
HOMOLOGICAL STABILITY: A TOOL FOR COMPUTATIONS

NATHALIE WAHL

Abstract. Homological stability has shown itself to be a powerful tool for the computation

of homology of families of groups such as general linear groups, mapping class groups or

automorphisms of free groups. We survey here tools and techniques for proving homological
stability theorems and for computing the stable homology, and illustrate the method through

the computation of the homology of Higman-Thompson groups.

1. Introduction

Homology is an invariant that comes in many flavours. We will here mostly be concerned
with group homology, but the story we will tell can be told in other contexts as well. Like
many invariants, while easy to define, homology is often difficult to compute. What homological
stability has shown to us over the years is that in some situations, it is easier to compute
infinitely many homology groups at once than computing a single one by itself. We will in
this paper illustrate this through examples, and try to give the reader a sense of how to do
homological computations using stability methods, and a sense of when such methods are likely
to work.

Many mathematical objects come in families. We will here be interested in families of groups
like the symmetric groups Σn, the braid group Bn, the general linear groups GLn(R) over a ring
R, or automorphism groups Aut(Fn) of free groups. These examples are more than collections
of groups: they all have an additional structure in the form of maps

⊕ : Σn × Σm −→ Σn+m

⊕ : Bn ×Bm −→ Bn+m

⊕ : GLn(R)×GLm(R) −→ GLn+m(R)

⊕ : Aut(Fn)×Aut(Fm) −→ Aut(Fn+m)

by “block sum” of permutations, braids or matrices, or juxtaposition of automorphisms. Another
important flavour of example for us will be families of mapping class groups of surfaces or 3-
manifolds with sum ⊕ an appropriate boundary connected sum.

Takingm = 1 in the above and evaluating the maps⊕ at the identity element in Σ1, B1,GL1(R)
or Aut(F1), gives sequences of groups

Σ1 −→ Σ2 −→ Σ3 −→ . . .

B1 −→ B2 −→ B3 −→ . . .

GL1(R) −→ GL2(R) −→ GL3(R) −→ . . .

Aut(F1) −→ Aut(F2) −→ Aut(F3) −→ . . .

We are here interested in the following property of such sequences of groups:
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Definition 1.1. A sequence of groups G1 → G2 → . . . satisfies homological stability if the
associated sequence of homology groups

(1.1) Hi(G1)→ Hi(G2)→ Hi(G3)→ . . .

is eventually constant for each i, that is if Hi(Gn)
∼=−→ Hi(Gn+1) for n large enough with respect

to i.

Unless explicitly otherwise stated, homology here means homology with integral coefficients:
H∗(−) = H∗(−;Z). Typical stability bounds are linear, of the form n ≥ ki + a, for k the slope
of stability.

Definition 1.1 clearly makes sense in other contexts, with the groups and group homology
replaced by some other type of object and associated homology theory. Much of what we will
present here is known to generalize to sequences of spaces, and, to some level, sequences of
algebras. We will focus here on the case of groups for simplicity, and because it is already very
rich.

All the examples of families of groups mentioned above are known to satisfy homological
stability. In the 60s, Nakaoka computed the homology of the symmetric groups Σn in [53] and
observed that

Hi(Σn)
∼=−→ Hi(Σn+1) for i ≤ n

2
.

Arnold computed in [1] that the same holds for the homology of the braid groups and around
the same time, Quillen, interested in algebraic K-theory [59] (see also [66]), showed for example
that, for a field F 6= F2,

Hi(GLn(F))
∼=−→ Hi(GLn+1(F)) for i ≤ n.

Harer showed in the 80’s that also mapping class groups of surfaces satisfy homological sta-
bility [29], a result that was extended to non-orientable surfaces by the author [71]. For the
automorphisms of free groups, the first proof goes back to Hatcher [30], while Hatcher and the
author proved a very general stability theorem for mapping class groups of 3-manifolds [34]: if
M,N are any orientable 3–manifolds such that ∂M 6= ∅, then the map π0 Diff(M#N#n) →
π0 Diff(M#N#n+1) extending diffeomorphisms by the identity on the added summand N , in-
duces an isomorphism on Hi for i ≤ n−2

2 . And many more stability results for families of groups
are known!

Quillen’s stability argument. Quillen devised a strategy for proving homological stability
using a spectral sequence associated to the action of the groups on appropriate spaces: To apply
Quillen’s strategy to a family of groups {Gn}n≥0, one needs to find a family of simplicial objects
{Wn}n∈N, with Gn acting on Wn, satisfying (roughly) the following:

(1) the action is transitive on vertices, and has “manageable” sets of orbits of p–simplices
for every p;

(2) the stabilizer of a p–simplex is a previous group in the sequence, e.g., Gn−p−1;
(3) each Wn is highly connected.

From this data, one can construct a spectral sequence with E1–term

E1
p,q =

⊕
σp

Hq(Stab(σp);Zσ)

where the sum runs over representatives of the orbits of p–simplices σp in Wn. The spectral
sequence together with conditions (1)–(3) and a few minor additional assumptions, allows then
for an inductive argument. (See Section 2.2 for some more details.)
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Variants and extensions of this strategy have been applied in a variety of contexts. In addition
to the examples already mentioned, stability has been shown using this strategy for GLn(R) for
many rings R [44, 69], for other classical groups like symplectic groups, orthogonal groups,
unitary groups, see eg. [9, 52, 64, 70], and many other groups. The strategy was also adapted to
prove homological stability for moduli spaces of manifolds and configuration spaces [62, 56, 26],
or for certain families of algebras [37, 6]. So many stability theorems have been proved using
this method that it is difficult to mention them all.

Stable homology. Let

G∞ :=

∞⋃
n=1

Gn = colim
n→∞

Gn

to be the limit of the sequence of groups. Homological stability can be reformulated as saying
that the map Gn → G∞ induces an isomorphism

Hi(Gn)
∼=−→ Hi(G∞)

in an increasing range of degrees i ≤ b(n) for b(n) a bound depending on n. The limit homology
H∗(G∞) is called the stable homology. The power of homological stability comes from the fact
that often, the stable homology is easier to compute, because it most often belongs to the world
of spectra, where methods of homotopy theory come into play. We give here known stable
computations for the examples of families of groups described above.

The Barratt-Priddy-Quillen theorem identifies the stable homology H∗(Σ∞) of the symmetric
groups with that of the basepoint component Ω∞0 S of the infinite loop space of the sphere
spectrum S. Galatius showed that the same holds for the stable homology of automorphisms of
free groups. Combining these results with the best known homological stability ranges gives

Theorem 1.2. [53, 31, 2, 20] For all i ≤ n
2 , Hi(Σn) ∼= Hi(Ω

∞
0 S) ∼= Hi(Aut(Fn+3)),

A direct consequence is that the stable rational homology of Aut(Fn) is trivial. The result also
gives that the inclusion Σn ↪→ Aut(Fn) induces a homology isomorphism in the range i ≤ n−3

2 ,
a fact we only know through the above stable homology computation.

For the braid groups Bn, the corresponding result is

Theorem 1.3 ([1, 12]). For all i ≤ n
2 , Hi(Bn) ∼= Hi(Ω

2
0S

2).

F. Cohen completely computed homology of the right hand side, see [12, Paper III, App A],
yielding a full computation of the stable homology of the braid groups.

For GLn(R), the relevant spectrum is the K-theory spectrum, and here the flow of information
has gone the other way around compared to the above examples: In the case where R = Fpr is
a finite field, the homology H∗(GL(Fpr );F`) was completely computed by Quillen for any prime
` 6= p, a computation he used to deduce information about the K–theory spectrum [60]. When
` = p, only the stable homology is fully known:

Theorem 1.4. [60, 59, 66, 22]1 Hi(GLn(Fpr );Fp) = 0 for all i ≤ n + r(p − 1) − 3 if pr 6= 2,
and for all i < 2n−2

3 if pr = 2.

A similar result holds for symplectic, orthogonal and unitary groups, see [66, 19].
For mapping class groups of surfaces, the stable homology was computed by Madsen and

Weiss, in a breakthrough work that lead to much progress in manifold topology: Denoting by
Σg,b an orientable surface of genus g with b boundary components, and by Sh,b a non-orientable
surface of genus h with b boundary components, and combining the Madsen–Weiss theorem

1Note that the paper [22] use a different stability method than Quillen’s, see Section 3.
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with the best known ranges for homological stability, as well as the unoriented versions of these
theorems, we have

Theorem 1.5. [4, 46, 62, 71]

Hi(π0 Diff(Σg,b)) ∼= Hi(Ω
∞
0 MTSO(2)) i ≤ 2g−2

3

Hi(π0 Diff(Sh,b)) ∼= Hi(Ω
∞
0 MTO(2)) i ≤ h−3

3

Here MTSO(2) or MTO(2) are the Thom spectra of the orthogonal bundle to the universal
bundle over the Grassmannian of oriented or non-oriented 2-planes in R∞ respectively. A direct
consequence is that the stable rational homology of these groups are the polynomial algebras
Q[κ1, κ2, . . . ] and Q[ζ1, ζ2, . . . ] respectively, where |κi| = 2i and |ζi| = 4i. In the oriented case,
this rational computation had been a conjecture of Mumford. This result was generalized to
higher dimensional manifolds of even dimension by Galatius and Randal-Williams [25, 26] and
to odd-dimensional handlebodies by Botvinnik and Perlmutter [5, 57]. This has since been used
to compute e.g.; homotopy groups of the diffeomorphisms of discs, or give a totally new approach
to pseudoisotopy theory [40, 42].

In Section 4, we will explain such a theorem for the Higman-Thompson groups, see Theo-
rem 4.1, which computes, as a corollary, the full homology of Thompson’s group V . And we will
explain in Section 3 why one should not be surprised to see double or infinite loop spaces in the
above statements.

Content of the paper. In this article, we want to adress the following questions:

(1) When can one expect that homological stability holds?
(2) How does one find appropriate Gn–space for Quillen’s stability argument?
(3) How does one compute the stable homology?

Let us though make clear from the start that we will of course not give full answers to any of
the three questions.

A priori one only needs a sequence of groups G1 → G2 → . . . to talk about homological
stability. Following the article [63] and its generalization [39], Sections 2 of the present paper
shows that having the additional data of a “block sum”, as exhibited above for the groups
Σn, Bn,GLn(R) or Aut(Fn), is enough input to run Quillen’s argument in the following sense:
Section 2.1, we construct a canonical space of destabilizations Wn when the sum operation is
braided, and Theorem 2.9 in Section 2.2 states that homological stability holds whenever these
spaces are sufficiently connectivity. In Section 2.3, we explain how homological stability with
abelian and polynomial coefficients automatically also holds, under the same assumption, see
Theorem 2.12 and 2.13.

In Section 3 we will see that the braiding forces the stable homology, through the “group
completion theorem”, to be that of a double loop space, or an infinite loop space when the
braiding is a symmetry.

In Section 4, we will then explain how all these ideas were used in [68] to show that the
homology of Thompson’s group V is trivial, via a stability theorem and stable computation for
the more general Higman-Thompson groups.

The article ends with a short section addressing the wider perspective.

2. A general framework for Quillen’s stability argument

In this section, we describe a framework in which Quillen’s strategy for proving homological
stability can always be implemented.
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Figure 1. Block braid b3,2

Recall that a groupoid G is a category whose morphisms are all invertible. A monoidal groupoid
is a groupoid G equipped with a sum

⊕ : G × G −→ G
that is associative and unital. It is braided if it is in addition equipped with an isomorphism
σA,B : A⊕B −→ B ⊕A for every pair of objects, satisfying the braid identity σA,BσA,CσB,C =
σB,CσA,CσA,B : A⊕B ⊕ C → C ⊕B ⊕A and such that

A⊕B
σA,B

//

f⊕g
��

B ⊕A

g⊕f
��

C ⊕D
σC,D

// D ⊕ C
commutes whenever it is defined, see e.g. [45]. The groupoid is symmetric monoidal if the
braiding squares to the identity.

There are many examples of braided and symmetric monoidal groupoids. Standard examples
of interest to us are the groupoid of sets with disjoint union, the groupoid of R–modules with
direct sum, the groupoid of groups with free or direct product, the groupoid of vector spaces
equipped with a symplectic or Hermitian form with the direct sum, or the groupoid of manifolds
of a given dimension with an appropriate connected sum operation. Each of these examples are
actually the groupoid of isomorphisms in a braided or symmetric monoidal category. For us only
the isomorphisms will play a role.

From groups to groupoids. If we start with a family of groups {Gn}n∈N and defined
G =

∐
nGn to be the groupoid with objects the formal sums X⊕n for n ∈ N of a generating

object X, and only non-trivial morphisms Gn := AutG(X⊕n), then a monoidal structure on G,

extending the sum in N, is the data of an associative “sum” operation Gn ×Gm
⊕−→ Gn+m, and

a braiding is the data of a homomorphism φ : Bn → Gn from the braid group, such that the
block braid bn,m satisfies that φ(bn,m)(g ⊕ g′)φ(bn,m)−1 = g′ ⊕ g for each g ∈ Gn and g′ ∈ Gm
(see Figure 1). The groupoid is symmetric precisely if the homomorphism φ factors through the
symmetric group Σn.

For example, applying this construction to the symmetric groups {Σn}n∈N with the block
sum of permutations yields the following: the objects are the natural numbers, where we can
think of n as representing a set [n] with n elements, and the automorphism group of [n] is Σn.
As [n+m] ∼= [n] t [m], we see that the monoidal sum corresponds to the disjoint union of sets.
The resulting groupoid is a skeleton of the groupoid of finite sets of Example 2.1 below. If
we instead start with the general linear groups {GLn(R)}n∈N, we can think of the object n in
the resulting groupoid as representing Rn = R⊕n, whose automorphism group is GLn(R). The
monoidal product then correspond to the direct sum of R–modules, yielding a subcategory of
the category of R-modules of Example 2.2 below.
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From groupoids to groups. If we start instead with a monoidal groupoid G = (G,⊕), for
any two objects A,X in G, we get a sequence of groups G1 → G2 → . . . by setting

Gn = AutG(A⊕X⊕n)

with

Gn = AutG(A⊕X⊕n)
⊕idX−−−−→ Gn+1 = AutG(A⊕X⊕n ⊕X).

We think of Gn as the automorphism group of “A stabilized n times in the X direction”.

Example 2.1. Let G = Setsiso denote the groupoid of finite sets and bijections, with monoidal
structure ⊕ = t given by disjoint union. It is a symmetric monoidal groupoid with the symmetry

the standard bijection AtB
∼=−→ BtA. Taking A = ∅ and X = {∗} yields Gn = Σn the symmetric

group on n letters, with Σn → Σn+1 the standard inclusion as the subgroup of permutations
fixing the last element.

Example 2.2. Let R be a ring and let G = R–Mod denote the groupoid of R–modules and their
isomorphisms, with monoidal product the direct sum ⊕ of modules. This is again a symmetric

monoidal groupoid with symmetry given by the standard isomorphism M ⊕ N
∼=−→ N ⊕ M .

Taking A = 0 and X = R, we get Gn = GLn(R), the automorphism group of the module R⊕n,
with the map GLn(R)→ GLn+1(R) adding a 1 in the bottom corner of the matrix. If we take A
to be any R–module, the group Gn = GL(A⊕ R⊕n) is the automorphism group of the module
A stabilized n times.

Example 2.3. Let G = Groupsiso be the groupoid of groups with free product as monoidal
structure. This is again a symmetric monoidal groupoid with symmetry the natural isomorphism
G ∗H → H ∗G. If we take A = 〈e〉 to be the trivial group and X = Z, we get Gn = Aut(Fn),
the already considered automorphism group of the free group Fn. For A = H and X = G any
group, the group Gn = Aut(H ∗G ∗ · · · ∗G) is the automorphism group H free product with n
copies of G, whose stability is studied in [13, 34].

Modules over monoidal groupoids. Let G = (G,⊕) be a monoidal groupoid. A category C
is a right module over G if C is equipped with a unital and associative action

C × G ⊕−→ C
of G. (See [39, sec 7.1].) Taking A ∈ C and X ∈ G we can again define Gn = AutC(A⊕X⊕n), and
this yields just as above a sequence of groups G1 → G2 → . . . with the map ⊕ idX : Gn → Gn+1

adding the identity on the extra copy of X.

The sequence of groups Gn obtained above from a monoidal groupoid G only is the special
case when C = G, considering G as a module over itself. Most of our examples will be of that
form, but there are examples from e.g.; manifolds [34, 26], or Coxeter groups [36], that require
the more general set-up. (See also [39] for examples in the context of homological stability for
topological spaces.)

2.1. The space of destabilizations. Recall from the introduction that to apply Quillen’s strat-
egy for proving homological stability, one needs for each n a simplicial object Wn on which the
group Gn acts, with appropriate transitivity, stabilizer and connectivity properties. The spaces
Wn used in homological stability are most typically one of three types: simplicial complexes,
(semi-)simplicial sets, or posets. We will here only discuss spaces of the first two types.

Ad hoc simplicial objects Wn associated to families of groups Gn have been defined in very
many situations to prove stability statements; in fact, most homological stability theorems for
families of groups have been so far proved using Quillen’s strategy. Following [63], and its



HOMOLOGICAL STABILITY: A TOOL FOR COMPUTATIONS 7

generalization [39], we construct here the smallest such semi-simplicial set Wn for any family of
groups of the form Gn = AutC(A⊕X⊕n) arising as above from the action of a braided monoidal
groupoid G on a groupoid C; the definition of the face maps in Wn will use the braiding of G.
We also define an associated simplicial complex Sn.

Fix C a module over a braided monoidal groupoid G, with A an object of C, and X an object
of G as above.

Definition 2.4. ([63, Def 2.1],[39, Def 7.5]) The space of destabilizations Wn(A,X)• is the
semi-simplicial set with set of p-simplices

Wn(A,X)p = {(B, f) | B ∈ Ob(C) and f : B ⊕X⊕p+1 → A⊕X⊕n in C}/∼
where (B, f) ∼ (B′, f ′) if there exists an isomorphism g : B → B′ in C satisfying that f = f ′ ◦
(g⊕idX⊕p+1). The face map di : Wn(A,X)p →Wn(A,X)p−1 is defined by di[B, f ] = [B⊕X, dif ]
for

dif : B ⊕X ⊕Xp
idB⊕b−1

X⊕i,X
⊕idX⊕p−i

−−−−−−−−−−−−−−−→ B ⊕X⊕i ⊕X ⊕X⊕p−i f−−→ A⊕X⊕n,
for b−1X⊕i,X : X ⊕X⊕i → X⊕i ⊕X coming from the braiding in G.

The group Gn = AutC(A⊕X⊕n) acts on Wn(A,X)• by postcomposition. The following holds
for the action:

(2.1) (local cancellation) If Y ⊕X⊕p+1 ∼= A⊕X⊕n =⇒ Y ∼= A⊕X⊕n−p−1,
then Gn acts transitively on Wn(A,X)p.

(2.2) (injectivity) If the stabilization Gn−p−1 → Gn taking f to f ⊕ idXp+1 is injective,

then there is an isomorphism Gn−p−1 ∼= Stab(σp) for of any p–simplex σp.

A direct consequence is that, under these two mild conditions on the G–module C, the set of p–
simplices Wn(A,X)p of the space of destabilizations is isomorphic to Gn/Gn−p−1. As we will see
in Section 4 in an example, local cancellation can actually be forced by changing the definition
of C and G, declaring in particular A⊕X⊕n and A⊕X⊕m for n 6= m to be non-isomorphic. If
the second condition is not satisfied, Wn(A,X) needs to be replaced by a semi-simplicial space
in Quillen’s argument, see [39, Sec 7.3].

Remark 2.5. In the case of a groupoid G = C acting on itself, the set of p–simplices of Wn(A,X)
can be interpreted as the set of morphisms from X⊕p+1 to A ⊕X⊕n in a category 〈G,G〉 con-
structed from the action, see Appendix A. The face maps are then given by precomposition with
standard morphisms X⊕p → X⊕p+1 in that category.

From Wn(A,X), one can also define a simplicial complex Sn(A,X) as follows:

Definition 2.6. Let Sn(A,X) be the simplicial complex with the same vertices as Wn(A,X).
A set of vertices {x0. . . . , xp} spans a p–simplex in Sn(A,X) if and only if they are the vertices
of a p–simplex of Wn(A,X).

We will see in Section 2.2 that it is often equivalent, and more convenient, to work with
Sn(A,X) for connectivity questions.

Example 2.7. As in Example 2.1, consider (G,⊕) = (Setsiso,t) the symmetric monoidal
groupoid of finite sets, seen as a module over itself, with A = ∅ and X = {∗}, giving Gn = Σn
the symmetric group. A p–simplex [B, f ] of Wn(∅, {∗}) is determined by the restriction of the
bijection f : B t [p + 1] → [n] to [p + 1]. So a p–simplex of Wn(∅, {∗}) is an ordered tuple of
p + 1 elements of [n] = {1, . . . , n}. The ith boundary map forgets the i + 1st element. This
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semi-simplicial set is known as the complex of injective words, and it is known to be (n − 2)–
connected [17] (see also [63, Sec 5.1]). The simplicial complex Sn(∅, {∗}) has the same vertices
as Wn(∅, {∗}), namely the elements of [n], and p+ 1 such elements form a simplex in Sn(∅, {∗})
precisely when there exist an injective word in these letters, i.e. if they are distinct. Hence
Sn(∅, {∗}) identifies with the (n− 1)–simplex ∆n−1.

Example 2.8. Let (G,⊕) = (R–Mod,⊕) be the symmetric monoidal groupoid of R–modules
acting on itself, with A = 0 and X = R, giving Gn = GLn(R) as in Example 2.2. A p–simplex

[B, f ] in Wn(A,X), with f : B ⊕ Rp+1
∼=−→ Rn, is determined by the pair (f(B) < Rn, f |Rp+1 :

Rp+1 ↪→ Rn). The simplicial complex Sn(A,X) thus has vertices pairs (H, f) with H < Rn and
f : R ↪→ Rn so that Rn = H ⊕ f(R), and vertices ((H0, f0), . . . , (Hp, fp)) form a p–simplex if
together the maps (f0 ⊕ . . .⊕ fp) : Rp → Rn form an injective map with a complement H such
that each Hi = H ⊕

⊕
j 6=i fj(Hj). This complex is very closely related to complexes studied

by van der Kallen [69] and Charney [10] and is n−a
2 –connected for a a constant depending on

the stable rank of R (see [63, Lem 5.10]). The fact that simplices are not just split injective
homomorphisms, but rather split homomorphisms with a choice of complement H, makes the
simplicial complex more intricate to study, but it forces the stabilizer of a p–simplex to be exactly
GL(H), instead of an affine version of the group, which would be the case if complements had
not been chosen.

The simplicial complex Sn(A,X) has appeared in the literature in many examples long before
it was defined in the above generality. Here are a few additional examples: for the automor-
phisms of free groups Aut(Fn), it is essentially the complex of split factorizations of Hatcher and
Vogtmann [32] (see [63, Sec 5.2.1]), for mapping class groups of surfaces with genus stabilization,
this identifies with the tethered arc complex of the same authors [33] (see [63, Sec 5.6.3]), while
the poset of simplices of Wn(A,X) in the case of unitary groups already appeared in [52] (see
[63, Sec 5.4]).

2.2. Homological stability. Let C be a module over a braided monoidal groupoid G as above,
with A and X objects of C and G respectively. We have so far associated a sequence of groups
Gn = AutC(A ⊕ X⊕n) to this data, together with a collection of associated Gn–spaces Wn =
Wn(A,X) and Sn = Sn(A,X). We will now use this as an input for Quillen’s strategy for
proving homological stability for the groups Gn. It turns out that Wn is best suited for the
spectral sequence argument.

The spectral sequence in Quillen’s argument is obtained as follows. Let E•Gn be a free

resolution of Z as a ZGn–module, and let C̃∗(Wn) denote the augmented cellular complex of
Wn. Tensoring these two objects together, we get a first quadrant double complex

C•,∗ = E•Gn ⊗Gn C̃∗(Wn).

Filtering C•,∗ in the first direction gives a spectral sequence whose E1–page is trivial in a range
under the assumption that Wn is highly connected, from which it follows that the spectral
sequence coming from filtering in the second direction must converge to zero in a range. By
transitivity of the action, this latter sequence has E1–term

E1
p,q = Hq(Stab(σp)) ∼= Hq(Gn−p−1)

under the local cancelation and injectivity assumption of Section 2.1, where there are no twisted
coefficients because the stabilizer of a p–simplex in Wn always fixes the simplex pointwise. This
spectral sequence allows for an inductive argument. This argument has been written in full details
many places, see [63, Thm 3.1] for the case where Wn is precisely the complex of destabilization
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considered here, or e.g. [34, Thm 5.1] for a version adaptable to more general simplicial objects
Wn.

Theorem 2.9. [63, Thm 3.1] Let Gn = AutC(A ⊕X⊕n) for C,G, A and X as above satisfying
(2.1) and (2.2), and assume that for all n ≥ 0, there is a k ≥ 2 such that the space Wn(A,X) is
n−2
k –connected. Then the stabilization map

Hi(Gn) −→ Hi(Gn+1)

is an isomorphism for i ≤ n−1
k and a surjection for i ≤ n

k .

Remark 2.10. The paper [63] has two additional assumptions on G: it should have no zero
divisors and the unit has no non-trivial isomorphisms, but, as pointed out by Krannich in [39,
Sec 7.3], these two assumptions are not actually necessary. Indeed, these assumptions ensure
that AutG(A ⊕X⊕n) ∼= AutUG(A ⊕X⊕n) for UG = 〈G,G〉 a certain category associated to the
groupoid G (see Section A), but in fact stability just holds for both groups whether they are
equal or not, with the same proof. The paper [63] also only formulates the result for the case of
G acting on itself, but the proof generalizes with no significant change, as noted in [39].

Remark 2.11 (Stability slope). The slope k of stability given by the theorem depends on the slope
of connectivity of the spaces Wn(A,X), though with the constrain that the best possible slope is
slope 2. This last restriction is due to the structure of the spectral sequence. To obtain a better
slope than slope 2 with the spectral sequence described here, one needs additional information
about the groups or differentials appearing in the spectral sequence; such better slopes do not
follow from a direct inductive argument.

It is an open question whether stability holds if and only if the spaces Wn(A,X) are highly
connected, see [63, Conj C].

Connectivity of buildings. Stability can only be proved using the above argument under
the condition that the spaces Wn (the above defined spaces of destabilizations or some other
appropriate buildings) are highly connected. This is a place where work that depends on the
groups in question comes in. Under mild conditions, the connectivity of Wn(A,X) is controlled
by that of Sn(A,X), and Sn(A,X) will also typically be (weakly) Cohen-Macaulay, a very useful
property in connectivity arguments, see [63, Sec 2.1].

There are a few general useful facts and tricks that are good to know when working on
connectivity questions for such simplicial complexes or semi-simplicial sets, see e.g., [33, Sec 2],
[15, Sec 2,4,5] or [34, Sec 3], for expositions of tools and techniques. For an example of how
such arguments look like, the survey paper [72] gives a proof of high connectivity of simplicial
complexes of arcs relevant for the stability of the mapping class groups of surfaces, assembling
tricks and techniques from the literature.

2.3. Twisted coefficients. Homological stability is also often considered in the context of
homology with twisted coefficients: Given a sequence of groups G1 → G2 → . . . , and a sequence
of modules M1 →M2 → . . . such that Gn acts on Mn and the map Mn →Mn+1 is equivariant
with respect to the map Gn → Gn+1, one can ask whether the resulting sequence

Hi(G1,M1)→ Hi(G2,M2)→ Hi(G3,M3)→ . . .

stabilizes. We explain briefly here how the same assumptions as Theorem 2.9 yield that stability
also holds for certain types of “abelian” and “polynomial”coefficients.

Abelian coefficients. Suppose that M is a G∞–module. Then we can consider M as a
Gn–module via the maps Gn → G∞ = ∪nGn. If we write Mn for this module, this gives an
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example of a compatible family of coefficients for the groups Gn. We say that M is abelian if
the action of G∞ factors through its abelianization H1(G∞).

Theorem 2.12. [63, Thm 3.4] Let Gn = AutC(A⊕X⊕n) be as in Theorem 2.9 and assume that
for all n ≥ 0, there is a k ≥ 3 such that the space Wn(A,X) is n−2

k –connected. Then for any
H1(G∞)–module M , the stabilization map

Hi(Gn;M) −→ Hi(Gn+1;M)

is an isomorphism for i ≤ n−k
k and a surjection for i ≤ n−k+2

k .

The simplest example of such an abelian coefficient system is M = ZH1(G∞). Because un-
twisted homological stability gives that H1(G∞) ∼= H1(Gn) for n large enough, we have that
the twisted homology in that case computes the homology of the commutator subgroup. A
direct corollary is thus that, under the same hypothesis as Theorem 2.9 (with k ≥ 3), homolog-
ical stability also holds for the commutator subgroups G′n: the stabilization map also induces
isomorphisms

Hi(G
′
n)
∼=−→ Hi(G

′
n+1)

for i ≤ n−k
k and a surjection for i ≤ n−k+2

k . This gives for example homological stability for
alternating groups (=commutator subgroups of symmetric groups), or special automorphism
groups of free groups (=commutator subgroups of Aut(Fn)).

Note that the best possible slope given by the statement is now slope 3. This is optimal as
stated because we know from [35, Prop B] that slope 3 is optimal for alternating groups, despite
the fact that the spaces Wn(A,X) in this case are slope 2 connected.

Polynomial coefficients. Twisted coefficients classically used in homological stability have
been of “polynomial type”, as introduced by Dwyer in [14] in the case of general linear groups. It
turns out that polynomiality in the sense of Dwyer makes sense in our current general framework
of groups of the form Gn = AutC(A⊕X⊕n), as we explain now.

To define a coefficient system for the groups Gn, we need the data of a module Mn over Gn
for each n, and a map Mn → Mn+1 compatible with the actions. We will here encode this
data in a functor from a category built from the G–module C, in similar fashion as the spaces
Wn(A,X) were build from G and C2: Let CA,X be the category with objects A ⊕ X⊕n and
morphisms from A ⊕ X⊕m to A ⊕ X⊕n empty unless m ≤ n, in which case a morphism is an
equivalence class of maps f : A⊕X⊕n → A⊕X⊕n in C, with f ∼ f ′ if there is an isomorphism
g : X⊕n−m → X⊕n−m in G such that f = f ′ ◦ (id⊕ g).

A functor M : CA,X → R–Mod defines a coefficient system in the above sense, by setting
Mn := M(A⊕X⊕n). Because of the equivalence relation in the definition of the morphisms in
CA,X , such coefficient systems have the particularity that Gm acts trivially on the image of the
map Mn →Mn+m; they are in fact characterized by this property [63, Prop 4.2].

Using the braiding of G, we can define a functor

ΣX : CA,X → CA,X
that adds a copy of X “to the left”, taking A⊕X⊕n to A⊕X⊕n+1, and a morphism f to the
composition (idA ⊕ bX,X⊕n) ◦ (f ⊕ idX) ◦ (idA ⊕ b−1X,X⊕n). This functor comes with a natural

transformation σX : id⇒ ΣX (see [63, 4.2]). For M : CA,X → R−Mod, we define its suspension

ΣM = M ◦ ΣX : CA,X → R−Mod.

It comes with a natural transformation M → ΣM induced by σX .

2This is again an example of a bracket construction for categories, as described in Section A
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A finite degree coefficient system is defined inductively as follows: the trivial coefficient system
M ≡ 0 is by definition of degree −1, and a coefficient system M is of degree r if the natural
transformation M → ΣM has trivial kernel, and cokernel of degree r − 1 [63, Def 4.10]. For
example, constant coefficient systems are of degree 0, and all finitely presented FI–modules
are coefficient systems of finite degree for the symmetric groups [63, Prop 4.18]. The Burau
representation of the braid group is an example of a coefficient system of degree 1 [63, Ex 4.15].

Theorem 2.13. [63, Thm A] Under the same hypothesis as Theorem 2.9, if {Mn}n∈N is a
polynomial coefficient system of degree r, then

Hi(Gn;Mn) −→ Hi(Gn+1;Mn+1)

is an isomorphism for i ≤ n
k − r − 1 and a surjection for i ≤ n

k − r.

3. Group completion and the stable homology

The fact that the groupoid G is braided or symmetric monoidal has direct implications for
the stable homology of the groups Gn = AutC(A ⊕ X⊕n) we have been considering here. We
briefly discuss here the case of automorphism groups Gn = AutG(X⊕n) in G, and refer to [63,
Sec 3.2] for more details, and for some words about the case Gn = AutG(A⊕X⊕n).

En–algebras. A (topological) En–algebra is an algebra over the little n–disc operad. When
n = 1, such an object goes also under the name A∞–algebra; it is a space with a multiplication
that is associative “up to all higher homotopies”. When n ≥ 2, the multiplication is in addition
homotopy commutative, with “more and more” homotopies as n grows, all the way to an E∞–
algebra that is commutative up to all higher homotopies. In particular, any En–algebra is a
topological monoid, that is homotopy commutative whenever n ≥ 2. (See e.g., [3, 47].)

These algebraic structures are relevant for us for the following reason: the geometric real-
ization |G| of the nerve of a monoidal, braided monoidal, or symmetric monoidal category G is
respectively an E1–, E2– or E∞–algebra, see eg., [48], [18, Sec 8]. When C is a module over a
braided monoidal groupoid G, then |C| is an E1–module over the E2–algebra |G| in the sense of
[39].

The primary example of an En–algebra is the n–fold loop space ΩnX = Maps∗(S
n, X) of

a space X. For n = ∞, an ∞–loop space is an n–fold loop space Y = ΩnXn for every n,
where the spaces Xn together form a spectrum X. Loops have the particularity that they possess
homotopy inverses with respect to concatenation, which is the monoid structure underlying their
En–algebra structure. The recognition principle for iterated loop spaces says that, after “group
completion”, i.e. after adding homotopy inverses, any En–algebra is an n–fold loop space [47]
(see also [3, 65]). Explicitly, the group completion of a topological monoid (M,⊕) is the space
ΩB⊕M , where B⊕ denotes the bar construction, a simplicial space constructed from M and the
sum ⊕. The group completion theorem states that, if (M,⊕) is homotopy commutative, then
H∗(ΩB⊕M) ∼= H∗(M∞) for M∞ an appropriate “limit” space defined from M , see [49, 61].

Applying this to the realization |G| of a braided monoidal groupoid, we get that its group
completion ΩB⊕|G| is a double loop space Ω2X, or an infinite loop space Ω∞X if G was actually
symmetric. For G of the form G =

∐
n≥0Gn with Gn = AutG(X⊕n), the limit space |G|∞

identifies with Z × BG∞ for G∞ = ∪nGn = colim(G0 → G1 → G2 → . . . ), and the group
completion theorem thus takes the form H∗(ΩB⊕|G|) ∼= H∗(Z × BG∞). Equivalently, it gives
that the stable homology of the groups Gn has the following form:

H∗(G∞) ∼= H∗(Ω0B⊕|G|) ∼=
{
H∗(Ω

2
0X) if G is braided

H∗(Ω
∞
0 X) if G is symmetric
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for some space X, respectively spectrum X, just as in the examples we have seen so far, namely
Theorems 1.2–1.5. The work in identifying the stable homology of a family of groups thus comes
down, through these classical results, to the question of identifying certain double or, most often,
infinite loop spaces arising as classifying spaces of groupoids. Considered very broadly, this is
the subject of K–theory. In Section 4, we sketch one such computation.

“Higher” stability and the Ek–splitting complex. The stabilization maps we study here
only use a very small part of the E2– or E∞–structures we have at hand: taking the sum ⊕X
just uses part of the underlying E1–module structure. The space of destabilizations Wn(A,X)
associated to the E1–module |C| over the E2–algebra |G| and the elements A ∈ |C| and X ∈ |G|,
can be thought of as a form of resolution of the space

∐
nBGn as E1–module generated by A

over the E2–algebra generated by X.
One can ask whether there are interesting “higher” stabilization maps, summing for example

with higher dimensional homology classes, or whether the whole Ek-structure can tell us more
about the homology of the family of groups. The answer is yes, and is the subject of the body of
work [21, 22, 23, 24] (see also [51] in the context of representation stability). Considering the full
Ek–structure has turned out to be powerful, and these papers manage to go further than with the
classical arguments, including to obtain information about the homology past the stable range.
(See also the related paper [38].) The authors define Ek–splitting complexes that resolve the full
Ek–structure. For a relationship between the connectivity of the spaces Wn(A,X) defined here
and that of the E1–splitting complex, see [38, Thm 13.2].

4. Higman-Thomson groups

Sometimes, homological stability is useful in unexpected situations, as turned out to be the
case in the study of the homology of Thompson’s group V . Thompson’s groups come in three
flavours: F < T < V where F is a subgroup of the piecewise-linear homeomorphisms of the
interval, T a subgroup of those of the circle, and V of the homeomorphisms of the Cantor set.
The homology of F and T was computed in the 80’s by Brown-Geoghegan and Ghys-Sergiescu
in [8, 27]. Brown proved a few years later that the rational homology of Thompson’s group V
was trivial, and conjectured that it was also integrally trivial [7]. Brown’s conjecture was proved
25 years later by the author and Szymik in [68] using the following unexpected strategy:

(1) V = V1 is part of a family of groups V1 → V2 → V3 → . . . that satisfies homological
stability;

(2) The homology H∗(V ) is entirely stable, i.e. H∗(V ) ∼= H∗(V∞)
(3) The stable homology identifies with that of a trivial infinite loop space.

In fact, we will see below that each group Vn in the sequence is isomorphic to V , but the maps
Vn → Vn+1 are only isomorphisms after passing to homology. The strategy works more generally
to compute the homology of the Higman-Thompson groups, so we describe it now in more details
in that context.

The Higman-Thompson group Vk,n is the group of self-maps of a disjoint union of n intervals
Itn obtained by choosing k–ary subdivisions of the source and target, subdividing the interval
into k equal sized subintervals and repeating on some of the intervals thus obtained, and matching
the resulting subintervals by a chosen bijection. (See [68, Sec 1.2], and Figure 2 for an example
when k = 2 and n = 1.) Thompson’s group V = V2,1, is the group obtained this way from binary
subdivisions of a single interval. Fixing some k ≥ 2, we can think of Vk,n as the automorphism
group of an object X⊕n = Itn in a groupoid Vk = tn≥0Vk,n, just as we have considered in this
paper. Juxtaposition of intervals induces maps

Vk,n × Vk,m −→ Vk,n+m
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Figure 2. An element of Thompson’s group V = V2,1 obtained from a binary
subdivision of the source and target interval, and a choice of permutation of the
subintervals.

that make the groupoid Vk symmetric monoidal, with the symmetries coming for block permu-
tations of the intervals. Hence we can try to apply the stability machine described in the present
paper to prove homological stability for the groups {Vk,n}n≥0.

Note that there are group isomorphisms Vk,n ∼= Vk,n+(k−1) induced by subdividing an interval
into k subintervals, but these isomorphisms are not encoded in the groupoid Vk. For the purpose
of homological stability it is convenient to have a rank function, that is, to know what “n” is
at all times. Ignoring these isomorphisms also gives, by construction, the local cancellation
property (2.1) which was necessary for the transitivity of the action on the associated complex
of destabilization Wn. So from the point of view of the groups, the objects I and Itk are
isomorphic, but we will consciously suppress that information in the first part of our argument.

Let Wn = Wn(0, I) be the space of destabilizations associated to the symmetric monoidal
groupoid Vk (acting on itself) and the objects 0 and I, and let Sn = Sn(0, I) be its associated
simplicial complex, as defined in Section 2.1. The group Vk,n can be defined as the automorphism
group of an object called the free Cantor algebra Ck(n) of arity k on n generators (see [68, Def
1.1]), and a p–simplex in Wn corresponds to an embedding Ck(p+1) ↪→ Ck(n) with complement
isomorphic to Ck(n − p − 1). It is shown in [68, Cor 3.4] that Sn, and hence also Wn (by [63,
Thm 2.10]), is at least (n−3)–connected for all n ≥ 2. The complex Sn has dimension n−1 and
the idea of the proof of connectivity is to work with its (n − 2)–skeleton, as simplices that are
not maximal correspond to embeddings that have a complement of rank at least 1, i.e. at least
as big as Ck(1). But there are isomorphisms Ck(1) ∼= Ck(1 + (k − 1)) ∼= Ck(1 + 2(k − 1)) ∼= . . .
so that in practice, a non-trivial complement is actually a complement that is “as large as one
likes”, which is useful for coning off simplices.

Applying Theorem 2.9 we immediately get that the stabilization map Vk,n → Vk,n+1 that

adds the identity on the new interval, induces an isomorphism Hi(Vk,n)
∼=−→ Hi(Vk,n+1) in a

range increasing with n. Coupling this with the fact that the isomorphisms Vk,n ∼= Vk,n+(k−1) ∼=
Vk,n+2(k−1) ∼= . . . can be chosen compatibly with the stabilization maps, we get that the rank n

can be assumed as large as one like, so that the isomorphism Hi(Vk,n)
∼=−→ Hi(Vk,n+1) actually

holds without any bound.

It remains to compute the stable homology. From the results described in Section 3, given
that Vk is a symmetric monoidal groupoid, we know that the stable homology of the groups is
that of an infinite loop space. Now here it turns out to be more convenient to do the computation
using a different symmetric monoidal groupoid whose group completion also yields the stable
homology of the groups Vk,n, namely the groupoid Vk where we now remember the isomorphism
I → Itk , or equivalently the isomorphisms of Cantor algebras Ck(n) ∼= Ck(n+(k−1)). Theorem
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5.4 of [68] says that
H∗(Vk,∞) ∼= H∗(Ω0B⊕|Vk|).

As Vk is symmetric monoidal, we again have that its group completion is an infinite loop space
and what remains is to find out what the corresponding spectrum is.

So now we are in the world of symmetric monoidal categories, and the idea is simply to find
a symmetric monoidal category that is equivalent to Vk as symmetric monoidal category, and
hence group completes to the same infinite loop space, but whose associated spectrum is easier
to recognize. Our search was guided by the following observation: the category Vk resembles
the category of finite sets and isomorphisms, to which one has declared one extra isomorphism,
namely that [1] is now isomorphic to [k], or, after group completion, [0] is isomorphic to [k− 1].
As already mentioned in the introduction, the spectrum associated to the category of finite sets
(or equivalently to the symmetric groups) is the sphere spectrum S. In homotopy theory, we

trivialize by taking cofibers, and the cofiber of the map S (k−1)−−−−→ S multiplying by (k − 1) is a
well-known spectrum Mk−1 called the Moore spectrum. Making this idea precise, formulating it
on the level of symmetric monoidal categories, and combining it with the homological stability
result described above, led to the following result

Theorem 4.1. [68] There are isomorphisms

H∗(Vn,k) ∼= H∗(Ω
∞
0 Mk−1).

Specializing to the case k = 2 yields that H∗(V ) = 0 for ∗ > 0 as the spectrum M1 = cofiber(S id−→
S) is trivial.

Note that the homology of Ω∞0 Mk−1 for k ≥ 3 is tractable, and we have many tools available
to compute it. For example it is immediate that the rational homology of these groups is
trivial, but also that the integral homology is not. We confirm for instance in [68, Sec 6] that
H1(Vk,n) = Z/2 for k odd and show that the first non-trivial homology group in the k even case
is H2p−3(Vk,n) = Z/p for p the smallest prime dividing k − 1.

5. Perspectives

Many stability results have been proved over the past decades, and one is left to wonder how
far homological stability methods can reach. We have highlighted here the idea that braidings
seem to be relevant. This is however neither a necessary nor a sufficient condition. We give here
some examples that tests the limits of stability, as well as a hint to the wider context homological
stability can be considered in.

No braiding = no stability? Such a statement is not going to ever be literally true, but
here are some standard types of examples that are good to have in mind: The full braid groups
Gn = Bn satisfy homological stability but not the pure braid groups Kn = ker(Bn → Σn).
Likewise the general linear groups Gn = GLn(R) satisfy stability for many rings R but not the
congruence subgroups Kn = GLn(R, I) = ker(GLn(R) → GLn(I)). There are in fact many
examples of that form with a family of groups Kn < Gn with the groupoid G = tGn braided
monoidal while the groupoid K = tKn is monoidal but not braided, and with the family Gn
stabilizing but not the family Kn. It turns out that such families {Kn}n≥0 often satisfy instead
a form of representation stability in the sense of [11], see also [16, 55].

Braiding 6⇒ stability. There are very few examples of braided monoidal categories where we
know that homological stability for the associated groups Gn does not hold. One such example,
constructed by Patzt [54], is the following: consider the category of sets, but using the product
× instead of the disjoint union as monoidal structure. This is a symmetric monoidal groupoid,
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and if we pick A = [1] and X = [2], we get Gn = Σ2n is the symmetric group on 2n elements.
The resulting space Wn(A,X) is however disconnected in this case! And indeed, even though
the symmetric groups satisfy homological stability, the stabilization maps in this case do not
induce isomorphisms; the induced map on first homology is instead the zero map. So existence
of a braiding does not imply stability, which in hindsight is probably not surprising.

There are in addition plenty of examples where we have a braided monoidal groupoid at hand
but we don’t know that stability holds. For example, the category of R-modules over any ring R
is symmetric monoidal, but stability for the groups GLn(R) is essentially only known under the
condition that the ring has finite Bass stable range [69]. But examples of rings for which we know
that stability for GLn(R) does not hold are surprisingly rare; see [41] for one example of a ring
for which H1(GLn(R)) does not stabilize. For mapping class groups or diffeomorphism groups
of manifolds, we essentially know stability in full generality in dimension 2 and 3, but in higher
dimension, homological stability for the classifying spaces of diffeomorphism groups is only known
for stabilization by connected sums with certain products Sp×Sq [26, 5]. Similarly, homological
stability for the automorphism groups of vector spaces equipped with a form (symplectic, unitary
or orthogonal groups), is mostly known in the particular case of stabilizing with the hyperbolic
form, see e.g. [66]. In all of these cases, we just do not know the connectivity of the complex of
destabilizations.

Homological stability in other contexts. We have already mentioned a number of stability
results for sequences of spaces. The most classical examples are configuration spaces, going
back to the work of McDuff, Segal and F. Cohen in the 70’s [65, 50, 12]. In other context,
examples seem to be more rare so far, but there is currently a growing interest in stability in
the homology of families of algebras, see e.g. [37, 6, 67], and there exists e.g. some results for
bounded cohomology of groups [43]. These results are of a very similar flavour as what we have
described in the present paper.

Appendix A. Adding complements categorically

The semi-simplicial sets Wn(A,X) of Section 2.1 and the categories CA,X used to define
polynomial coefficients in Section 2.3, were constructed using equivalence classes of maps in the
groupoid C. Both these constructions are related to a categorical construction, first considered
by Quillen in the context of K-theory [28, p 219]. We recall this construction here and give a
few examples. The resulting categories will be natural “homes” of the spaces Wn(A,X), and for
the polynomial twisted coefficients, which gives some insights.

Let M be a category, that is a left module over a monoidal groupoid (G,⊕). We define a
category 〈G,M〉 as follows: 〈G,M〉 has the same objects as M, and morphisms from A to B
are defined as equivalence classes of pairs (X, f) with X an object of G and f : X ⊕ A → B a
morphism of M, where (X, f) ∼ (X ′, f) if there is a commuting diagram

X ⊕A

g⊕id
��

f
// B

X ′ ⊕A
f ′

;;

in M. (If C is a right module instead, a category 〈C,G〉 is defined analogously.) When M is a
groupoid, as will be the case in our examples, the maps f are isomorphisms and the object X
can be thought of as a choice of complement for A inside B.

We will here only consider the case whereM = G is a monoidal groupoid acting on itself, and
denote by UG = 〈G,G〉 the resulting category.
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Example A.1. Let (G,⊕) = (Setsiso,t) be the monoidal groupoid of finite sets and bijections
of Example 2.1, with the monoidal structure induced by disjoint unions. Then UG = FI is the
category of finite sets and injections. Indeed, any injection f : A ↪→ B has, up to isomorphism,
a unique complement X = B\f(A).

Example A.2. Let (G,⊕) = (R–Mod,⊕) be the groupoid of R–modules and isomorphisms of
Example 2.2, with the monoidal structure given by direct sum. Then UG is closely related to
the category sometimes called V IC, with the same objects as R–Mod and with morphisms from
M to N given by pairs (H, f) with f : M → N a split injective homomorphism and H a choice
of complement in N of the image: N = H ⊕ f(M) (see e.g. [58]).

If the monoidal groupoid (G,⊕) is braided, one can define a monoidal structure on UG as
follows: on objects the monoidal structure ⊕ is that of G, and for [X, f ] a morphism from A to
B and [Y, g] a morphism from C to D, we set

[X, f ]⊕ [Y, g] = [X ⊕ Y, f ⊕ g ◦ idX ⊕ b−1A,Y ⊕ idC ] : A⊕ C → B ⊕D
where we use the braiding to switch A and Y in X⊕Y ⊕A⊕C to be able to apply the morphism
f ⊕ g. The category UG is not in general braided (see the next example), though it is symmetric
when (G,⊕) is a symmetric monoidal groupoid, see [63, Prop 1.8].

Example A.3. The braid groups Bn form together a groupoid B = tnBn, that is the free
braided monoidal groupoid on one element, where the monoidal structure comes from the jux-
taposition of braids. The category UB can be described in terms of braids with free ends: a
morphism from m to n for m ≤ n in UB is an equivalence class of braid in Bn where the braid
has n−m free ends that can freely pass under, but not over, any other strand, see [63, Sec 1.2].
(It can alternatively be defined in terms of embeddings of punctured discs, see [63, Sec 5.6.2].)
The category UB is not braided monoidal, but only pre-braided in the sense of [63, Def 1.5].

Remark A.4. The forgetful map Bn → Σn from the braid groups to the symmetric groups induces
a map UB → FI = U(Setsiso). Because B is the free braided monoidal category on one object,
it encodes all the structure we have when we picked objects A and X in the groupoids C and G
in Section 2. As pointed out in [39, Rem 2.8], the reason we can construct a semi-simplicial set
Wn(A,X) comes from the following: A semi-simplicial set is a functor ∆op

inj → Sets for ∆inj the
category of finite ordered sets and ordered injections. One can consider ∆inj as a subcategory
of the category FI of finite sets and injections. Now while the forgetful map UB → FI does
not admit a splitting, it does admit a partial splitting, in the form of a functor ∆inj → UB, and
this partial splitting is what rules the semi-simplicial structure of the space of destabilization
Wn(A,X).
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