the (m − 1)–skeleton of L1 satisfying (∗∗) and
consider τ an m–simplex of L1, not in the boundary, with g(τ) = α0 < · · · < αm in X2k+4,
where we use that g is simplexwise injective. By induction, we have defined ĝ on its boundary
so that the value of ĝ on every vertex of ∂τ is an (r − 1)-face of αm. Hence we have

ĝ|∂τ : ∂τ ≃ Sm−1 → Dr(αm).

Now αm is a simplex of X of dimension at least (k+2)r+m−1 since α0 has at least (k+2)r
vertices.

We have that Dr(αm) is
(

(k+2)r+m−r
r+1 − 1

)
–connected by Theorem 2.2. Now m ≤ k + 1,

so
(k + 2)r +m− r

r + 1
− 1 ≥ mr + r +m− r

r + 1
− 1 = m− 1,

as needed. So we can extend ĝ in the interior of τ , satisfying (∗∗) by construction. This
finishes the proof. □
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4. Doubling and destabilization complexes

The r-tupling of a simplicial complex arises in the context of homological stability, when
“stabilizing fast” in the way described in the introduction. We make this precise here. We
start by recalling the destabilization complexes of [13]. To do so, we will adopt for this section
the categorical language of that paper, where groups are considered as automorphism groups
in appropriate categories, and stabilization maps are induced by a monoidal structure in the
category.

Let (C,⊕, 0) be a monoidal category, and A,X objects in C. We will consider groups of
the form Gn = Aut(A⊕X⊕n) with stabilization maps of the form

(4.1) σ1 : Gn = Aut(A⊕X⊕n)
⊕X−−→ Gn+1 = Aut(A⊕X⊕n+1)

adding the identity on the added X-summand. For example symmetric groups Σn can be
interpreted as automorphisms in the category of finite sets and injections, with disjoint union
as monoidal structure. We refer to [13, Sec 5] for further examples including general linear
groups, unitary groups, automorphisms of free groups or mapping class groups. See also [13,
sec 1.1] for how to construct an appropriate category C from the groups {Gn}n≥1, a “sum”
Gn ×Gm → Gn+m and a braiding bn,m : Gn+m → Gm+n.

When 0 is initial in C, we can associate to the pair of objects (A,X) a semi-simplical set,
and underlying simplicial complex:

Definition 4.2. [13, Defn 2.1 and 2.8] Let (C,⊕, 0) be a monoidal category with 0 initial
and (A,X) a pair of objects in C.

(1) Define Wn(A,X)• as the semi-simplicial set with p-simplices

Wn(A,X)p = HomC
(
X⊕p+1, A⊕X⊕n

)
,

and face maps di precomposing with X⊕i ⊕ ιX ⊕X⊕p−i for ιX : 0 → X the unique
map.

(2) Define Sn(A,X) to be the simplicial complex with set of vertices Wn(A,X)0 and
such that {f0, . . . , fp} forms a p-simplex if there exists a p-simplex f ∈ Wn(A,X)p
with set of vertices {f0, . . . , fp}.

A p-simplex of a semi-simplicial set has p + 1 vertices, obtained from applying repeated
face maps, but, unlike in a simplicial complex, the vertices of a simplex might not be distinct
and might not determine the simplex.

For a simplex f : X⊕p+1 → A⊕X⊕n in Wn(A,X), the vertices of f are its restrictions

fi = f ◦ (ιX⊕i−1 ⊕X ⊕ ιX⊕n−i) : X → A⊕X⊕n

to each of the X-summands of the source. We will here stay away from pathological examples
and restrict ourselves to categories that are locally standard at (A,X) in the sense of [13].
This is precisely the categories with the property that simplices of Wn(A,X) have all their
vertices distinct, and are determined by the ordered collection of their vertices, see [13, Prop
2.6].

For a simplicial complex X, denote Xord the semi-simplicial set with a p-simplex for every
p-simplex of X and every choice of ordering of its vertices. In practice, the following two
situations arise in examples:

(A) Wn(A,X) = Sn(A,X)ord (when the groupoid G is symmetric monoidal)
(B) Wn(A,X) = Sn(A,X) (when the groupoid G is braided but not symmetric).

Examples 4.3. Let (C,⊕, 0) = (FI,⊔, ∅) be the category of finite sets and injections, with
disjoint union as monoidal structure, A = ∅ and X = {∗}. Then

(1) Wn(A,X) is the semi-simplicial set of injective words in [n] = {1, . . . , n}, with p-
simplices

Wn(A,X)p = HomFI([p+ 1], [n]) = {(a0, . . . , ap) ∈ [n]p+1 | ai ̸= aj when i ̸= j}.
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(2) Sn(A,X) is isomorphic to the (n− 1)-simplex ∆n−1.

Here we are in situation (A), with Wn(A,X) = Sn(A,X)ord.

The semi-simplicial set Wn(A,X) is called the destabilization complex, and Theorem A in
[13] says that, under good conditions, its connectivity ensures homological stability for the
maps (4.1). Moreover, the connectivity of the simplicial complexes Sn(A,X) often determines
that of the semi-simplicial sets Wn(A,X), see [13, Thm 2.10].

Given (A,X) in (C,⊕, 0) as above, we can also consider the stabilization maps

(4.4) σr : Aut(A⊕X⊕n)
⊕X⊕r

−−−−→ Aut(A⊕X⊕n+r)

that go r times faster. Homological stability for this fast stabilization is ruled by the semi-
simplicial sets Wn(A,X⊕r). Because homological stability for the maps stabilizing one X at
a time implies homological stability for the maps stabilizing r X’s at once, it is to be ex-
pected that the connectivity of the semi-simplicial sets Wn(A,X) should imply a connectivity
result for the semi-simplicial sets Wn(A,X⊕r). We will see that this is the case, under good
conditions, by first using that the connectivity properties of Wn(A,X) and Wn(A,X⊕r) are
tightly related to those of Sn(A,X) and Sn(A,X⊕r), and then relating the latter simplicial
complexes to the r-tupling construction on the former. Understanding what happened to
these complexes under fast stabilization was our motivation for proving Theorem A.

Recall from [9, Def 3.2] that a simplicial complex Y is a complete join over a simpli-
cial complex X if there is a surjective map of simplicial complexes π : Y → X such that
⟨y0, . . . , yp⟩ is a p-simplex of Y if and only if ⟨π(y0), . . . , π(yp)⟩ is a p-simplex of X. This last
condition can be reformulated as saying that if σ = ⟨x0, . . . , xp⟩ is a p-simplex of X, then
π−1(σ) is the join π−1(x0) ∗ · · · ∗ π−1(xp), which explains the name complete join complex.

Proposition 4.5. Let (C,⊕, 0) be a monoidal category with 0 initial, locally standard at
(A,X). Then Sn(A,X⊕r) is a complete join complex over Dr(Snr(A,X)).

Proof. By definition, a vertex of Sn(A,X⊕r) is a morphism X⊕r → A ⊕ (X⊕r)⊕n in C,
which can be interpreted as an (r − 1)-simplex of Wnr(A,X). On the other hand, a vertex
of Dr(Snr(A,X)) is an (r − 1)-simplex of Snr(A,X), that is a collection {f1, . . . , fr} of
morphisms fi : X → A ⊕ X⊕n such that there exists f ∈ Wnr(A,X) in C with vertices fi,
i.e. such that f : X⊕r → A⊕ (X⊕r)⊕n restricts to fi on the ith factor. In particular, we get
a surjective map on vertex sets

π : Sn(A,X⊕r)0 ∼= Wnr(A,X)r−1 −→ Snr(A,X)r−1
∼= Dr(Snr(A,X))0.

taking a vertex of Sn(A,X⊕r), thought of as a simplex σ of Wnr(A,X), to its underlying
simplex in Snr(A,X).

Now a collection of vertices {g0, . . . , gp} in Sn(A,X⊕r) defines a simplex if and only if
there is a simplex g : (X⊕r)⊕p+1 → A⊕ (X⊕r)⊕n in Wn(A,X⊕r) appropriately restricting to
g0, . . . , gp. Interpreting g as an (r(p+1)− 1)-simplex of Wrn(A,X), it has vertices the union
of the vertices of the gi’s. Hence {g0, . . . , gp} is a p-simplex of Sn(A,X⊕r) if and only if the
union of the vertices of the gi’s form a simplex in Snr(A,X), which happens if and only if
{π(g0), . . . , π(gp)} is a p-simplex of Dr(Snr(A,X)), proving the claim. □

To be able to use the above result to deduce a connectivity result for Sn(A,X⊕r) and
Wn(A,X⊕r) from the connectivity result for Sn(A,X), we need to know that the simplicial
complexes Sn(A,X) are wCM. This is a property that holds in all standard stability examples,
and follows for example if the category C is locally homogeneous and locally standard at
(A,X) satisfying condition (A) of [13, Sec 2.1], see [13, Thm 2.10,Cor 2.13]. These many
conditions are for example automatically satisfied under the local standardness assumption
if C is build from a groupoid (in the sense of [13, sec 1.1] that is symmetric monoidal and
satisfies cancellation, see Theorem 1.10 and Proposition 2.9 in that paper.
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Proposition 4.6. Let (C,⊕, 0) be a monoidal category with 0 initial, locally standard at
(A,X). Suppose that Sn(A,X) is wCM of dimension n+k−a

k for all n. Then Sn(A,X⊕r) is

wCM of dimension nr+k(2−r)−a
k(r+1) for any n, r ≥ 1.

If moreover, Wn(A,X) satisfies condition (A) or (B) as above (see also [13, Sec 2.1]), we

have that if Wn(A,X) is n−a
k -connected for all n, implies that Wn(A,X⊕r) is nr+k(1−2r)−a

k(r+1) –

connected for any n, r ≥ 1

Note that the above assumptions are satisfied for basically all known examples, and in
particular all the examples treated in [13].

Proof. For the first part of the proposition, the assumption gives that Dr(Snr(A,X)) is wCM
of dimension

nr + k − a− kr + k

k(r + 1)
=

nr + k(2− r)− a

k(r + 1)

by Theorem A. Combining Proposition 4.5 with [9, Prop 3.5] then gives that Sn(A,X⊕r) is
wCM of the same dimension, proving the claim.

For the second part, in case (A) we have Wn(A,X) = Sn(A,X)ord is the ordered com-
plex of Sn(A,X), with simplices all the possible orderings of the vertices of simplices of
Sn(A,X). Picking an ordering of the vertices of Sn(A,X) defines a splitting of the forget-
ful map Wn(A,X) → Sn(A,X) so that Wn(A,X) is n−a

k -connected implies that the same
holds for Sn(A,X). Since we assumed that Sn(A,X) is wCM, the converse holds by [13,
Prop 2.14]. Hence the result in that case follows from the first part. And in case (B),
Wn(A,X) ∼= Sn(A,X) so that the result follows directly from the first part in that case. □

Remark 4.7 (Stability bounds and sharpness of the connectivity of the destabilization com-
plex). Note that the above result is not optimal from the point of view of homological stabil-
ity. Indeed, under the goodness assumptions of [13], if the original destabilization complexes
Wn(A,X) are n−a

k –connected for some a, i.e. slope 1
k -connected, then Theorem A in that

paper implies that the map

σr : Hi(Aut(A⊕X⊕nr)) → Hi(Aut(A⊕X⊕nr+r))

is an isomorphism for i ≤ min( 1k ,
1
2 )nr + b for some constant b. Using the above re-

sult instead, we get that the complexes Wn(A,X⊕r), in good enough situations, are slope
r

k(r+1)–connected. Applying Theorem A of [13] to these complexes, we can deduce sta-

bility for the same maps σr. This however now gives an isomorphism range of the form
i ≤ min( r

k(r+1) ,
1
2 )n+ b′, which is a strictly worse slope when 1

k ≤ 1
2 .

In the case of symmetric groups, we actually know that the above connectivity results
are sharp. Indeed, let C be the category of finite sets and injections, with disjoint union as
monoidal structure. Then Wn(∅, [1]) is the complex of injective words (see Example 4.3),
which is known to be wCM of dimension n − 1, a connectivity that cannot be improved,
see e.g. [6, p 613]. (But note that it is slope 1 > 1

2 connected!) The connectivity of
Wn(∅, [2]) coming from the above result is also known to be sharp. Indeed, the connectivity of
D(S2n(∅, [1])) given in Theorem 2.2 is known to be sharp, see [14, Thm 1.3,1.6]. This implies
that the same holds for Sn(∅, [2]), because the projection to D(S2n(∅, [1])) exhibiting it as
a join complex admits a splitting. Finally, there is likewise a splitting of the forgetful map
Wn(∅, [2]) → Sn(∅, [2]), choosing an ordering of the vertices. Hence the connectivity slope
r

r+1 = 2
3 for Wn(∅, [2]) cannot be improved. As 2

3 > 1
2 , the stability result in this case would

still give a stability bound of slope 1
2 , even if we use the double, and that is in fact known

to be best possible homological stability slope for symmetric groups. More generally, if one
knew that the connectivity of Wn(∅, [r]) given in Theorem 2.2 was likewise best possible,
that would still give the correct stability slope for any r because min( r

r+1 ,
1
2 ) =

1
2 for any r.

Of course this works precisely because the original destabilization complex Wn(A,X) was
slope 1 connected.
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Remark 4.8 (Monoid cells point of view). Following [10, Sec 7], to construct the destabliza-
tion complex Wn(A,X) it is enough to have a monoidal map from the monoid of braid
groups B =

∐
n≥0 Bn to G =

∐
n≥0 Gn, if the latter is a monoidal groupoid. This endows BG

with the structure of E1-module over the E2-algebra on BB. In [11, Rem 3.10], the authors
consider the effect on the destabilization complex of reversing the braiding in G. One can
interpret the reversed complex as coming from precomposing the map B → G by the auto-
morphism of B flipping the braid. The resulting complex is homeomorphic to the original
one, via a homeomorphism that reverses the order of the face maps in the semi-simplicial
sets. In this language, the construction presented here comes instead from pre-composing
the map B → G with a self-map of the braided category that is multiplication by r on the
objects and takes r-fold copies of the strings in each braid. This was pointed out to us by
Oscar Randal-Williams.
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