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Abstract. We endow the normalized cacti with the structure of an∞-operad by showing that its
existing composition laws are associative up to all higher homotopies. The higher homotopies are

encoded by a new topological operad of bracketed trees which we relate both to an enrichment of
the dendroidal category Ω and to the Boardman-Vogt W -construction on the operad of operads.

1. Introduction

Gluing surfaces along their boundary allows us to define composition laws that have been used to
define cobordism categories, as well as operads and props associated to surfaces. These have played
an important role in recent years, for example in constructing topological field theory or computing
the homology of the moduli space of Riemann surfaces. Of particular interest is the cobordism
category whose morphism spaces are moduli spaces of Riemann surfaces. It has long been known
that such moduli spaces admit a graph model: they have the homotopy type of spaces of metric
fat graphs [7, 21, 34]. The composition of moduli spaces induced by the gluing of surfaces was
modeled using graphs in [17, Construction 3.29]. Though the resulting composition is associative
on the associated cellular chain complex, it is not associative on the space level, and, at present,
it is not known how to make it associative, or even coherently homotopy associative [17, Remark
3.31]. In genus 0, this graph model of the cobordism category includes normalized cacti (eg. [41,
Remark 2.8]), whose composition was also known not to be associative [24, Remark 2.3.19]. The
goal of our paper is to show that the composition of normalized cacti is associative up to all higher
homotopies, and hence normailzed cacti form an ∞-operad in the way detailed below. We expect
that the technique presented here can be extended to likewise show that the composition in the
graph model of the cobordism category is also associative up to all higher homotopies.

Figure 1. Spineless cactus with 7 lobes, with its outside the dotted line.

A cactus is a treelike configuration of circles (Figure 1). The cactus operad, originally introduced
by Voronov [39, Section 2.7], and its spineless version, introduced by Kaufmann [24, Section 2.3],
are models for the framed and unframed little disc operads respectively [24, Section 3.2.1]. Operadic
composition is by insertion: identifying the outside contour of one cactus with the lobe of another
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cactus and scaling the inserted cactus appropriately. Here we work with the spineless version for
simplicity.

A cactus is normalized if each circle in the cactus has circumference of length one. The space of all
normalized cacti with k-lobes is denoted by Cact1(k) and these spaces assemble into the symmetric
sequence Cact1 = {Cact1(k)}k≥0, with each Cact1(k) ⊂ Cact(k) a homotopy equivalent subspace, for
Cact(k) the space of all cacti with k lobes. (See [24, Section 2.3].) Composition of normalized cacti
is defined by insertion as for the cactus operad, but instead of scaling the inserted cactus to the
size of the lobe it is inserted in, one scales the lobe to the size of the inserted cactus. Surprisingly,
as illustrated in Figure 16, this new composition is not associative ([24, Remark 2.3.19]). So,
normalized cacti do not form an operad. This non-associative composition is, however, the one
relevant to the graph model of the cobordism category, as we explain in Remark 5.1.

Operads can be described as algebras over the operad of operads O, an operad whose elements
can be represented by certain trees (Definition 2.8). In Section 3, we define a bracketing of a
tree and use it to construct a new topological operad BO (Definition 3.9) whose algebras are
homotopy associative versions of operads: Any BO–algebra has an underlying symmetric sequence
and a preferred composition, but the composition is only associative up to coherent homotopy. The
operad BO is the realization of an operad whose operations lie in the poset of bracketings of the
trees in O.

Given a composition on a symmetric sequence, an action of the operad BO gives a hands-on way
to keep track of the homotopies required to show that it is coherently homotopy associative. We
illustrate how to construct a BO–algebra in practice by showing:

Theorem A (Theorem 5.12). The symmetric sequence {Cact1(k)}k≥0 of normalized cacti, together

with the Cact1 composition described above, extends to a BO–algebra structure.

In this paper, we show that this hands-on notion of an operad up to homotopy is related to
more well-known notions of ∞-operads. There exists several models of ∞-operads in the literature:
lax operads, obtained by resolving the operad of operads [8], dendroidal sets or spaces satisfy-
ing an inner Kan or Segal condition [11, Proposition 6.3, Theorem 8.15] and [11, Definition 8.1],
Lurie’s ∞-operads [22, Section 2.5], [10, Corollary 1.2] and Barwick’s complete Segal operads [10,
Theorem 1.1]. These models are all Quillen equivalent, and also Quillen equivalent to topological
operads themselves [12, Theorem 8.15]. We compare our construction with two of these notions
of ∞-operads. In Section 4, we show that any BO–algebra defines a dendroidal space satisfying a
weak Segal condition, and in Section 6, we show that any BO-algebra is also a lax operad in the
sense of [8].

To associate a dendroidal space to a BO-algebra, we first construct a topological enrichment

Ω̃0 of the dendroidal category Ω. The objects of Ω̃0 are trees, as for Ω, but morphisms are the
realisation of certain posets of bracketings in trees, defined in a similar fashion to the operad BO.

Diagrams over this thickened dendroidal category Ω̃0 are types of homotopy coherent dendroidal

spaces. By defining a nerve functor that takes a BO-algebra to the category of reduced Ω̃0-diagrams
that satisfy a strict Segal condition, we prove the following:

Theorem B (Theorem 4.8). There is an isomorphism of categories between BO-algebras and the

category of reduced Ω̃0-diagrams that satisfy a strict Segal condition.

In Proposition 4.10, we show that a Ω̃0–diagram can be rectified to an equivalent Ω–diagram,
i.e. an actual dendroidal space. Moreover, we show that this rectified dendroidal space satisfies a

weak version of the Segal condition if, and only if, the original Ω̃0–diagram satisfies such a condition.
We describe this rectification explicitly in the case of normalized cacti in Corollary 5.13.

The other notion of ∞-operads we consider are a more classical notion of an operad up to
homotopy obtained by resolving the operad of operads O via the Boardman-Vogt W -construction.
A WO–algebra is an operad up to homotopy, where the symmetric group action, the unit and
associativity relation are all assumed to hold only up to coherent homotopy. For this reason, WO-
algebras are called lax operads in the Ph.D. thesis [8]. Algebras over the operad WO are a model
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for ∞-operads: there exists a zig-zag of Quillen equivalences between the category of WO-algebras
and reduced dendroidal Segal spaces. (For example this can be seen by combining Theorem 4.1 of
[1] with either Theorem 1.1 of [3] or Theorem 8.15 of [12].) However, the operad WO is not easy
to work with directly. Indeed, its elements are trees (from the W–construction) whose vertices are
themselves decorated by trees (from the operad O), where the first trees compose by grafting and
the second trees compose by vertex substitution. In Section 6, we show that the operad BO is
actually isomorphic to a quotient W0O of WO:

Theorem C. [Theorem 6.4] There exists an isomorphism of topological operads W0O ∼= BO, for
W0O an explicit quotient of the operad WO. In particular, any BO–algebra is also a WO-algebra.

A W0O–algebra (or equivalently BO–algebra) is a homotopy operad where the composition is
still only homotopy associative, but where the symmetric group action and unit are strict. We show
in Corollary 6.5 that every BO-algebra is homotopy equivalent to a strict operad.

The relationship between the operad BO ∼= W0O and the dendroidal category Ω is detailed in
Theorem B, in which we show a “bracketed version” of the equivalence between O–algebras and
appropriate Ω–diagrams. As the operad WO is a more complete resolution of O, it is natural
to ask if an even larger resolution of the dendroidal category Ω extends this relationship. For a

category K, there exists a resolution similar to the W–construction, namely the “explosion” K̃
of the category, as studied by Segal [37, Appendix B] and Leitch [25]. This “explosion” has the

property that K̃–diagrams are coherently homotopy K–diagrams. Applying this construction to the

category Ω, one could expect that WO–algebras are related to Ω̃–diagrams in the same way that

BO = W0O–algebras are related to Ω̃0–diagrams. We show in Theorem A.6 that this does not
quite hold, proving instead that there is an embedding of the category of WO-algebras as a full

subcategory of the category of Ω̃–diagrams satisfying a strict Segal condition.

By combining Theorem A and Theorem B or Theorem C, normalized cacti are a rare example
of an ∞-operad that does not arise via the application of a nerve construction to a known (discrete
or topological) operad. Indeed, to our knowledge, only a few such examples exist in the literature;
see the weak operad of configuration spaces [20, Corollary 5], the configuration categories of [6] or
examples that arise as a result of completion as in [4, Proposition 5.1].

The input of the construction of our explicit infinity operad structure on normalized cacti is
a pre-given composition that we show to be associative up to coherent homotopy by using the
operad BO = WO/ ∼. The homotopies are constructed using the contractible space of basepoint
preserving monotone reparametrizations of the circle (see the proof of Theorem 5.12). To extend
the results to the cobordism category of graphs described above, one would need to replace O by
the operad PO, whose algebras are all symmetric properads [42, Section 14.1.2], define a resolution
“BPO”, as the appropriate quotient of the W -construction applied to PO. Our expectation is that
these same reparametrisations of the circle will likewise provide all the necessary homotopies to
provide an infinity composition in the graph model of the cobordism category.
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2. Preliminaries on Operads

A symmetric sequence in a symmetric monoidal category S is a collection P = {P(k)}k≥0 of
objects in S in which each P(k) comes equipped with an action of the symmetric group Σk. In this
paper, our symmetric monoidal category S will either be the discrete category of sets, the category
of simplicial sets, or the category of topological spaces with their standard Cartesian products.

An operad in S is a symmetric sequence P = {P(k)}k≥0 together with a distinguished element
ι ∈ P(1), called the unit, and a collection of composition maps

◦i : P(k)× P(j) P(k + j − 1),

1 ≤ i ≤ k, which are associative, unital, and equivariant. For more complete details see, for example,
[27, Definition 11]. Given an operad P, a symmetric sequence Q = {Q(k) ⊆ P(k)}k≥0 is a suboperad
of P if the restriction of the composition maps in P induce an operad structure on Q. A morphism
of operads f : P → Q is a family of equivariant maps

{f(k) : P(k)→ Q(k)}k≥0

that are compatible with composition and units.

Remark 2.1. It is equivalent to work with individual compositions

◦i : P(k)× P(ji)→ P(k + ji − 1)
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or with all ◦i-compositions simultaneously. In the latter case, the simultaneous compositions are
denoted by a map

γP : P(k)× P(j1)× . . .× P(jk)→ P(Σki=1ji).

(eg:[27, Proposition 13]).

More generally, we will use colored operads. For any non-empty set C, a C-colored symmetric
sequence is a family of objects P := {P(c; c1, . . . , ck)}k≥0 in S, where (c; c1, . . . , ck) ranges over
every list of colors in C together with a map σ? : P(c; c1, . . . , ck) → P(c; cσ(1), . . . , cσ(k)) for each
σ ∈ Σk. A C-colored operad is a C-colored symmetric sequence P together with a family of partial
composition maps

◦i : P(c; c1, . . . , ck)× P(d; d1, . . . , dj)→ P(c; c1, . . . , ci−1, d1, . . . , dj , ci+1 . . . , ck)

defined only when ci = d, together with an element ιc ∈ P(c; c) for each c ∈ C, which satisfies
unit, equivariance and associativity conditions. For more details see, for example, [1, Definition
1.1]. When the color set is C = {∗}, a C–colored operad is a one-colored operad. In this paper we
will refer to both operads and colored operads as “operads”, only mentioning the color set when
necessary.

An algebra over a (C–colored) operad P is a collection of objects {X(c)}c∈C in S together with
evaluation maps

α : P(c; c1, . . . , ck)×X(c1)× · · · ×X(ck) −→ X(c)

satisfying appropriate associativity, unit and equivariance conditions, see e.g. [1, Definition 1.2].
The category of P-algebras in S is denoted P−AlgS .

Our main example of a colored operad will be the N-colored operad O, whose algebras are the
(non-colored) operads, see Definition 2.8. In Section 5, we will also make use of the following operad:

Example 2.2. Let X be a fixed space in S. The coendomorphism operad of X, CoEnd(X), has an
underlying symmetric sequence with arity k spaces

CoEnd(n)(X) := Map(X,X×k).

The symmetric groups act by permuting the factors of f = (f1, . . . , fk) ∈ CoEnd(k). If f =
(f1, . . . , fk) ∈ CoEnd(k)(X) and g = (g1, . . . , gj) ∈ CoEnd(j)(X) the partial compositions

◦i : CoEnd(k)(X)× CoEnd(j)(X) CoEnd(k + j − 1)(X)

are given by
f ◦i g = (f1 , . . . , fi−1 , g1 ◦ fi , . . . , gj ◦ fi , fi+1 , . . . , fk).

2.1. Trees. Throughout this paper, we use trees to model operad compositions and as the basis of
our main constructions. A graph G is a tuple (V (G), H(G), s, i) where V (G) is a set of vertices,
H(G) a set of half-edges, s : H(G)→ V (G) is the source map and i : H(G)→ H(G) is an involution.
Orbits of the involution i are called edges of G and the set of edges is denoted by E(G). An edge
represented by a pair {h, i(h)} with i(h) 6= h is called an internal edge, and the set of internal edges
is denoted iE(G). Edges corresponding to orbits of fixed points of the involution are external.

A tree is a simply connected graph. All our trees will be rooted, i.e. they come with a distinguished
“outgoing” external edge called the root. All other external edges are “incoming” and called leaves.
The set of leaves is denoted L(T ). The arity of T is the number of leaves |L(T )|. The root of the
tree is denoted R(T ).

Note that a rooted tree can be canonically made into a directed graph by setting all the edges
to point towards the root. Then note that the set of edges incident to a vertex always has a unique
outgoing edge, the one closest to the root, and all other edges are incoming edges. The number of
incoming edges of a vertex v is called the arity of the vertex and denoted by |v|, with |v| ≥ 0 any
natural number.

We allow the special tree η = |, with no vertices and a single edge. The trees with a single vertex
and n leaves are called n-corollas and denoted Cn. A rooted tree S is a subtree of T if V (S) ⊆ V (T )
preserving the arity, H(S) ⊆ H(T ), and the structure maps for S are restrictions of the structure
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maps for T , defining i(h) = h in S if i(h) = h′ in T with h′ /∈ H(S). A planar tree is a rooted tree
together with a preferred isotopy class of embedding into the plane. Note that this is equivalent to
defining a planar tree as a tree with a canonical ordering of the incoming edges at each vertex.

We use planar trees to model operad compositions via an operation called grafting. Given trees
T and T ′, of arity n and m respectively, and a leaf i ∈ L(T ), the grafting of T ′ onto T along the leaf
i is defined to be the tree T ◦i T ′ obtained by attaching the root of T ′ to the leaf i of T so that they
form a new internal edge in the grafted tree (Figure 2). Grafting of trees is also used to model the
free operad generated by a symmetric sequence, as we will explain now. To avoid confusion later,
when we will have to decorate vertices of trees by other trees, we will use blackboard fonts for the
trees in the free operad construction (and later the associated W -construction in Section 6.1), as
we will soon apply this construction to a symmetric sequence of trees, which will give (blackboard)
trees of (plain) trees.

v
i

T

T ′

(a) Example trees T and T ′

v

(b) The grafting T ◦i T ′

Figure 2. Grafting of trees.

Definition 2.3. Let P = {P(c; c1, . . . , ck)}ci,c∈C be a C-colored symmetric sequence in S. A planar
tree T is C-colored if it is equipped with a map f : E(T) → C, we refer to f(e) as the color of the
edge e. A C-colored planar tree T is decorated by P if each vertex v ∈ V (T) is labeled by an
operation in pv ∈ P(out(v); in(v)), where out(v) is the color of the outgoing edge of v, and in(v) is
the list of colors of the incoming edges of v, ordered by the planar structure. The free operad F (P)
on P is the C-colored operad whose k-ary operations are the C-colored, P decorated, planar trees
T of arity k with leaves labeled by a bijection λ : {1, . . . , k} → L(T).

Explicitly, for each c, c1, . . . , ck ∈ C,

F (P)(c; c1, . . . , ck) :=
( ∐

(T,f,λ)

∏
v∈V (T)

P(out(v); in(v))
)
/ ∼,

where (T, f, λ) runs over all isomorphism classes of leaf-labeled C-colored planar trees with k leaves
such that f(λ(i)) = ci, f(R(T)) = c, and where the equivalence relation is generated by the
following:

(∗) two labeled trees (T, f, λ, (pv)v∈V (T)) and (T′, f ′, λ′, (p′w)w∈V (T′)) are equivalent if there
exists a non-planar isomorphism α : T → T′ such that f ◦ α = f ′, α ◦ λ = λ′, and
σv(α)pv = pα(v), for σv(α) the permutation on in(v) induced by α.

The symmetric group acts on F (P) by permuting the labels of the leaves, acting on λ, and
composition in F (P) is given by grafting of trees, with ◦i grafting at the leaf λ(i). For full details
see, for example, the construction under Corollary 3.3 [1].

We now employ the free operad construction to define a class of free operads Ω(T ) generated
by a planar tree T . This will play a fundamental role in the definition of the dendroidal category
(Section 2.2), which describes a model for ∞-operads.

Example 2.4. A planar tree T generates a free colored operad Ω(T ) as follows. The set of colors of
Ω(T ) is the set of edges C = E(T ). We define a discrete E(T )-coloured symmetric sequence X(T )
by

X(T )(e; eσ(1), . . . , eσ(n)) =

{
{σv} if (e; e1, . . . , en) = (out(v); in(v)), for v ∈ V (T ),

∅ otherwise,
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with its built in free symmetric group action. Then Ω(T ) := FX(T ) is the free operad on the
collection X(T ). Explicitly, Ω(T ) is an E(T )-coloured operad with

Ω(T )(e; eσ(1), . . . , eσ(n)) =

{
σS if (e; e1, . . . , en) = (R(S);L(S)), S ⊂ T ,
∅ otherwise.

for S ⊂ T a subtree of T . Composition, as in the free operad, is given by grafting of subtrees. For
further details, see Section 2.2 and just above Definition 2.3.1 in [31].

2.2. The dendroidal category Ω. The model we use for ∞-operads is that of dendroidal Segal
spaces that satisfy the weak Segal condition. Dendroidal spaces are diagrams of the dendroidal
category.

The dendroidal category Ω is the full subcategory of colored operads whose objects are the free
operads Ω(T ) generated by trees (as in Example 2.4). In other words, objects of Ω are planar
isomorphism classes of planar rooted trees and morphisms in Ω are defined to be operad maps

HomΩ(S, T ) = HomOp(Ω(S),Ω(T )).

Morphisms in Ω can be described as a composition of four types of elementary morphisms: isomor-
phisms, degeneracies, inner and outer face maps. In terms of trees, isomorphisms are non-planar
tree isomorphisms, inner face maps are of the form ∂e : T/e → T , where T/e is the tree obtained
from T by contracting an inner edge e ∈ iE(T ). If v is a vertex of T with only one inner edge
attached to it then T/v is the tree obtained from T by chopping off the vertex v and the inclusion
∂v : T/v → T is an outer face map. A degeneracy is a map sv : T/v → T where T/v is obtained
from T by deleting a vertex v, with |v| = 1, in T .

In the opposite category Ωop, outer face maps correspond to restriction to certain allowed sub-
trees, while inner face maps correspond to edge collapses. For more details and plenty of examples
see [32, 31].

Remark 2.5. Our definition of Ω differs slightly from the usual definition in that we have chosen
our objects to be planar trees. Technically, what we have described here is the equivalent category
Ω′ from [31, 2.3.2].

Definition 2.6. A dendroidal space X is an Ω-diagram X : Ωop → S, where S is either the category
of simplicial sets or topological spaces.

The evaluation of X at a tree T is denoted X(T ). A dendroidal space is called reduced if X(η) = ∗,
where η = |. We will write SΩop for the category of dendroidal spaces.

For any vertex v in a tree T ∈ Ω, we have an associated outer face map in Ω

Cv −→ T

taking the unique vertex of the corolla to v ∈ V (T ), where Cv is the corolla with |v| leaves. Likewise,
for any internal edge between vertices u and v in T , there is a commuting diagram in Ω

η //

��

Cu

��
Cv // T.

Let Sk1(T ) be the category whose objects are the edges and vertices of T , thought of copies of η
and corollas Cv, and whose morphisms are associated to edge inclusions in T , as in the top left
corner of the above diagram.

For a dendroidal space X, the Segal map is the unique map from X(T ) to the limit limSk1(T )op X
induced by the corolla inclusions. When X(η) = ∗, this limit becomes a product over the value of
X at the corollas, and the Segal map becomes the map

χ : X(T )
∏
v∈V (T )X(Cv)

with components the restriction to the value of X at each corolla.
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The category of Ω-diagrams admits two Quillen model category structures: the Reedy model
structure and the projective model structure which are Quillen equivalent (see e.g. [5, Remark 2.5]).
Throughout, we take the projective model structure in which a morphism of Ω-diagrams is a weak
equivalence or fibration if it is entrywise a weak equivalence or fibration.

Definition 2.7. A dendroidal space X ∈ SΩop satisfies a strict Segal condition if the Segal map is
an isomorphism for each η 6= T ∈ Ω.

2.3. The operad of operads. One of the main constructions in this paper is the operad BO. This
operad builds on an N-colored operad O called the operad of operads, whose algebras are one-colored
operads.

Let T be a planar tree. For a vertex v ∈ V (T ) with arity |v| = m and a planar tree T ′ with m
leaves, the substitution T •v T ′ is obtained by removing the vertex v from T and identifying the
incoming and outgoing edges of v with the leaves and root of T ′, respectively. An example is shown
in Figure 3.

v
i

T

T ′

(a) Example trees T and T ′

i

(b) The substitution T •v T ′

Figure 3. Tree substitution (Compare with grafting in Figure 2).

A labelled planar tree is a triple (T, σ, τ), consisting of a planar tree T equipped with bijections
σ : |V (T )| → V (T ) and τ : |L(T )| → L(T ). Two such triples (T, σ, τ) and (T ′, σ′, τ ′) are isomorphic
if there is a planar tree isomorphism T → T ′ that respects the labelling σ, τ . We represent a labelled
planar tree (T, σ, τ) by writing above each leaf ` ∈ L(T ) the number τ−1(`), and writing by each
vertex v ∈ V (T ) the number σ−1(v), as depicted in Figure 4.

1

2

4

3

2

11

10

9 87

1

6

54

3

Figure 4. Example of a labelled planar tree in O(11; 5, 3, 4, 2).

We also define a tree substitution that is compatible with the labellings of the leaves. Let (T, σ, τ)
and (T ′, σ′, τ ′) be two planar labelled trees with |V (T )| = k, |V (T ′)| = l and |L(T ′)| = |σ(i)| = mi.
The map τ ′ encodes a permutation in the symmetric group with mi elements. We obtain a new
planar tree (τ ′σ(i))T by applying the permutation τ ′ on the mi incoming edges of the vertex σ(i) ∈
V (T ). We then define

(2.1) T •σ(i),τ ′ T
′ = (τ ′σi)T •σ(i) T

′.
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In particular, V (T •σ(i),τ ′T
′) = {V (T )−σ(i)}qV (T ′). The labelling on the vertices of T •σ(i),τ ′T

′

is given by the map σ ◦i σ′, which is the induced bijection {1, . . . , k + l − 1} → V (T •σ(i),τ ′ T
′)

j 7→

 σ(j) 1 ≤ j < i
σ′(j − i+ 1) i ≤ j ≤ i+ l
σ(j − l + 1) i+ l < j ≤ k + l − 1.

An example is shown in Figure 5. In the case where the order induced by τ ′ on the mi incoming

•σ(2),τ ′ =

1

2

4

3

2

11

10

9 87

1

6

54

3

2

1

3

1

2

1

4

11

10

9 87

1

63

2 5

5 4 2 3

Figure 5. Example of composition in O where τ ′ is different to the planar order of in(σ(2)).

edges of σ(i) is the same as the order induced by the planar structure, then T •σ(i),τ ′ T
′ = T •σ(i)T

′.

Definition 2.8. The operad of operads O is the N–colored operad, for which

O(n;m1, . . . ,mk)

is the discrete space whose elements are isomorphism classes of labelled planar rooted trees (T, σ, τ)
where T is a planar tree with k vertices and n leaves, with bijections σ : |V (T )| → V (T ), τ : |L(T )| →
L(T ), such that the vertex σ(i) has arity mi for each 1 ≤ i ≤ k. The composition operation

O(n;m1, . . . ,mk)×O(mi; b1, . . . , bl) O(n;m1, . . . , b1, . . . , bl, . . . ,mk)

((T, σ, τ), (T ′, σ′, τ ′)) (T, σ, τ) ◦i (T ′, σ′, τ ′)

◦i

is induced by tree substitution that is compatible with the labelling as in (2.1), where

(T, σ, τ) ◦i (T ′, σ′, τ ′) = (T •σ(i),τ ′ T
′, σ ◦i σ′, τ).

The unit for this composition, for the color n, is the element of O(n;n) represented by the corolla
Cn equipped with the canonical left-right labelling. The symmetric group Σk acts on (T, σ, τ) ∈
O(n;m1, . . . ,mk) by precomposition on the labelling σ of the vertices V (T ).

We further observe that, for each m,n ∈ N,

O(m;n) ∼=
{

Σn for m = n,
∅ when m 6= n.

The isomorphism O(n;n) ∼= Σn corresponds to labelling the leaves of a corolla Cn in all possible
ways. The unique arity 0 operation in O is represented by the special tree η ∈ O(1; ∅). An O-
algebra, P, is precisely a one-colored operad. That is to say, P has an underlying N-graded object
P = {P(n)}n∈N in S. Moreover, P admits actions O(n;n)×P(n)→ P(n) for all n and thus P has
an underlying symmetric sequence. By definition, we have

O(n;m1, . . . ,mk)× P(m1)× . . .× P(mk) ⊂ FP(n),

where FP is the free operad on the symmetric sequence P, and

FP(n) =
∐
k∈N

 ∐
(m1,...,mk)∈Nk

O(n;m1, . . . ,mk)× P(m1)× . . .× P(mk)


Σk
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so the action maps

α : O(n;m1, . . . ,mk)× P(m1)× . . .× P(mk)→ P(n)

induce maps FP(n) → P(n) for all n, and by the algebra axioms, this is precisely the data of a
symmetric operad in S (See [1, Example 1.5.6]). Note that, in particular, the ◦i-compositions of an
operad P are governed by the trees with one internal edge in O(n;m1,m2), where n = m1 +m2−1.

2.4. The relationship between operads and dendroidal spaces. Dendroidal spaces with
X(η) = ∗ that satisfy a strict Segal condition are closely related to one-colored operads. Ex-
plicitly, every operad P can be viewed as a dendroidal space via the dendroidal nerve construction
that defines a functor

Nd(P)(T ) = HomOp(Ω(T ),P)

as T ranges over Ω. The nerve of the free operad Ω(T ) is just the representable dendroidal space
Ω[T ] := HomΩ(−, T ). A dendroidal space X is the nerve of an operad if, and only if, the Segal
map of Definition 2.7 is an isomorphism for all T [12, Lemma 6.4; Proposition 6.5]. To put this
altogether, there is an isomorphism of categories

O−AlgS
∼= (SΩop)strict

where O is the colored operad whose algebras are one-colored operads (Definition 2.8, below) and
(SΩop)strict denotes the category of reduced dendroidal spaces satisfying the strict Segal condition.
We will prove similar statements for “thickened” versions of Ω in Theorem 4.8 and Theorem A.6.

3. The operad of brackets BO

In this section we introduce a new topological operad called the operad of bracketed trees. In short,
the operad BO captures a weak notion of an operad in the sense that a BO-algebra is a symmetric
sequence with ◦i-operations that are only associative up to higher homotopy. The construction of the
operad BO allows one to check with relative ease whether a symmetric sequence with compositions
assembles into an ∞-operad. In Theorem 5.12, we use this to show that normalized cacti admit
such a structure. Moreover, we expect that this construction provides a general method that one
can use to construct other examples of ∞-operads.

One could instead use the classical Boardman-Vogt W -construction on the operad O to obtain an
operad WO whose algebras are homotopy operads (lax operads in the language of [8]). It is known
to experts that bracketings in trees are related to this operad WO, but the precise details are
difficult to find in the literature. (However, see [33, Section 2.3], in particular Theorem 4, together
with Remark 3.8 below, for an algebraic version of this in the case of non-symmetric operads.) In
Section 6 we will show that BO identifies with a quotient of the operad WO. Bracketings in trees
have also appeared elsewhere, see eg. [13, 14], and the parenthesizations of [38, 2.6].

3.1. Bracketings of trees. We define in this section the poset of bracketings of a tree, starting
with the definition of a bracketing:

Definition 3.1. A tree is called large if it has at least two vertices (or equivalently, at least one
internal edge). A set {Sj}j∈J of subtrees of a tree T is nested if, for any i, j ∈ J , the set of common
vertices V (Si) ∩ V (Sj) is either V (Si), V (Sj) or empty. A bracketing B of a tree T is a (possibly
empty) collection B = {Sj}j∈J of nested large proper subtrees of T .

Recall from Section 2.1 that a subtree of T is a tree S whose vertices are a subset of the vertices of
T , and whose half-edges are all the half-edges in T attached to such vertices. Therefore, a subtree
is completely determined by its vertices. With this in mind, we will represent bracketings as in
Figure 6.

Definition 3.2. Bracketings of a tree T form a poset of bracketings B(T ) with the relation B′ ≤ B
if B′ ⊆ B.
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Figure 6. Example of a tree bracketing with 3 nested subtrees.

We denote the geometric realisation of the nerve of the poset B(T ) by |B(T )|. A point in

|B(T )| =
∐
r≥0

NrB(T )×∆r/ ∼

is a pair (B, t) with B = B0 ⊂ · · · ⊂ Br a sequence of bracketings and t ∈ ∆r. Such a pair (B, t) can
be interpreted as a weighted bracketing with underlying set of brackets Br = ∪ri=0Bi and weights
given by

t = (1, t1, . . . , tr) ∈ ∆r = {1 = t0 ≥ t1 ≥ · · · ≥ tr ≥ 0}
where we assign the weight t0 = 1 to all brackets in B0, and for each 1 ≤ i ≤ r, the weight ti
to all brackets in Bi\Bi−1. In particular, a weighted bracketing with all brackets having weight 1
corresponds to a vertex B = B0 in the nerve of the poset. Also, the equivalence relation on the
realization implies that a bracket of weight 0 can be discarded. (See also Section 6 and in particular
the proof of Lemma 6.8 where this point of view is used to relate BO to the operad WO.)

Example 3.3. If T = Cn then T does not admit any large subtree, therefore B(T ) = {∅} only has
the empty (or trivial) bracketing.

Example 3.4. Let T be the tree , then the space |B(T )| is depicted in Figure 7 (left). Note

that the initial object in the poset is the empty bracket, in the centre of the pentagon (the 4th
associahedron).

Figure 7. Geometric realization of the poset B(T ) of Examples 3.4 and 3.5.
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More generally, let Tn be a tree with n vertices such that no vertex is connected to more than
two inner edges. For such trees, the set of vertices can always be given a total ordering, for instance
by constructing a list starting with a vertex v connected to only one internal edge, and defining the
next element of the list to be the vertex sharing an edge with v that has not yet been listed. Then a
bracket of Tn can be immediately identified with a meaningful placement of parentheses on a word
with n letters where the word is represented by the ordered set of vertices. Therefore, |B(Tn)| can
always be identified with the n-th associahedron (see also Remark 3.8 for another approach to this
statement).

Example 3.5. Consider a tree T with three inner edges all meeting at a single vertex. Note that
the poset of bracketings depends only on the relative positions of the vertices (or analogously, the
inner edges) of the tree T , and is independent of the number of leaves at each vertex. Therefore,
the realization poset of bracketings of T is the hexagon (two-dimensional permutahedron) depicted
in the Figure 7 (right), using as an example the tree T = .

Example 3.6. Figure 8 depicts the realisation of the poset of bracketings of a tree T with four
inner edges meeting at a single vertex. Note that by fixing a large subtree S of T , the realisation
of the subposet of bracketings of T containing S will correspond to a subspace of the boundary
of |B(T )|. Each boundary face of top dimension is then associated to a subtree S of T , and two
such faces S1, S2 share a subface if {S1, S2} is nested. In this case, |B(T )| is the three-dimensional
permutahedron.

T =

Figure 8. Tree satisfying the conditions of Example 3.6 together with the geo-
metric realisation of its poset of bracketings.

Lemma 3.7. For any tree T , the space |B(T )|, is contractible.

Proof. The contractibility of the space |B(T )| follows directly from the fact that the poset B(T ) has
a minimal element, namely the empty bracketing. �

Remark 3.8. The spaces |B(T )| are related to the family of nestohedra that were first described
by Feichtner and Sturmfels [18] and Postnikov [35]. Examples of nestohedra include simplices,
permutahedra, Stasheff’s associahedra and more generally Carr and Devadoss’ graph associahedra
[9]. Hypergraph polytopes are an interpretation of nestohedra by Došen and Petrić [15], with the
advantage that they have a convenient tree notation (called constructs) to label the faces of the
polytope and that encode the face inclusions. The space |B(T )| can be identified with a hypergraph
polytope as follows. Using the definition and notation by Obradović [33, Section 2.2.1], the edge-
graph HT of T is the graph whose vertices correspond to the inner edges of T , and two vertices of
HT share an edge if the corresponding inner edges of T have a common vertex. A subgraph S of
HT uniquely defines a subforest 〈S〉 of T whose internal edges correspond precisely with the vertices
of S, and each tree in this forest is necessarily large because it has an inner edge (see [33, Section
2.2.1, Lemma 3]). Then we have an order reversing bijection b between the hypergraph polytope
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of the edge-graph HT and B(T ) that can be recursively defined as follows: we take the construct
V (HT ) given by the vertex set of HT to the empty bracketing, and if HT \ Y for Y ⊂ V (HT )
decomposes into n connected components HT1

, . . . ,HTn , then for constructs Ci of HTi we take the
construct Y {C1, . . . , Cn} to the bracketing {〈HT1〉, . . . , 〈HTn〉, b(C1), . . . , b(Cn)}. The definition of
constructs guarantees that these sets are nested and therefore define a bracketing, and it is simple
to check that this is an order reversing bijection.

3.2. An operad of bracketings. We’ll use the bracketings B(T ) to construct a topological operad.
Let the collection

BO(n;m1, . . . ,mk) =
∐

(T,σ,τ)∈O(n;m1,...,mk)

|B(T )|

define the N-coloured symmetric sequence BO. So, elements of BO(n;m1, . . . ,mk) are tuples
(T, σ, τ, B, t) where (T, σ, τ) is an element of O(n;m1, . . . ,mk) (Definition 2.8) and (B, t) is a
weighted bracketing of T (ie. a point in |B(T )|).

To define operadic composition in BO, we use the composition of trees in O and induce a
bracketing of the resulting tree. Let (T, σ, τ, B) and (T ′, σ′, τ ′, B′) be labeled trees with bracketings.
The composition in O (Definition 2.8) is given by the substitution of T ′ into the vertex σ(i) ∈ V (T ),

(T, σ, τ) ◦i (T ′, σ′, τ ′) = (T •σ(i),τ ′ T
′, σ ◦i σ′, τ).

Since T ′ is canonically a subtree of T •σ(i),τ ′ T
′, the bracketing B′ on T ′ defines a nested collection

of subtrees of T •σ(i),τ ′ T
′. We also construct a nested collection of subtrees B̃ = {S̃j}j∈J on

T •σ(i),τ ′ T
′ that is induced by the bracketing B = {Sj}j∈J on T . If T ′ 6= η, then B̃ ∼= B is given by

(3.1) S̃j =

{
Sj if σ(i) /∈ V (Sj),
Sj •σ(i),τ ′ T

′ if σ(i) ∈ V (Sj).

If T ′ = η, then B̃ = {S̃j}j∈J is defined in the same way, unless σ(i) ∈ V (Sj) and Sj has two vertices,
in which case Sj •σ(i),τ ′ η is a corolla and is discarded as it is not large. That is, we replace J with
another indexing set J ′ ⊂ J , which is the subset of indices j such that Sj is large.

We define a bracketing of the tree T •σ(i),τ ′ T
′ by

(3.2) B′′ =

{
B̃ ∪B′ ∪ {T ′} if T ′ is large

B̃ else.

See Figure 9. This defines a composition of bracketings of trees. This composition is associative as
follows. Suppose Sj ⊂ T is a bracket with only two vertices v and w, and T ′ is a tree with at least
two vertices. If we first compose η in v and then T ′ in w, the bracket Sj is discarded during the first
composition, and then replaced by a new bracket T ′. Reversing the order of these two compositions
yields the same result because first composing T ′ in w will create a new bracket T ′, and Sj will not
be discarded, but composing further η in v will equate Sj and T ′. Otherwise, the associativity of
the composition follows from the associativity on the composition in O.

The composition also respects inclusions and thus is a poset map

(3.3) B(T )× B(T ′) B(T •σ(i),τ ′ T
′).

The realization of the poset map (3.3) induces a map between the geometric realisations of the
nerve of the posets.

Also recall that the unary elements of O, i.e. the elements of O(n;n) for some n, are given by
labeled corollas. Since there are no non-trivial bracketings of corollas, unary elements of BO have
the form (Cn, σ, ∗, ∅, ∅) ∈ BO(n;n) with σ ∈ Σn. In particular, the n-coloured identity for the
composition ◦ in BO is given by (Cn, idn, ∗, ∅, ∅) ∈ BO(n;n). Therefore BO is an operad.

Definition 3.9. The operad of bracketed trees BO is the N-coloured topological operad with un-
derlying symmetric sequence

BO(n;m1, . . . ,mk) =
∐

(T,σ,τ)∈O(n;m1,...,mk)

|B(T )|
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•σ(3),τ ′ =

21 3 4

3

2

11

10

9 87

1

6

54

3 2
11

10

9 87

1

6

54

3

Figure 9. Example of composition in BO with labelling of the vertices omitted for simplicity.

and composition given by combining the composition in O with the map (3.3) described above.

Remark 3.10. (1) Note that there is an isomorphism of operadsO ∼= π0BO and, by Lemma 3.7,
the projection BO → O is a homotopy equivalence of operads.

(2) The topological operad BO is the realization of an operad in posets. Indeed, the space
BO(n;m1, . . . ,mk) is the realization of the poset of elements (T, σ, τ) of O(n;m1, . . . ,mk)
together with a bracketing of T , where two elements are comparable only if they have the
same underlying element of O. Likewise, the operad structure is defined as the realization
of a map on the level of posets.

3.3. BO-algebras. A BO-algebra is an operad whose ◦i-compositions are associative up to all
higher homotopies. In particular, a BO-algebra P = {P(n)}n∈N has an underlying symmetric
sequence. To see this, we note that the labelling of the leaves of a corolla (Cn, τ, ∗, ∅, ∅) ∈ BO(n;n)
identifies with elements of the symmetric group and we have isomorphisms

BO(n;n) ∼= O(n;n) ∼= Σn.

The action

BO(n;n)× P(n) P(n)

makes P = {P(n)}n∈N into a symmetric sequence.
BO-algebras also have a notion of operadic ◦i composition. To see this, recall that such compo-

sitions are encoded in the operad O by the trees with exactly two vertices, one attached to the ith
incoming edge of the other. As such trees admit no large, proper subtrees, they admit no non-trivial
bracketing and we have isomorphisms for any n,m ≥ 0

BO(m+ n− 1;m,n)|V (T )≤2
∼= O(m+ n− 1;m,n)|V (T )≤2

between the components of the tuples (T, σ, τ, ∅, 0) (resp. (T, σ, τ)) with T having at most two
vertices. It follows then that P is equipped with operadic ◦i-compositions.

A BO-algebra is not in general an operad, however. The brackets that arise in trees with more
than two vertices capture the different choices one has in iterated compositions of ◦i operations.
More explicitly, if {P(n)}n∈N is a BO–algebra, then for any collection of elements xi ∈ P(mi) that
decorate the vertices of a tree (T, σ, τ) ∈ O(n;m1, . . . ,mk), we have a chosen composition of those
elements, namely the one determined by (T, σ, τ, ∅, ∅) ∈ BO(n;m1, . . . ,mk). This “unbracketed”
tree sits in the middle of a polytope of all possible elements (T, σ, τ, B, s) for any bracketing B, as
in Figure 7. The corners of this polytope correspond to the possible maximal bracketings of T (the
maximal elements of B(T )). Just like the corners of the Stasheff polytopes give all the possible ways
to bracket a k–fold multiplication, these maximal bracketings correspond precisely to the possible
ways to bracket the composition of ◦i operations, which are those defined using trees with exactly
two vertices. The polytopes arising from the posets of bracketing in trees can be thought of as an
operadic analogue of the Stasheff polytopes.
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Remark 3.11. In [24, Definition 1.1.1], a quasi-operad is a symmetric sequence P = {P(n)}n∈N
together with operadic ◦i-compositions and no further structure. In this way, a BO-algebra is an
extension of a quasi-operad. The operad BO is closely related to the W -construction of O, whose
algebras go under the name lax operads, see Section 6, where we show that BO-algebras can be
described as strictly symmetric lax operads.

4. Thickening the category Ω

We have seen that operads are O-algebras. Also recall from Section 2.4 that operads can be
described as strict Segal dendroidal spaces. The dendroidal category Ω is defined as a full subcat-
egory of the coloured operads generated by trees. To obtain a similar description of BO–algebras

as certain “homotopy dendroidal Segal spaces,” we construct a topological category Ω̃0 that is a
category with the same objects as Ω but its spaces of morphisms are built using posets similar

to the posets used to define BO. Theorem 4.8 establishes that this category, Ω̃0, has the desired

property that reduced Segal Ω̃op0 –spaces are precisely BO-algebras. In Section 4.3, we then show
how rectification of diagrams can be used to produce an actual Segal dendroidal space from such a
homotopy version of a dendroidal space.

Given any category K with a discrete set of objects, Leitch [25] constructed a new category

K̃ with the property that K̃–diagrams are homotopy coherent K–diagrams. A similar enrichment
(the explosion category) was also used by Segal [37, Appendix B] to relate his Γ–space approach to

infinite loop spaces to the operadic approach of Boardman-Vogt and May. Because Ω̃0–diagrams are

homotopy coherent Ω0–diagrams, one can expect that the category Ω̃0 is related to this construction
of Leitch applied to Ω. In Section A, we construct an equivalence between these two categories, and

show that strict Segal Ω̃–spaces are closely related to WO–algebras.

4.1. Bracketing Ω and the category Ω̃0. Recall from Section 2.2 that the objects of Ω are planar
isomorphism classes of planar rooted trees. Morphisms in Ω are compositions of inner and outer
face maps, degeneracies and isomorphisms of trees. Inner face maps ∂e : T/e → T create inner
edges and correspond to operadic composition, while outer face maps are subtree inclusions and are
associated to projection maps. A degeneracy creates a vertex that is adjacent to exactly two edges.

The category Ω̃0 is a version of Ω with the same set of objects, but with the realization of a poset
of bracketings over each composition of inner face maps.

We define the morphism spaces of Ω̃0 as follows. Let g : S → T be a morphism in Ω. For each
vertex v ∈ V (S), let Cv ⊂ S denote the corolla of the vertex v that is, Cv = iv(C|in(v)|) where
iv : C|in(v)| → S is the composition of outer faces in Ω sending the vertex of the corolla C|in(v)| to
v. Since g is alternatively considered as a map of operads between Ω(S) and Ω(T ), the image in S
of Cv under g is a subtree in T , which we denote

g(Cv) ⊂ T.

Note that the trees g(Cv) are precisely the subtrees of T that correspond to expansion of vertices
into subtrees, going from S to T , or collapsed by gop : T → S in the opposite category Ωop. These
subtrees correspond to the part of g made out of inner face maps.

For a vertex v ∈ V (S), let Bgv be a bracketing of g(Cv) as defined in Definition 3.1. We define a
poset Lg whose objects are tuples (Bgv)v∈V (S) of bracketings of the trees g(Cv). The poset relation is
componentwise inclusion. Taking the realization of these posets, for each morphism g we associate
the space

Lg :=
∏

v∈V (S)

|B(g(Cv))|

where B(g(Cv)) is the poset of bracketings of the tree g(Cv) as defined in Definition 3.2. Note also
that |B(g(Cv))| = ∗ if g(Cv) admits only the trivial bracketing.

Example 4.1. Consider the morphism f ∈ HomΩ(R,S) of Figure 10. Since the image of each
corolla under f only admits a trivial bracketing,

Lf =
∣∣∣B ( )∣∣∣× ∣∣∣B ( )∣∣∣× ∣∣∣B ( )∣∣∣× ∣∣∣B ( )∣∣∣ = ∗.
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f=∂e−−−−−→

e

Figure 10. Example of map f in Ω and the subtrees f(Cv).

Example 4.2. Let s be the morphism in Figure 11(a). By Example 3.4, if s(Cv) has 3 vertices such
that no vertex is connected to more than two inner edges, then |B(s(Cv))| is the 3rd associahedron,
which is an interval. As in Example 3.5, when s(Cv) is a tree whose three internal edges meet at a
single vertex, the realization poset |B(s(Cv))| corresponds to a hexagon. Thus Ls is identified with
the hexagonal prism of Figure 11(b).

s−→

(a) Map s in Ω and the subtrees s(Cv). (b) Space Ls for the map s of Figure 11(a)

Figure 11. A map s in Ω and its corresponding space Ls.

The space of morphisms between any two objects in Ω̃0 is

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg.

It remains to define composition in Ω̃0. To do this, we first define a map of posets

(4.1) Lg × Lf Lg◦f

for any two morphisms f : R → S and g : S → T in Ω, then we take the realization of this
composition map to get a composition of spaces Lg. Let (Bgv)v∈V (S) ∈ Lg and (Bfw)w∈V (R) ∈ Lf be
two collections of bracketings. So for each v ∈ V (S), Bgv is a bracketing of g(Cv) ⊂ T and for each
w ∈ V (R), Bfw is a bracketing of the tree f(Cw) ⊂ S. To define the image of (4.1), we construct a
bracketing of the tree (g ◦ f)(Cw) from the bracketings of f and g.

Fix a vertex w ∈ V (R). For each v ∈ f(Cw) ⊂ S, there is the subtree g(Cv) ⊂ (g ◦ f)(Cw), as
well as a bracketing Bgv of g(Cv). Also, for each bracket in Si ∈ Bfw, the image g(Si) is a subtree of



AN INFINITY OPERAD OF NORMALIZED CACTI 17

(g ◦ f)(Cw). Therefore we have the following collections of subtrees in (g ◦ f)(Cw):

B̃gf(w) =
⋃

v∈f(Cw)

Bgv = {Sj : Sj ∈ Bgv and v ∈ f(Cw)}

B̃g◦fw = {g(Cv) : v ∈ f(Cw) and g(Cv) ( (g ◦ f)(Cw) is large}

B̃fw = {g(Si) : Si ∈ Bfw and g(Sy) ( (g ◦ f)(Cw) is large}.

All of these are collections of proper large subtrees of (g ◦ f)(Cw). We set the bracketing B̃w of
(g ◦ f)(Cw) to be the union

B̃w := B̃gf(w) ∪ B̃
g◦f
w ∪ B̃fw.

To see that B̃w is a bracketing of (g ◦ f)(Cw), it remains to verify that this collection is comprised

of nested subtrees. First, each Bgv ⊂ B̃gf(w) is a bracketing of g(Cv) ⊂ (g ◦ f)(Cw), so it is nested.

Moreover, the subtrees g(Cv) are all disjoint and each tree of B̃gf(w) is contained in a tree of B̃g◦fw ,

so the union B̃gf(w) ∪ B̃
g◦f
w is nested too. The B̃g◦fw ∪ B̃fw is also nested, since each bracket g(Cv) in

the first set is included in each g(Sy) of the second set whenever v ∈ Sy and otherwise is disjoint

from it. Hence B̃gf(w) ∪ B̃
f
w is also nested, and thus B̃w is nested.

Define the composition (Bfv )v∈V (S) ◦ (Bgw)w∈V (R) to be the collection

(B̃w)w∈V (R) ∈ Lg◦f .
Associativity of this composition is analogous to the associativity of the BO composition in Sec-
tion 3.2. In most cases, the composition is associative because vertex substitution is associative. In
a composition with a degeneracy, a vertex is removed and so a bracket may be discarded if it is no
longer large. Any discarded bracket is recreated in a subsequent composition if it should not have
been discarded in the total composition.

Furthermore, this composition definition respects componentwise inclusion and thus defines the
poset map (4.1). The realization of this poset map induces a map

(4.2) Lg × Lf Lg◦f .

This defines a composition on the morphism spaces of Ω̃0.

Example 4.3. Let f : R → S and g : S → T be the morphisms in Figure 12. Then R is a corolla
Cw = C9, and f(Cw) ⊂ S is the proper subtree of S whose vertices are v1, v2, v3. The images
g(Cv1

), g(Cv3
), g(Cv4

) ⊂ T are the corollas Cu1
, Cu5

, Cu6
respectively and g(Cv2

) is the subtree with
vertices u2, u3, u4. The only images of corollas that admit a non-trivial bracketing are f(Cw) and
g(Cv2

). If the bracketing of f(Cw) consists of the bracket B1 in Figure 13(a) and the bracketing of
g(Cv2) consists of B2 in Figure 13(b), then

B̃gf(w) = {B2}, B̃g◦fw = {g(Cv2)}, B̃fw = {g(B1)}.

The bracketing B̃w ∈ B((g ◦ f)(Cw)) is illustrated in Figure 13(c).
By Example 3.4, if Tn is a tree with n vertices such that no vertex is connected to more than two

inner edges, then |B(Tn)| is the nth associahedron. The 3rd associahedron is an interval. Thus,

Lf = |B(f(Cw))| =
∣∣∣B ( )∣∣∣ ∼= [0, 1]

Lg = |B (g(Cv1
))| ×

∣∣∣B ( )∣∣∣× |B (g(Cv3
))| ∼= [0, 1].

Again by Example 3.4 and since (g ◦ f)(Cw) is a tree on five vertices, Lg◦f = |B((g ◦ f)(Cw))| is the
5th associahedron, which is a three dimensional polytope called an enneahedron.

Definition 4.4. The category Ω̃0 has the same objects as Ω. Morphism spaces in Ω̃0 are

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg =
∐

g∈HomΩ(S,T )

∏
v∈V (S)

|B(g(Cv))|

with composition (4.2) as described above.
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g−−−−→f−−−−→w
v2

v3

v4

u1

u2

u3

u4

u5

u6
v1

Figure 12. Morphisms f and g in Ω.

v1

v2

v3

(a) Bracketing B1 of f(Cw).

u2

u3

u4

(b) Bracketing B2 of g(Cv2 ).

u1

u2

u3

u4

u5

(c) Bracketing B̃w of g ◦ f(Cw).

Figure 13. Example of a bracketing induced by f and g in Figure 12.

Example 4.5. Suppose Tn is a planar tree with (n + 1) leaves and n vertices, each of which is
connected to at most two inner edges. Let the inner edges of Tn be named e1, . . . , en−1. Mor-
phisms g ∈ HomΩ(Cn+1, Tn) are compositions of inner face maps ∂e1 , . . . , ∂en−1

but since the order
of the composition does not affect the total composition, there is only one such morphism g. Hence
HomΩ̃0

(Cn+1, Tn) = Lg = |B(Tn)|. Thus HomΩ̃0
(Cn+1, Tn) is the nth associahedron by Exam-

ple 3.4; the centre point of the polytope is defined by the empty bracket, which is the initial object
in the poset B(Tn).

Lemma 3.7 tells us that each bracketing space |B(g(Cv))| is contractible, which implies that each

Lg is contractible. Let p : Ω̃0 → Ω be the functor that is the identity on objects and projects each
morphism space Lg to g. By considering Ω as a discrete topological category, we have the following
proposition.

Proposition 4.6. The functor p : Ω̃0 → Ω induces a homotopy equivalence on morphism spaces. �

This proposition will allow us to associate an actual dendroidal space to any homotopy dendroidal
space in Section 4.3.

4.2. Homotopy dendroidal spaces. In Section 2.2, we defined a Segal condition for dendroidal
spaces X : Ωop → S using the Segal map

χ : X(T ) limSk1(T )op X.

We recall that the category Sk1(T ) has the vertices and edges of T as objects, with morphisms given
by edge inclusions ιe : η → Cv into the corollas of adjacent vertices. The Segal map χ is the unique
map to the limit induced by the edge and corolla inclusions

ιe : η → T and ιv : C|v| → T.
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Note that the spaces Lιe and Lιv in Ω̃op0 which lie above the morphisms ιe and ιv are always just a

single point, so the Segal map exists unchanged for functors X : Ω̃op0 → S. This allows us to make
the following definition:

Definition 4.7. A homotopy dendroidal space X is a diagram X : Ω̃op0 → S. A homotopy den-
droidal space is reduced if X(η) = ∗ and satisfies the strict Segal condition if the Segal map is an
isomorphism for each η 6= T ∈ Ω.

Recall from Section 2.4 that one-colored operads are identified with reduced dendroidal Segal
spaces via the dendroidal nerve

Nd : O-Alg→ SΩop .

The following theorem is a version of this nerve theorem for homotopy dendroidal spaces. We
construct a functor

Φ : BO−AlgS −→ SΩ̃op0

and show that a reduced homotopy dendroidal space X ∈ SΩ̃op0 is strictly Segal if, and only if,
X ∼= Φ(P) for some BO-algebra P.

Write (SΩ̃op0 )strict for the full subcategory of Ω̃0-diagrams whose objects are reduced homotopy
dendroidal spaces satisfying the strict Segal condition. Then we have the following result:

Theorem 4.8. There exists an isomorphism of categories

Φ : BO−AlgS (SΩ̃op0 )strict.
∼=

Proof. Given a BO–algebra P = {P(n)}n≥0 with structure maps

αP : BO(n;m1, . . . ,mk)× P(m1)× · · · × P(mk) −→ P(n)

we will define

Φ(P) = Φ(P, αP) : Ω̃op0 −→ S
as follows. We set Φ(P)(η) = ∗. On objects T 6= η of Ω̃0, we set

Φ(P)(T ) =
∏

w∈V (T )

P(|w|).

Given a morphism g : S → T in Ω, we need to define maps

Φ(P)(g) : Lg ×
∏

w∈V (T )

P(|w|) −→
∏

v∈V (S)

P(|v|).

We proceed one vertex v at a time. As Lg =
∏
v∈V (S) |B(g(Cv))|, at each v ∈ V (S) we have

projection maps

πv : Lg ×
∏

w∈V (T )

P(|w|) −→ |B(g(Cv))| ×
∏

w∈V (g(Cv))

P(|w|).

An application of the structure map αP defines a map

(∗) αv : |B(g(Cv))| ×
∏

w∈V (g(Cv))

P(|w|) −→ P(|v|).

Indeed, an element of |B(g(Cv))| is a weighted bracketing (B, t) of the subtree g(Cv) ⊂ T . Because T
is a planar tree, g(Cv) inherits a planar structure. We consider g(Cv) as an element of O by picking
an ordering σ of its vertices {w1, . . . , wk}, and labeling its leaves via the map τ ordering them ac-
cording to its planar structure. This way ((g(Cv), σ, τ), B, t) is an element of BO(|v|; |w1|, . . . , |wk|).
To define the map (∗), we first order the factors P(|w|) for w ∈ V (g(Cv)), in accordance with our
chosen σ, and then apply αP noting that our choice of ordering does not affect the result by the
equivariance of αP . Finally we act on the resulting element of P(|v|) by the permutation induced
by g that identifies the inputs of v with the leaves of g(Cv), comparing the labeling τ from the
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planar structure of T to the planar ordering of in(v) (which comes from the planar structure of S).
We now set

Φ(P)(g) := (αv ◦ πv)v∈V (S).

The fact that Φ(P) commutes with composition follows from the fact that composition in Ω̃0

is defined exactly as the operadic composition of BO by taking the union of the brackets from
the first morphism which remain large after applying the second morphisms, the brackets from the
second morphism, and new “middle brackets”, the images of the middle corollas, if they are large.

It follows then that Φ(P) : Ω̃0 → S is a functor. Since Φ(P)(η) = ∗, the Segal map is the map

Φ(P)(T ) −→
∏

v∈V (T )

Φ(P)(Cv)

induced by the inclusions of the corollas. It is an isomorphism by definition of Φ(P).

The data required in the definition of the homotopy dendroidal space Φ(P) is the underlying
symmetric sequence P = {P(m)}, the BO-algebra structure maps αP and the projection maps πv,
all of which are natural under maps of BO-algebras. Thus, the assignment P 7→ Φ(P) defines a
functor

Φ : BO−AlgS −→ (SΩ̃op0 )strict.

It remains to show that the functor Φ is an isomorphism of categories. Given two BO-algebras
P and Q with Φ(P) = Φ(Q), the underlying symmetric sequences {P(n)}n≥0 and {Q(n)}n≥0 are
necessarily equal, being the value at the corollas Cn and the corolla isomorphisms HomΩ̃0

(Cn, Cn) ∼=
HomΩ(Cn, Cn) ∼= Σn. Moreover, the structure maps αP and αQ likewise must agree as they agree

with the evaluation of Φ(P) = Φ(Q) at corresponding morphisms in Ω̃op0 . It follows that Φ is
injective.

On the other hand, given any X ∈ (SΩ̃op0 )strict, we can construct a BO-algebra PX by setting
PX(n) = X(Cn) with a symmetric group action induced by the image under X of the isomorphisms

of Cn in Ω̃0. The BO-algebra structure maps of PX are defined using the above identification of

the spaces BO(n;m1, . . . ,mk) with morphism spaces in Ω̃0. The fact that X is a functor will then
give that PX is a BO–algebra. Thus the functor Φ is surjective. �

4.3. Rectifying homotopy dendroidal spaces. We have just seen that BO-algebras correspond
to homotopy dendroidal spaces satisfying the strict Segal condition. In this section we will show
how to produce, from a BO-algebra, an actual dendroidal space satisfying a weak version of the
Segal condition.

A commutative diagram in a topological category S is a functor from a discrete category K to
S. A homotopy commutative diagram can be similarly described as a functor from a topological

category K̃ to S, with the homotopies encoded as paths in the spaces of morphisms. In this language,

a homotopy commutative diagram X : K̃ → S can be rectified, or strictified, to a functor X ′ : K → S
precisely when there is an equivalence p : K̃ → K. We briefly recall this rectification of diagrams,
which was used by Segal in [37], and treated in great generality by Dwyer and Kan [16]; see also [40,

Sec 2] for a detailed account of what we will use here. Our examples will be K = Ω with K̃ = Ω̃0.

Let p : K̃ → K be a functor between categories enriched over topological spaces. There is an
induced functor

p∗ : SK −→ SK̃

defined by precomposition with p. The homotopy left Kan extension defines also a functor

p! : SK̃ −→ SK

that can be explicitly given as follows: given a diagram Y ∈ SK̃, its evaluation at an object d of K
is the realization of a simplicial space with space of k–simplices

(p!Y (d))k =
∐

c0,...,ck∈ob(K̃)

Y (c0)×HomK̃(c0, c1)× · · · ×HomK̃(ck−1, ck)×HomK(ck, d).
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Lemma 4.9. [40, Proposition 2.1] Let p : K̃ → K be a functor inducing a homotopy equivalence

of morphism spaces, and let Y : K̃ → S be a diagram, with p!Y : K → S its rectification as defined
above. Then there exists a zig-zag of natural transformations p∗p!Y ← p∗p!Y → Y , which induces
a homotopy equivalence on objects: p∗p!Y (d) ' p∗p!Y (d) ' Y (d).

In the statement, p∗p!Y is an explicit functor from K̃ to S associated to Y given by a two-sided
bar construction (details in the proof of [40, Proposition 2.1]).

Proposition 4.6 states that the functor p : Ω̃0 → Ω induces a homotopy equivalence of morphism
spaces. Below, we apply Lemma 4.9 to describe weak Segal dendroidal spaces that arise as the

rectification of a homotopy dendroidal Segal space Y ∈ SΩ̃op0 in the following sense:

Consider the functors

SΩ̃op0 SΩop .
p!

p∗

For any small category K, the category of diagrams SKop admits a projective model structure in
which weak equivalences and fibrations are defined entrywise [23, 11.6.1]. In particular, when S is
the category of topological spaces, every object is fibrant in this model structure. An application
of [26, Proposition A.3.3.7] implies that p! and p∗ are the left and right Quillen functor of a Quillen
equivalence.

Proposition 4.10. Let S be the category of topological spaces, and let Y ∈ SΩ̃op0 be a homotopy
dendroidal space. Then the rectification p!Y ∈ SΩop is a dendroidal space such that p!Y (η) ' ∗, and
such that the weak Segal map

χ̃ : p!Y (T )
'−→ holimSk1(T )op p!Y (Cv)

is a homotopy equivalence for each η 6= T ∈ Ω if, and only if, the same two properties hold for the
homotopy dendroidal space Y .

Proof. Note first that, because p is the identity on objects, we have p∗X(T ) = X(T ) for any

X : Ωop → S and any T ∈ Obj(Ω) ≡ Obj(Ω̃0). It follows that p!Y (η) ' ∗ if and only if Y (η) ' ∗ as
p!Y (η) = p∗p!Y (η) ' Y (η) ' ∗.

We are left to show that the weak Segal map χ̃ is a weak equivalence for every T 6= η for

p!Y : Ωop → S if and only if it is the case for the original functor Y : Ω̃op0 → S. Recall that the

Segal map χ and its weak version χ̃ for both Ωop–spaces and Ω̃op0 –spaces are induced by corolla and

edge inclusions ιv and ιe in Ω̃0 and Ω, respectively. As p takes each map ιv and ιe in Ω̃0, to the
corresponding map in Ω, and p is the identity on objects, for any X : Ωop → S, we have

X(T )
χ̃ // holimSk1(T )op X(Cv)

p∗X(T )
χ̃ // holimSk1(T )op p

∗X(Cv)

in which the two horizontal maps describe the exact same map in S.
The natural equivalences of functors p∗p!Y ← p∗p!Y → Y of Lemma 4.9 give us the vertical

homotopy equivalences in the following commuting diagram in S

p∗p!Y (T ) holimSk1(T )op p
∗p!Y (Cv)

p∗p!Y (T ) holimSk1(T )op p∗p!Y (Cv)

Y (T ) holimSk1(T )op Y (Cv).

χ̃

χ̃

'

' '

'

χ̃



22 L. BASUALDO BONATTO, S. CHETTIH, A. LINTON, S. RAYNOR, M. ROBERTSON, AND N. WAHL

which gives the result using the previous remark in the case X = p!Y . �

Remark 4.11. We used in the proof of Proposition 4.10 that every topological Ω̃0 diagram is
projectively fibrant to obtain that the homotopy limits preserve homotopy equivalences.

As the dendroidal category is a generalized Reedy category [2, Example 1.6], there is a Reedy
model structure on the category of reduced dendroidal spaces. We do not currently have an enriched

generalized Reedy model structure on Ω̃0-spaces. An advantage of the Reedy model structure is
that homotopy limits of fibrant objects are weakly equivalent to the limit. One expects that, using
such Reedy model structures, one could prove a version of Proposition 4.10 with the actual Segal
map χ replacing the weak Segal map χ̃.

5. Normalized Cacti as an infinity operad

The first goal of this section is to define an operad MS+ and show that, despite not being an
operad itself, normalized cacti and their composition can be described as elements and compositions
inside MS+. In Section 5.2, we will use MS+ to show that normalized cacti and the normalized
composition extends to define a BO-algebra structure. Using the results of Sections 3 and 4, this
implies that we have an explicit construction of an ∞-operad with underlying sequence the spaces
Cact1(n).

A cactus is a configuration of circles of various lengths attached to each other in a treelike fashion.
In the original definition by Voronov [39, Section 2.7], there is a global basepoint associated to the
“outside circle” of the cactus, as well as a basepoint for each circle (or lobe). A spineless cactus is
a variant introduced by Kaufmann [24, Section 2.3], where the basepoint of each lobe is its closest
point to the global basepoint along the outside circle. See Figure 14 for an example. The space
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Figure 14. Cactus with 8 lobes, its outside circle indicated by the dotted line.

of all spineless cacti with k lobes is denoted Cact(k). The symmetric group acts on this space
by permuting the labels of the lobes. The symmetric sequence Cact = {Cact(k)}k≥0 is given a
composition

◦i : Cact(k)× Cact(j)→ Cact(k + j − 1)

that is defined by inserting the second cactus into the ith lobe of the first cactus and aligning its
global basepoint with the basepoint of the ith lobe. The insertion is done by rescaling the second
cactus so that its total length is equal to the length of the ith lobe of the first cactus, then identifying
the outside circle of the second cactus with the ith lobe of the first cactus. This composition makes
Cact into an operad, which is equivalent to the little 2-discs operad [24, Section 3.2.1]. A rigorous
definition of this composition requires close attention to subtleties and we refer to [24, Section 2]
for precise definitions.
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Figure 15. A composition of normalized cacti.

The space of normalized cacti Cact1(k) ⊂ Cact(k) is the subspace of spineless cacti whose lobes
all have length equal to 1 ([24, Definition 2.3.1]). They form a symmetric sequence Cact1 =
{Cact1(k)}k≥0. Composition of normalized cacti

(5.1) ◦i : Cact1(k)× Cact1(j)→ Cact1(k + j − 1),

is defined by reparameterizing the ith lobe of a cactus x ∈ Cact1(k) to have length j, then identifying
this lobe with the outer circle of the second cactus y ∈ Cact1(j) and aligning their basepoints. In
contrast to Cact, the ith lobe of the first cactus is scaled instead of scaling the second cactus to
the length of the ith lobe. See Figure 15 for an example. This composition is not associative [24,
Remark 2.3.19], as illustrated in Figure 16. Thus Cact1 is not an operad.
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Figure 16. Non-associativity in Cact1

Remark 5.1 (Composition in the graph cobordism category). This composition of normalized cacti
is highly relevant to the graph model of the cobordism category of Riemann surfaces mentioned in
the introduction of the paper. To model the gluing of cobordisms, we use graphs to represent
surfaces with potentially many incoming and outgoing boundary components. Normalized cacti
are a simple case of this model, representing surfaces of genus zero with potentially many inputs
but always just one output. Two surfaces are glued by attaching the incoming boundaries of the
first surface to the outgoing boundaries of the second. According to [19] (see also [17, Theorem
A]), we may assume that all incoming boundaries of a surface are disjoint embedded circles in the
corresponding graph (like the lobes of the cactus, if they where pulled apart a little bit). Since
these boundary circles are disjoint in the graph, they can be scaled independently to each match
the length of an outgoing boundary in the graph of the second surface, just like scaling the ith lobe
of the first cactus in Cact1 composition. There is no obvious way to define a “Cact-like” composition
for such more general graphs, because the outgoing circles of the second surface cannot be assumed
to be disjoint, and hence cannot be scaled independently to the appropriate length. (See [17, Section
3.3] for more details about this gluing of fat graphs.)
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5.1. An operad MS+ that contains Cact1. In their proof of the Deligne conjecture, McClure
and Smith [29, 30] introduced an operad MS equivalent the little 2-discs operad.1 Later, Salvatore
[36, Section 4] used similar methods to show directly that the operad MS is equivalent to the non-
normalized cactus operad Cact. Here we will define a variant of MS called MS+, and, following
[36], start by showing that it is an operad by proving that it embeds in CoEnd(S1). We then show
that normalized cacti are a subspace of the underlying symmetric sequence of MS+ and that their
composition can be written in terms of compositions in MS+.

The space of operations MS+(k) is built from a space F(k), which we will show is homeomorphic
to Cact1(k). In fact, we can think of an element of F(k) as the outer circle of a cactus.

Definition 5.2. [36, Definition 4.1] Let S1 = [0, 1]/0 ∼ 1 be the circle of circumference equal
to 1. Define F(k) as the space of partitions x = (I1(x), . . . , Ik(x)) of S1 into closed 1-manifolds
Ij(x) ⊂ S1, each of which have total length 1

k , with pairwise disjoint interiors, and such that

(∗) there does not exist a cyclically ordered 4-tuple (z1; z2; z3; z4) ∈ S1 with z1, z3 ∈ I̊j(x) and

z2, z4 ∈ I̊i(x), for j 6= i.

For an example, see Figure 17(a). The topology of F(k) is induced by the metric measuring the

size of the overlap between partitions: for x, y ∈ F(k), d(x, y) = 1−
∑k
j=1 `(Ij(x)∩ Ij(y)) for ` the

length function on submanifolds of S1.
The symmetric group Σk acts on F(k) by reindexing the labels of the 1-manifolds.

I1(x)

1
6

7
18

13
18

15
18

I2(x)

I3(x)

(a) x ∈ F(3). (b) Maps cix.

Figure 17. Element of x ∈ F(3) and associated projections

Definition 5.3. Given an element x ∈ F(k), we associate to each Ij(x) a projection map cjx :
S1 → S1 that takes the quotient of S1 under the identification of all the points in the same path

component of S1 \ I̊j and then scales this circle by a factor of k. See Figure 17(b) for an example.
The cactus map cx : S1 → (S1)k is the collection of maps cx := (c1x, . . . , c

k
x). Then there is a map

c : F(k) Map(S1, (S1)k)

x cx = (c1x, . . . , c
k
x) : S1 → (S1)k.

For any x ∈ F(k), we also use x to denote the configuration of circles in the image of the cactus
map cx : S1 → (S1)k. Condition (∗) in Definition 5.2 guarantees that this configuration is treelike,
as it forces the submanifolds Ij(x) to be nested. The global basepoint of x is the image of the
basepoint of S1 and a planar structure is induced by the orientation of the source S1 (see [36,
Definition 4.2]). Since each part of a partition x ∈ F(k) has equal length, x is a normalized cactus
as shown in Figure 18. This is the sketch of the proof for the next lemma.

Lemma 5.4. [36, Section 4] For each k ≥ 1, the space F(k) is homeomorphic to Cact1(k).

1The operad MS is denoted C′ in [29, Section 5].
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Recall the coendomorphism operad CoEnd(S1) from Example 2.2, whose underlying symmetric
sequence is a collection of CoEnd(k)(S1) := Map(S1, (S1)k). We use the map

c : Cact1(k) ∼= F(k) ↪→ Map(S1, (S1)k) = CoEnd(S1)(k)

to define an embedding of symmetric sequences.

Lemma 5.5. The map c : F(k)→Map(S1, (S1)k) is a topological embedding.

Proof. We first check injectivity. Given a map cx = (c1x, . . . , c
k
x) in the image of c, we can completely

determine x ∈ F(k). We know that each cjx is a “step-map” with linear of slope k over its non-
constant parts, by the definition of c. (See Figure 17(b).) Then Ij(x) is precisely the subset of points
of S1 where the derivative (cjx)′ equals k. Continuity of c follows from the fact that the topology in
the mapping space can be defined using the convergence metric, using likewise the metric on S1.

�

This embedding of symmetric sequences does not extend to an embedding of operads. As already
mentioned, Cact1 is not an operad and one can check that the image of c is not a suboperad of
CoEnd(S1). Indeed, if we compose two elements in CoEnd(S1) that came from elements of F , their
composition will not be in the image of any F(k) because all elements in the image of F(k) are
piecewise linear graphs of slope 0 or k, and this property is not preserved by the composition in
CoEnd(S1).

I1(x)

1
6

7
18

13
18

15
18

I2(x)

I3(x)

1
2

1
2

2
3 1

3

1

1

2

3

Figure 18. An element x of F(3) and the corresponding normalized cactus cx.

Here we define the symmetric sequence MS+ = {MS+(k)}k≥0, which is built from F(k) and
a collection Mon+(I, ∂I) of scaling maps on the interval I. It has the important property that
Cact1(k) ⊂MS+(k) for each k ≥ 0.

Definition 5.6 (MS+ as a symmetric sequence). For each k ≥ 0, we define the space MS+(k) as

MS+(0) = ∗
MS+(k) = F(k)×Mon+(I, ∂I)

where Mon+(I, ∂I) is the space of strictly monotone self-maps of I that restrict to the identity on
∂I. We consider Mon+(I, ∂I) as a subspace of the space of self-maps of S1 = I/∂I. For each k,
there is an action of the symmetric group Σk on MS+(k) by the reindexing of the labels of the
1-manifolds in F(k).

Remark 5.7. The operad MS that appears in [29, 30, 36] has an underlying symmetric sequence
obtained by replacing Mon+(I, ∂I) by the larger space Mon(I, ∂I) of weakly monotone maps.
The inclusion MS+ ↪→ MS is a homotopy equivalence as both Mon(I, ∂I) and Mon+(I, ∂I) are
contractible (in fact, they are both convex).

In order to show that MS+ is an operad, we start by showing that each space of operations
MS+(k) embeds in CoEnd(S1)(k). We also check that the operad composition of CoEnd(S1)
preserves the image of MS+, and hence is a suitable composition for MS+, thus making MS+ a
suboperad of CoEnd(S1).
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Proposition 5.8. There is a topological embedding φ : MS+(k) → CoEnd(S1)(k) that sends
(x, f) ∈MS+(k) to the composite

S1 f−→ S1 cx−→ (S1)k

where cx is the cactus map as in Definition 5.3.

A version of Proposition 5.8 is stated for the operad MS in [36, Section 4]. As we rely heavily
on this result we give more complete details here.

Proof. The fact that φ is continuous follows from Lemma 5.5, so we are left to check that φ is
injective. Let x ∈ F(k). Recall that the map cx = (c1x, . . . , c

k
x) : S1 → (S1)k is a collection of

“step-maps” of linear of slope k over its non-constant parts. Each map cjx : S1 → S1 identifies

points in the same path component of S1 \ I̊j(x) and linearly takes Ij(x) (of length 1/k) to a circle
of circumference 1. So, these maps satisfy that

1

k

k∑
j=1

cjx = IdS1 .

In particular, this means that if cx ◦ f = cy ◦ g, then

f = (
1

k

k∑
j=1

cjx) ◦ f =
1

k

k∑
j=1

(cjx ◦ f) =
1

k

k∑
j=1

(cjx ◦ g) = (
1

k

k∑
j=1

cjy) ◦ g = g.

Moreover, as f, g are strictly monotone and hence invertible, for each j = 1, . . . , k,

cjx = (cjx ◦ f) ◦ f−1 = (cjy ◦ g) ◦ f−1 = (cjy ◦ g) ◦ g−1 = cjy.

This shows that cx = cy and therefore the map is injective. �

Proposition 5.8 shows that MS+ is a symmetric subsequence of CoEnd and this next lemma
shows that the operad structure maps of CoEnd preserve this structure.

Lemma 5.9. The operad structure maps of CoEnd preserve the symmetric subsequence MS+.

Proof. It suffices to consider the composition operations ◦i in CoEnd as defined in Example 2.2.
Given (x, f) and (y, g) in MS+, we need to check that the composition

(5.2) S1 f−→ S1 cx−→ (S1)k
1×g×1−−−−→ (S1)k

1×cy×1−−−−−→ (S1)j+k−1

is in the image of MS+, where 1× g × 1 denotes the map where g acts only on the ith circle. For
this, we will show two things:

(i) (1× g × 1) ◦ cx = cx̃ ◦ g̃, for some g̃ ∈Mon+(I, ∂I) and x̃ ∈ F(k),
(ii) (1× cy × 1) ◦ cx = cz ◦ hx,y for some hx,y ∈Mon+(I, ∂I) and z ∈ F(j + k − 1).

For statement (i), the map (1× g × 1) acts only on the ith circle, so in the composition with cx it
only affects points in Ii(x). Recall that we identify S1 with I/∂I. Suppose Ii(x) = J1t· · ·tJr with
each Js a subinterval of [0, 1] and Ii(x) of total length 1

k . We obtain x̃ ∈ F(k) from x by replacing

each subinterval Js by an interval J̃s of length 1
k `(g(cix(Js)))) and shifting each path component of

[0, 1] \ I̊i(x) accordingly. Then Ii(x̃) = J̃1 t · · · t J̃r. This makes sense as, by construction, the total
length of Ii(x̃) is again 1

k . The map g̃ is defined as the canonical identification of x with x̃ that
maps Ii(x) to Ii(x̃) for all i ∈ {1, . . . , k}. See Figure 19 for an example.

For statement (ii), we consider a composition (1× cy × 1) ◦ cx : S1 → (S1)j+k−1 with cy on the
ith position. Such a composition maps the rth partition Ir(x), for r 6= i, to the rth (if r < i) or
(r + k − 1)st (if r > i) component in the target by a slope k map, while Ii(x) is mapped by slope
jk maps to the remaining components. Let hx,y : S1 → S1 be the rescaling map that scales each

Ir(x) by a factor k
j+k−1 for r 6= i, and Ii(x) by a factor jk

j+k−1 . Then the image under hx,y of each

Ir(x) will be of size 1
j+k−1 for r 6= i, while Ii(x) will have image of total size j

j+k−1 . Note that

this gives a well-defined map in Mon+(I, ∂I) as the sum of the length of the images hx,y(Ir(x)) is

(k − 1) 1
j+k−1 + j

j+k−1 = 1. Subdividing the image under hx,y of Ii(x) into j parts as prescribed
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0 1

J1 J2 cix

g̃

x

0 1

J̃1 J̃2 cix̃
x̃

0 1

cix(J1) cix(J2)

g

0 1

g(cix(J1)) g(cix(J2))

Figure 19. An example of the commutative diagram g ◦ cix = cix̃ ◦ g̃

by y, together with the images of the other Ir(x)’s, then defines z ∈ F(j + k − 1). The relation
(1× cy × 1) ◦ cx = cz ◦ hx,y holds by construction.

By putting (i) and (ii) together, the composition in (5.2) is given by (hx̃,y ◦ g̃ ◦ f, z) ∈MS+. �

Therefore we have shown that MS+ is a suboperad of CoEnd(S1) via the embedding φ in
Proposition 5.8.

Definition 5.10 (MS+ as an operad). The symmetric sequence MS+ = {MS+(k)}k∈N becomes
an operad with composition

(5.3) (x, f) •i (y, g) := φ−1(φ(x, f) ◦i φ(y, g))

where ◦i is the composition in CoEnd(S1) defined in (5.2), and the pre-image exists as a consequence
of Lemma 5.9.

We will often use scaling maps in Mon+(I, ∂I) to encode the scaling of lobes in the composition
of normalized cacti. Given a partition x = (I1(x), . . . , Ik(x)) ∈ F(k) ∼= Cact1(k), and natural
numbers m1, . . . ,mk ≥ 0, we let

(5.4) g = g(x;m1, . . . ,mk) : S1 −→ S1

be the element of Mon+(I, ∂I) that scales Ij(x) by the factor
kmj

m1+···+mk , 1 ≤ j ≤ k. Each Ij(x)

has total length 1
k , so the image of Ij(x) will have length

mj
m1+···+mk for each 1 ≤ j ≤ k. Note that

g(x; 1, . . . , 1) = id is just the identity map on S1.

I1(x)

1
6

7
18

13
18

15
18

I2(x)

I3(x)

g(x;2,1,1)−−−−−−→

`(I1(x))= 1
3

`(I3(x))= 1
3

`(I2(x))= 1
3 `(g(I1(x)))= 2

4

`(g(I3(x)))= 1
4

`(g(I2(x)))= 1
4

g(I1(x))

1
4

5
12

2
3

3
4

g(I2(x))

g(I3(x))

Figure 20. Map g(x; 2, 1, 1), for x from Figure 18.

We will now show that the ◦i-compositions of normalized cacti from (5.1),

◦i : Cact1(k)× Cact1(j) Cact1(k + j − 1),
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and, more generally, the Cact1–composition maps

γCact1 : Cact1(k)× Cact1(m1)× · · · × Cact1(mk) −→ Cact1(Σki=1mi),

are restrictions of the corresponding compositions of appropriately chosen elements of MS+.
For a collection of cacti x ∈ Cact1(k) and yj ∈ Cact1(mj), 1 ≤ j ≤ k, the quasi-operad compo-

sition γCact1(x; y1, . . . , yk) scales each lobe of x so that the ith lobe now has length mi, and then
inserts (without any further scaling) each yi in place of the ith scaled lobe.

Under the homeomorphism Cact1(k) ∼= F(k) in Lemma 5.4, a normalized cactus x ∈ Cact1(k)
precisely corresponds to a partition x ∈ F(k) of [0, 1] into k submanifolds Ij(x) of equal lengths 1

k ,
satisfying the conditions of Definition 5.2. Since the ith lobe of x corresponds to the submanifold
Ii(x), there is a scaling by 1

k in the identification Cact1(k) to take a lobe of length 1 to Ii(x). In
the next lemma we will use x ∈ F(k) and yj ∈ F(mj) for 1 ≤ j ≤ k to represent a sequence of cacti

in Cact1(k) and Cact1(mj) respectively. We will still denote the composition by ◦i or γCact1 .

Lemma 5.11. Let γMS+ and γCact1 denote the (quasi-)operad compositions in MS+ and Cact1,
respectively. Then for x ∈ F(k) and yj ∈ F(mj), with 1 ≤ j ≤ k, we have

γMS+((x, g−1(x;m1, . . . ,mk)); (y1, id), . . . , (yk, id)) = (γCact1(x; y1, . . . , yk), id)

in MS+(
∑
mj). In particular,

(x, g−1(x; 1, . . . ,mi, . . . , 1)) •i (yi, id) = (x ◦i yi, id)

where •i denotes the composition (5.3) of MS+ and ◦i represents the composition (5.1) of Cact1.

Proof. Let F(m1,...,mk)(k) denote the scaled version of F(k) where the ith partition, Ii, now has

length mi instead of 1
k . In particular, we have that F(k) = F( 1

k ,...,
1
k )(k) and Cact1(k) = F(1,...,1)(k).

Thus the homeomorphism Cact1(k) ∼= F(k) implies that the composition γCact1 on Cact1 can be
interpreted as a map in F , written as

F(k)× (F(m1)× · · · × F(mk))

S−−→ F(m1,...,mk)(k)×
(
F(1,...,1)(m1)× · · · × F(1,...,1)(mk)

)
γ−−→ F(1,...,1)(

∑
i

mi)

N−−→ F 1∑
mi
,..., 1∑

mi

(
∑
i

mi) = F(
∑
i

mi)

where S and N are scaling and normalising maps and the map labelled γ is the insertion map.
Our task is to write the composition γCact1 in terms of the operad MS+. To do this, we will use

scaling maps inside Mon+(I, ∂I). More precisely, define a map

F(k)× (F(m1)× · · · × F(mk))
G−−−−→MS+(k)× (MS+(m1)× · · · ×MS+(mk))

that takes (x; y1, . . . , yk) to ((x, g−1); (y1, id), . . . , (yk, id)) where g = g(x;m1, . . . ,mk) ∈Mon+(I, ∂I)
is the map in equation (5.4). The statement we want to prove is that (γCact1 , id) can be written as
the composition

F(k)× (F(m1)× · · · × F(mk))
G−−−−→MS+(k)× (MS+(m1)× · · · ×MS+(mk))

γMS+−−−−→MS+(
∑
i

mi).

In particular, we claim that the resulting element of MS+(
∑
imi) is in the image of Cact1, that is,

of the form (z, id).
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To prove this, we start by expressing G as a composition G′ ◦ S, where S is the scaling map in
the description γCact1 = N ◦ γ ◦ S given above and

G′ : F(m1,...,mk)(k)× (F(1,...,1)(m1)× · · · × F(1,...,1)(mk))

−→MS+(k)× (MS+(m1)× · · · ×MS+(mk))

is the map that takes a tuple (x; y1, . . . , yk) to the tuple ((N(x), g−1); (N(y1), id), . . . , (N(yk), id)),
with N the normalization also as above. In order to compare γCact1 = N ◦ γ ◦S with γMS+ ◦G′ ◦S,
we have to show that the diagram

F(m1,...,mk)(k)× (F(1,...,1)(m1)× · · · × F(1,...,1)(mk))

G′

��

γ // F(1,...,1)(
∑
imi)

(N,id)

��
MS+(k)× (MS+(m1)× · · · ×MS+(mk))

γMS+ // MS+(
∑
imi)

commutes, where the right vertical map takes z to (N(z), id). To see this, let (x; y1, . . . , yk) be an
element in the top left corner of the square. Its image γMS+ ◦ G′(x; y1, . . . , yk) along the bottom
composition is the element of MS+(m1 + · · ·+mk) given by the following composition:

S1 g−1

−−→ S1 cx−→ (S1)k
cy1×···×cyk−−−−−−−−→ (S1)m1+···+mk

since we consider MS+(m1 + · · · + mk) as a subspace of CoEnd(m1 + · · · + mk) and use the
composition in (5.3). The jth factor S1 in the above (S1)k is subdivided into submanifolds Is(yj)
according to cyj .

Their inverse image g ◦ (cx)−1
j (Is(yj)) in the source S1 of the composition is thus taken to the

(m1 + · · ·+mj−1 + s)th factor S1 in (S1)m1+···+mk , being first scaled by a factor
∑
mi

kmj
(using g−1),

then by a factor k (via the jth component of cx) and finally by a factor mj (via the sth component

of cyj ). So in total the composition takes g ◦ (cx)−1
j (Is(yj)) to S1 = I/∂I linearly by a factor

∑
mi,

and is constant on the connected components of the complement of g ◦ (cx)−1
j (Is(yj)). In particular,

g ◦ (cx)−1
j (Is(yj)) has length 1∑

mi
, which is independent of j and s. Thus we see that the resulting

element does indeed live in the image of Cact1. As the scaling is always independent of s and j, the
proportion of each g ◦ (cx)−1

j (Is(yj)) inside the source S1 is always as dictated by cyj , with each

g−1(Ij(x)) having total length
mj∑
imi

. Hence the composition is the same as following the other side

of the square, which inserts Is(yj) inside Ij(x), scaling each Ij(x) to length mj , then scales it by
1∑
mi

to be inside MS+.

�

Therefore up to scaling in accordance with the homeomorphism Cact1 ∼= F in Lemma 5.4, we
have shown that both Cact1 and its composition are contained within the operad MS+, but not as
a suboperad.

5.2. Cact1 is a BO–algebra. Here we will construct an action of BO on normalized cacti using
the fact that Cact1 ⊂ MS+, and that its composition can also be described in terms of the com-
position in MS+. In Theorem 5.12, we show that the quasi-operad structure on normalized cacti
Cact1 = {Cact1(k)}k≥0 is part of a BO-algebra structure. In Corollary 5.13, we conclude that Cact1

determines a dendroidal Segal space X ∈ SΩop with X(Cv) = Cact1(|v|).

Recall from Section 3.3 that a BO–algebra is a symmetric sequence with ◦i–operations that are
homotopy associative up to all higher homotopies. Elements from BO are (T, σ, τ, B, t) where T is
a planar tree equipped with bijections σ : |V (T )| → V (T ) and τ : |L(T )| → L(T ), and (B, t) is a
weighted bracketing of T .

Let

(5.5) R : MS+ −→ F
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denote the projection map that forgets the Mon+(I, ∂I) component, R(x, f) = x. This is a map
of symmetric sequences. If we think of elements of MS+ as cacti, the map R has the effect of
renormalizing, that is, rescaling the lobes so that they all have the same length. Since MS+ is an
operad, it is an O-algebra. The O-action

λMS+ : O(k;m1, . . . ,mk)×MS+(m1)× . . .×MS+(mk) −→MS+(
∑
i

mi)

takes a sequence of elements

((T, σ, τ), (x1, f1), . . . , (xk, fk)) ∈ O(k;m1, . . . ,mk)×MS+(m1)× . . .×MS+(mk)

to the composition of the elements (x1, f1), . . . , (xk, fk) according to γMS+ , in the order prescribed
by the labeled tree (T, σ), acting by the permutation τ on the resulting element of MS+(

∑
imi).

This composition can be depicted by labeling the ith vertex of (T, σ, τ) by (xi, fi) ∈ MS+(mi).
This action is compatible with the composition in O because MS+ is an operad. We will use
this existing O-algebra structure to define the BO-algebra structure of Cact1 by representing the
Cact1-composition by R ◦ λMS+ .

Theorem 5.12. The Cact1-composition (5.1) is part of a BO–algebra structure.

Proof. In order to construct a BO–algebra structure on the sequence {Cact1(n)}n≥0, we want to
define a map

BO(k;m1, . . . ,mk)× Cact1(m1)× . . .× Cact1(mk) −→ Cact1(
∑
i

mi)

that restricts to the Σn–action on Cact1(n), which permutes the labels on the lobes, and its al-
ready defined ◦i–compositions. Using the homeomorphism Cact1 ∼= F from Lemma 5.4, we will
equivalently construct a map

λ : BO(k;m1, . . . ,mk)×F(m1)× . . .×F(mk) −→ F(
∑
i

mi).

Firstly, the Σn-action on the n–space of a BO–algebra is encoded by the labeled corollas

(Cn, 1, τ, ∅, ∅) ∈ BO(n;n) ∼= O(n;n) ∼= Σn,

where τ labels the leaves of the corollas Cn, which are thought of as elements of the symmetric group
Σn, and the identity corresponds to the planar ordering. This fixes the action of such elements of
BO as we have already fixed the Σn–action on Cact1(n).

The Cact1 ◦i-composition is encoded in BO by the trees with exactly two vertices, one attached
to the ith incoming edge of the other. These trees admit no non-trivial bracketings so such elements
of BO have the form

(T, σ, τ, ∅, ∅) ∈ BO(m+ n− 1;m,n)

where σ labels the two vertices of T and τ labels its n+m− 1 leaves. The compatibility with the
pre-chosen operadic composition of Cact1 dictates the action of such elements of BO: (T, σ, τ, ∅, ∅)
acts on x1 ∈ Cact1(m) and x2 ∈ Cact1(n) by taking their ◦i-composition, as dictated by the tree,
and then acting by τ on the lobes of the resulting element of Cact1(m+n−1). Figure 21 illustrates
an example of this action.

1

2 3

4

;

1

2

7−→
1

4 5

325
3

4 2

1

,

Figure 21. Example of the BO-action on Cact1.
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By Lemma 5.11, this Cact1-composition can be defined in terms of the MS+ composition:

R ◦ λMS+

(
(T, σ, τ); (x1, g1), (x2, g2)

)
where R is the projection map (5.5), and g1 = g(x1, 1, . . . , ki, . . . , 1) and g2 = g(x2, 1, . . . , lj , . . . , 1)
are the rescaling maps of (5.4), with ki = n and lj = 1 if first vertex is the bottom vertex and
the second is attached to its ith input, or ki = 1 and lj = m if the second vertex is the bot-
tom vertex with the first attached to its jth input. Let (yT , fT ) ∈ MS+ denote the element
λMS+

(
(T, σ, τ); (x1, g1), (x2, g2)

)
.

We will now extend this definition of the BO–action of trees with at most two vertices to an action
of the whole operad. We start by defining an explicit expression for the action of bracketings of
trees (T, σ, τ, B, 1) with brackets of weight 1, and afterwards extend this definition to the remaining
elements of BO, whose brackets have weight strictly between 0 and 1.

Let T = (T, σ, τ, B, 1) be an element of BO(n;m1, . . . ,mk) with all brackets of weight 1, and let
xi ∈ F(mi) ∼= Cact1(mi) for each 1 ≤ i ≤ k. We first construct scaling maps g ∈ Mon+(I, ∂I) as
in (5.4). Recall from Definition 3.1 that a bracketing B = {Sj}j∈J consists of large, nested proper
subtrees of T . Here we allow B to be empty. Recall that σ orders the vertices of T . For a fixed
i ∈ {1, . . . , k}, let S ∈ B be the smallest bracket that contains the vertex σ(i), allowing S = T if
there are no such bracket. Recall that in(σ(i)) is the set of incoming edges of σ(i), and L(S) is the
set of leaves of the bracket S. We define a map

(5.6) ξ : in(σ(i)) −→ N

by setting

(i) ξ(e) = 1 if e ∈ L(S);
(ii) ξ(e) = |L(S′)| if e is the root of a bracket S′ ⊂ S in B, with S′ ⊂ S the largest such bracket;
(iii) ξ(e) = |w| if e ∈ iE(S) is not the root of any S′ ∈ B, where |w| denotes the arity of the

vertex w ∈ V (S) for which e is the outgoing edge.

1

T =

S′

S

e1

e4e2 e5
e3

2

7

6
5

4

3 ξ : in(σ(1))→ N

ξ(e1) = 1

ξ(e2) = |L(S′)| = 5

ξ(e3) = 1

ξ(e4) = |σ(7)| = 2

ξ(e5) = 1

Figure 22. An example of ξ.

Figure 22 shows an example of the map ξ. We then set

(5.7) gi := g(xi; ξ(e1), . . . , ξ(emi))

for e1, . . . , em the incoming edges of σ(i) ordered by the planar ordering of T .

We define the action of BO inductively on the size of the bracketing B.
If B is empty, then we define

λ(T;x1, . . . , xk) := R ◦ λMS+((T, σ, τ); (x1, g1), . . . , (xk, gk))

and use (yT , fT ) ∈MS+ to denote the image of λMS+ . Note that when k = 1 or 2, this is the same
as the BO-structure already defined above.
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If B is not empty, then we define additional scaling maps for each bracket, using the inductive
hypothesis that the action has already been defined action on subtrees with fewer brackets.

Let T ′ be the tree obtained from T by adding a binary vertex at the root of each bracket Sj ∈ B.
Extend the order σ of the vertices of T to an order σ′ of vertices of T ′ by setting the |J | = |B| new
vertices last. An example of T ′ is shown in Figure 23. We will use each additional vertex of T ′ to
assign a scaling map to the associated bracket.

1

T ′ =
2

10

9
8

7

6 5

4

3

11

Figure 23. An example of T ′ for the bracketing of T in Figure 22

Let wj ∈ V (T ′) \ V (T ) be the jth vertex of T ′ not in T , according to the chosen order σ′. Let
Sj ∈ B be the bracket associated to wj . Since the number of brackets of B that lie inside Sj is less
than |B|, we have an element

(ySj , fSj ) ∈MS+

defined by the inductive assumption by restricting T = (T, σ, τ, B, 1) to the subtree Sj . Consider
the tree T/Sj in which all vertices in Sj are identified and internal edges between them are collapsed.
The tree T/Sj has a vertex [Sj ] associated to the collapsed tree Sj . We have an induced bracketing

B̃ of T/Sj from the bracketing B of T , and thus can define a map ξj : in([Sj ])→ N as in (5.6) by

replacing (T,B) by (T/Sj , B̃). Then define

(5.8) hj := g(ySj ; ξj(e1), . . . , ξj(el)) ◦ f−1
Sj

for e1, . . . , el the incoming edges of [Sj ] in T/Sj . We define the action of BO by setting

(5.9) λ(T;x1, . . . , xk) := R ◦ λMS+

(
(T ′, σ′, τ); (x1, g1), . . . , (xk, gk), (1, h1), . . . , (1, h|B|)

)
for the rescaling maps gi and hj defined above.

We claim that the formula for the action (5.9) is indeed compatible with composition of brack-
etings of trees of weight 1. It is enough to check this for a ◦i-composition in BO, so consider
T1 = (T1, σ1, τ1, B1, 1) and T2 = (T2, σ2, τ2, B2, 1) in BO. We need to check that

(5.10) λ(T1;x1, . . . , xi−1, λ(T2;xi, . . . , xi+l−1), xi+1, . . . , xk+l−1) = λ(T1 ◦i T2;x1, . . . , xk+l−1).

From the above definition, we have λ(T1;x1, . . . , xi−1, λ(T2;xi, . . . , xi+l−1), xi+1, . . . , xk+l−1) =

R ◦ λMS+

(
(T ′1, σ

′
1, τ1); (x1, g1), . . . , (xi−1, gi−1),

(yT2 , gi), (xi+l, gi+l), . . . , (xk, gk), (1, h1), . . . , (1, h|B1|)
)

for

yT2
= R ◦ λMS+

(
(T ′2, σ

′
2, τ2); (xi, g

′
1), . . . , (xi+l−1, g

′
l), (1, h

′
1), . . . , (1, h′|B2|)

)
where the maps gi and hi are those associated to (T1, B1) and the maps g′i and h′i associated to
(T2, B2). In the above notation, we also have

(yT2
, fT2

) = λMS+

(
(T ′2, σ

′
2, τ2); (xi, g

′
i), . . . , (xi+l−1, g

′
i+l−1), (1, h′1), . . . , (1, h′|B2|)

)
.
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Note that one can change the Mon+(I, ∂I) component of an element of MS+ by doing a ◦1–
composition in the operad. In particular,

(yT2 , gi) = (1, gi ◦ f−1
T2

) ◦1 (yT2 , fT2)

in MS+ ane we can rewrite the left hand side of (5.10) as the first component of the MS+–
composition

λMS+

(
(T ′1, σ

′
1, τ1) ◦i (T̄ ′2, σ̄

′
2, τ2); (x1, g1), . . . , (xi−1, gi−1),

(xi, g
′
i), . . . , (xi+l−1, g

′
i+l−1), (1, h′1), . . . , (1, h′|B2|), (1, gi ◦ f

−1
T2

),

(xi+l, gi+l), . . . , (xk, gk), (1, h1), . . . , (1, h|B1|)
)

where T̄ ′2 has an extra vertex at the bottom of the tree to encode the change of Mon+(I, ∂I)–
component for the T2 composition. If T2 is large, this extra vertex corresponds exactly to the extra
bracket T2 arising in the BO–composition, and one checks that the corresponding scaling map h
defined by the formula (5.8) is precisely the map gi ◦ f−1

T2
. As the other labels of the vertices of the

composed tree agree with those of the right hand side, we see that we recover the right hand side
of (5.10). If T2 is not large, then there is no such additional bracket in the BO–composition, but
in this case fT2

= id and the left and right hand side agree directly.

Recall from Remark 3.10 that we may consider BO as the geometric realization of the simplicial
operad of bracket trees. Then the above definition of λ on bracketings of weight 1 defines the
action of the vertices of BO. We finally extend this action to all bracketings of a tree T by linear
interpolation on the rescaling maps gi. For a fixed tree T and a point ((B0 ⊂ · · · ⊂ Br), t) in the
realization of the poset B(T ), let gi(T,Bj) denote the definition of the rescaling map gi with respect
to the bracketing Bj on T in (5.7), and likewise for the maps fj in (5.8). We set

gi = t0gi(T,B0) + ...+ trgi(T,Br).

This is well-defined as Mon+(I, ∂I) is convex. Also note that this is continuous in BO as going
to the lth face of the simplex (B0 ⊂ · · · ⊂ Br) corresponds to tl going to 0, that is, dropping
the bracket Bl.Then we define (yT , fT ) and λ(T, σ, τ, B, t) := R(yT , fT ) as in (5.9) but with this
definition of gi instead.

This defines the action of BO on Cact1. It is compatible under composition because the compo-
sition in BO is the realization of the composition in the poset operad, and we have already checked
the compatibility under composition there.

�

Given that normalized cacti, together with the cactus composition (5.1), forms a BO-algebra we
can now use the rectification results from Proposition 4.10 to define an ∞-operad.

Corollary 5.13. Normalized cacti define dendroidal spaces of the following two flavors:

(i) There exists a reduced homotopy dendroidal space X ∈ SΩ̃op0 , satisfying the strict Segal
condition, such that X(Cn) = Cact1(n) and with value on the inner face maps ∂e given by
the Cact1–composition.

(ii) There exists a weakly reduced dendroidal space Y ∈ SΩop , satisfying the weak Segal condition
(in the sense of Proposition 4.10), such that Y (Cn) ' Cact1(n) and with value on the inner
face maps ∂e homotopic to the Cact1–composition.

Proof. Theorem 5.12 shows that Cact1 is a BO-algebra. Applying the construction from The-

orem 4.8, we define a homotopy dendroidal space X := Φ(Cact1) ∈ SΩ̃op0 . By construction,
Φ(Cact1)(Cn) = Cact1(n), and by the theorem it is a reduced homotopy dendroidal space satisfying
the strict Segal condition. The evaluation of Φ(Cact1) on an inner edge is the ◦i composition, as
encoded by the BO-structure, which in the present case is the Cact1–composition by Theorem 5.12.
This proves (i) in the statement.

For (ii), we set Y := p!X = p!Φ(Cact1) ∈ SΩop to be the rectification of X, as constructed in
Proposition 4.10. By Lemma 4.9, Y (Cw) = p!Φ(Cact1)(Cw) ' Φ(Cact1)(Cw) = Cact1(|w|) and the
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value of Y on inner face maps is identifies under these homotopy equivalences with the value of
X on inner face maps, and hence identifies with the Cact1–composition. By the proposition, Y is
weakly reduced and satisfies the weak Segal condition. �

6. Relation between the operads BO and WO

The Boardman-Vogt W -construction is a construction on operads with the property that, for
any topological operad P, algebras over WP are “up-to-homotopy” or “weak” P-algebras. A lax
operad [8] is an algebra over the operad WO, the Boardman-Vogt W–construction applied to the
operad of operads O (Definition 2.8), and is a notion of a “weak” or “infinity” operad. It is known
that there exists a zig-zag of Quillen equivalences between the category of WO-algebras and the
category of reduced dendroidal spaces by, for example, combining Theorem 4.1 of [1] with either
Theorem 1.1 of [3] or a restriction of Theorem 8.15 of [12].

Here we show how the operad BO can be identified with a variant W0 of the W -construction
of the operad O of operads (see Theorem 6.4). From this, it will follow that BO–algebras are
lax operads that are strictly symmetric and with a strict identity (see Example 6.2). We start by
recalling the W–construction.

6.1. The W -Construction. The Boardman-Vogt W -construction is an enlargement of the free
operad construction. Given an operad P, there are canonical morphisms of topological operads

FP ↪→WP ∼−→ P,

where the map p : WP → P is a surjective homotopy equivalence. Algebras for WP are up-to-
homotopy P-algebras. We briefly recall the construction here and refer the reader to [8, Section 17]
or [1, Section 3] for full details.

Definition 6.1. Let P be a C–colored (discrete or topological) operad. The operad WP is a
topological operad with the same set of colors C, built from the free operad F (P) (Definition 2.3)
by adding length in [0, 1] to the internal edges of the trees that define the elements of F (P). More
precisely, for each list of colors c; c1, . . . , ck in C, we have

WP(c; c1, . . . , ck) =
( ∐

(T,f,λ)

(
[0, 1]|iE(T)| ×

∏
v∈V (T)

P(out(v); in(v))
))
/ ∼

where the disjoint union, as for the free operad, runs over the isomorphim classes of leaf-labeled
C–colored planar trees

(T, f : E(T)→ C, λ : {1, . . . , k} → L(T))

with k leaves such that f(λ(i)) = ci, f(R(T)) = c. The equivalence relation is generated by the
relation (∗) in Definition 2.3 in addition to the following additional relations that capture “weak”
operadic composition and units:

(1) any tree with an internal edge of length of zero is identified with the tree where that edge
has been collapsed and the operations labelling its end vertices composed;

(2) any tree that has a vertex with only one input and one output, both colored by c ∈ C, labeled
by the identity in ιc ∈ P(c; c), is identified with the tree where that vertex is deleted. The
resulting new edge, if internal, has length the maximum length of the two original internal
edges connected to the deleted vertex.

See [8, p 75] for a pictorial version of these relations. The symmetric group acts on WP by relabeling
the leaves, as for the free operad. Composition is by grafting, giving length 1 to the newly created
internal edge.

We will denote elements of WP by (T, f, λ, s, p), where T is a planar tree, f : E(T) → C is the
map coloring its edges, λ : {1, . . . , k} → L(T) is the bijection labeling its leaves, s ∈ [0, 1]|iE(T)| is a
collection of weights, and p = (pv)v∈V (T) is a labeling of the vertices by operations in P. An example
is shown in Figure 24. There is a canonical projection map π : WP → P defined by sending all the
edge lengths to 0 and composing the operations of P as dictated by the trees.
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Figure 24. Example of an element of WP(p; a, b, c, d, g, i, k, `,m, o).

6.2. A variant on the W -construction. Given a (discrete or topological) C-coloured operad
P, the topological operad W0P is defined as the quotient of WP by replacing relation (2) in
Definition 6.1 by the following stronger relations for arity one vertices, as well as a version for arity
zero vertices:

(2′) any tree that has a vertex v with only one input and one output both colored by c, adjacent
to at least one other vertex w, with v labeled by any element P(c; c), is identified with the
tree where the vertex v is deleted, and the label of v and w are composed in P (Figure 25).

If the resulting new edge is internal, then its length is the maximum length of the two
original (then necessarily internal) edges adjacent to v.

pw

pw′ ◦ pv

max{s,t} ∼∼

pw

pv

pw′

s

t

pv ◦ pw

pw′

c

c

c
max{s,t}

c

Figure 25. Local representation of the relation (2′) on a tree.

(3’) any tree that has a vertex v with no input, adjacent to another vertex w, with v labeled by
any element of P(c; ∅), is identified with the tree where the vertex v and the edge between
v and w are deleted, and the labels of v and w are composed in P (Figure 26).

So a W0P–algebra is a weak P–algebra (WP–algebra) for which the nullary and unary operation
are strict. And in particular, one has that W0P(c; c) = P(c; c) and W0P(c; ∅) = P(c; ∅) for any color
c. Also, one can always choose representatives of elements of W0P using trees with no valence 0 or
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∼

pv

pw

pw ◦ pv
c

t

Figure 26. Local representation of the relation (3’) on a tree.

1 vertices (unless it only has 0 or 1 vertex). In a tree that defines an element of W0P, an arity one
vertex lying in between two other vertices can be slid up or down to either of its neighboring vertices,
composing its label with that of the chosen vertex, while an arity zero vertex can be “pushed down”
to the vertex it is attached to.

Example 6.2. The example relevant to us here is when we set P = O is the operad of operads. In
this case, C = N is the natural numbers and an O-algebra is a (monochrome) operad. The nullary
operations in O(1; ∅) encode the identity operation in the O–algebra, while the unary operations
in O(n;n) encode the action of the symmetric groups. It follows that a W0O–algebra is a strictly
symmetric weak operad with a strict identity.

By construction, the canonical projection p : WP → P factors through the quotient map q :
WP →W0P. Moreover, both WP and W0P are homotopy equivalent to P:

Proposition 6.3. There are operad maps WP →W0P → P, inducing homotopy equivalences

WP(c; c1, . . . , cn) W0P(c; c1, . . . , cn) P(c; c1, . . . , cn)
q

∼
p0

∼

for each n ≥ 0 and each c; c1, . . . , cn in C.

Proof. For each n ≥ 0 and c; c1, . . . , cn the map

q : WP(c; c1, . . . , cn)→W0P(c; c1, . . . , cn)

is the projection on to the quotient. It is an operad map because if elements of WP are equivalent
in W0P before being composed, they are necessarily also equivalent in W0P after composition. The
map p0 : W0P → P contracts the remaining edges in the trees of W0P by sending the lengths to 0
(and composing the operations in P). This map is well-defined, as it is compatible with the relations
(2’) and (3’), and respects the operad structure. These maps induce homotopy equivalences, with
homotopy inverses given by including P(c1, . . . , cn; c) as labelled corollas in W0P(c; c1, . . . , cn) or
WP(c; c1, . . . , cn). �

6.3. BO-algebras are strictly symmetric lax operads. In this section we prove that there is
an isomorphism of topological operads BO ∼= W0O.

Theorem 6.4. The operads W0O and BO are isomorphic.

The combination of Theorem 6.4 with Example 6.2, describes BO–algebras as strictly symmetric
lax operads with strict identity. Moreover, the isomorphism BO ∼= W0O allows us to observe that
any BO–algebra will receive a canonical WO–structure via the quotient map q : WO −→W0O. In
fact, Theorem 6.4 together with Proposition 6.3 gives homotopy equivalences

WO '−→ BO '−→ O,

where O ∼= π0WO ∼= π0BO and the latter equivalence is the one already considered in Remark 3.10.
Each of the topological operads WO, BO and O are admissible in the sense of [1, Theorem 2.1]
and thus the natural projection maps induce Quillen adjunctions

WO−Alg BO−Alg O−Alg.
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We expect that these adjunctions induce Quillen equivalences, though the operad BO is not Σ-
cofibrant so we can not immediately apply [1, Theorem 4.1]. We nonetheless have the following:

Corollary 6.5. Every BO-algebra is homotopy equivalent to a strict operad.

Proof. Every BO-algebra is canonically a WO-algebra via the quotient map q : WO → BO, and
every WO-algebra is homotopic to a strict operad, i.e. an O-algebra, using e.g. Theorem 4.1 of
[1] that gives a Quillen equivalence between the categories WO−Alg and O−Alg (using that the
operads WO and O are well-pointed, Σ-cofibrant admissible operads).

Given a BO-algebra P, one can alternatively directly construct such a strict operad P ′ homotopic
to P using the following double bar construction:

P '←− B(BO, BO,P)
'−→ B(O, BO,P) =: P ′,

where P ′ is an O-algebra and hence a strict operad. In the above zig-zag, we use the notation of
e.g. [28, Const 9.6 and Thm 9.10], identifying an operad with its associated monad. The leftmost
map is an equivalence by properties of the bar construction and the rightmost because of the

equivalence BO '−→ O of Remark 3.10. �

Combining Theorem 4.8 with Theorem 6.4, we can also relate BO-algebras with reduced, strictly

Segal Ω̃op0 -diagrams.

Corollary 6.6. There exist isomorphisms of categories

W0O−AlgS
∼= (SΩ̃op0 )strict.

The proof of Theorem 6.4 will be given in Section 6.4. Though not saying this explicitly, the
proof uses the natural association of a bracketing to a clustering tree, which is described for instance
in [38, Definition 2.7].

Since the W -construction is built out of cubes, to prepare for the proof, we start by giving an
alternative description of BO in terms of cubes as well.

Definition 6.7. We can define a weighted bracketing of a tree T to be a pair (B, t) with bracketing
B = {Sj}j∈J of T and t ∈ [0, 1]J . The jth coordinate tj ∈ t is the weight of Sj . The addition of

weights associates to each bracketing a cube [0, 1]|B|. These cubes fit together to form a space:

B(T ) =
∐

B∈B(T )

[0, 1]|B|/∼

where the equivalence relation is by identifying any bracketings with weights that only differ by a
bracket of weight 0 (see Figure 27(b)).

(a) A bracketing B of T with 2 brackets and its

associated cube [0, 1]|B| in B(T ).

(b) All bracketings of T and their

associated cubes assembled to make
B(T ) a hexagon.

Figure 27. A tree T and its corresponding space of bracketings B(T ).

Recall from Definition 3.2 the poset B(T ) of bracketings of a tree T under the inclusion relation.
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Lemma 6.8. Let T be a tree. There is a homeomorphism |B(T )| ∼= B(T ), between the realization
of the nerve of the poset B(T ) and the cubical space B(T ).

Proof. We consider the topological k–simplex as the space

∆k = {(s1, . . . , sk) ∈ Rk : 1 = s0 ≥ s1 ≥ · · · ≥ sk ≥ 0}.

Fix a tree T and let σ denote a k–simplex B0 ⊆ · · · ⊆ Bk of the nerve of the poset B(T ). To each
σ we associate a map

χσ : ∆k −→ B(T )

where χσ(s1, . . . , sk) is the weighted bracketing of T in which all trees of B0 have weight 1 = s0

and all trees of Bi\Bi−1 have weight si for i ≥ 1.
The maps χσ assemble into a continuous map

χ : |B(T )| =
(∐
k≥0

B(T )k ×∆k
)
/∼ −→ B(T ) =

∐
B∈B(T )

[0, 1]|B|/∼.

This map is a homeomorphism with inverse defined by mapping a cube [0, 1]|B| in B(T ) to
the realization of the sub-poset B≤B , which is a cube whose dimension is the cardinality |B| of
the bracketing. Explicitly, given an element (B, t) ∈ B(T ) with B = (B0, . . . , Bk), we order the
coordinates of t = (t1, . . . , tk) so that they are in decreasing order

1 = tσ(1) = · · · = tσ(r1) > tσ(r1+1) = · · · = tσ(r1+r2) >

· · · > tσ(r1+···+rl+1+1) = · · · = tσ(r1+···+rl+2) = 0.

This defines an l–simplex B̄0 ⊂ B̄1 ⊂ · · · ⊂ B̄l by setting

B̄i = Bσ(1) ∪ · · · ∪Bσ(r1+···+ri+1). �

6.4. Proof of Theorem 6.4. In order to prove BO ∼= W0O, we first recall some definitions. Recall
that elements (T, f, λ, s, p) ∈W0O(n;m1, . . . ,mk) are represented by a planar tree T with k leaves
ordered by the bijection λ : {1, . . . , k} → L(T) and with an edge colouring f : E(T) → N that,
in particular, colours the leaves by m1, . . . ,mk. In addition, T is equipped with a collection of
lengths s ∈ [0, 1]|iE(T)|, and a decoration of the vertices p = (pv)v∈V (T) by operations by pv in
O(out(v); in(v)).

We call a representative (T, f, λ, s, p) reduced if the tree T has no vertices of arity zero or one,
unless such a vertex cannot be removed using the equivalence relation in W0O, i.e. if T is the corolla
C0 or C1. In particular, every element of W0O has a reduced representative, which in general is not
unique. It greatly simplifies the proof of Lemma 6.9 to work with reduced representative.

For a given tree T, and vertices v, w ∈ V (T), we say that w is above v if the unique shortest path
between w and the root of the tree goes through v. In this case v is below w. Every other vertex of
T is above the root vertex v0 whose outgoing edge is the root of T.

Lemma 6.9. There is a map of topological operads Ψ : W0O → BO.

The map Ψ is illustrated in Figure 28.

Proof. Given a reduced element (T, f, λ, s, p) ∈W0O(n;m1, . . . ,mk), we construct

Ψ(T, f, λ, s, p) = (T, σ, τ, B, t) ∈ BO(n;m1, . . . ,mk),

where (B, t) is a weighted bracketing on the labelled tree

(T, σ, τ) = p0(T, f, λ, s, p) ∈ O(n;m1, . . . ,mk)

that is the image of (T, f, λ, s, p) under the canonical projection p0 : W0O → O.

The bracketing B is constructed from the set of vertices of T. If T has at most one vertex, then
set B = ∅ to be the trivial bracketing, in which case there are no weights to chose so t is the empty
map.
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Figure 28. Element of W0O and corresponding element of BO(16; 2, 3, 4, 3, 4, 3, 3).

Otherwise, since (T, f, λ, s, p) is reduced, and T is not a corolla, all its vertices have arity ≥ 2.
Let v0 be the root vertex of T. For each v ∈ V (T)\{v0}, let

(Sv, σv, τv) = p0(Tv, f |Tv , λ|Tv , p|Tv ),

where Tv is the subtree of T with v as its root vertex, and containing all the vertices above v.
Observe, in particular, that, since v 6= v0, the outgoing edge ev of v – that is the root of Sv – is
internal in T . Since the vertices of T have arity at least 2, each Sv is a large proper subtree of T ,
and because composition in O is by substitution,

B = {Sv : v ∈ V (T)\{v0}}

is a collection of nested subtrees, and hence a bracketing.
To define the weight function t of B, we associate, to each Sv the weight tv = s(ev), the length

of ev ∈ iE(T). This completes the definition of Ψ(T, f, λ, s, p).

We need to check that the defined bracketing is independent of our choice of (reduced) represen-
tative (T, f, λ, s, p) ∈ W0O(n;m1, . . . ,mk), and continuous. In particular, we must check that it is
compatible with the relations (1), (2’) and (3’) in Definition 6.1 and Section 6.2.

To prove that Ψ is well defined with respect to relation (1), and hence also continuous, let sj
be the length of an internal edge of T with end vertices v, w, where v is above w. Then if sj goes
to 0 in W0O, the vertices v, w are identified and their labels are composed in O. Applying Ψ, this
will precisely have the effect of taking the weight of the bracketing Sv to 0, which is equivalent to
simply forgetting the bracketing Sv in BO.

Relation (2’) allows that a vertex v with only 1 input in T, labeled by a permutation α ∈
O(n;n) ∼= Σn, to be composed to either of the vertices it shares an edge with. So suppose T is the

reduction of a tree T̃ with an arity one vertex v attached to two vertices w and w′, with w′ below
w. We may assume that w and w′ both have arity at least two. We let T be the tree obtained from

T̃ by collapsing the edge between w and v and let T′ be the tree obtained from T̃ by collapsing
the edge between v and w′. We need to check that the brackets Sw and Sw′ are the same if
computed using the representative (T, f, λ, s, p) associated to T or (T′, f ′, λ, s′, p′) associated to T′.
This is immediate for the bracket Sw′ because w′ is below v and thus p0(Tw′ , f |Tw′ , λ|Tw′ , p|Tw′ ) =
p0(T′w′ , f ′|T′w′ , λ|T′w′ , p

′|T′
w′

). For the vertex w, the two representatives in general do not have the

same image under p0, but if p0(T′w, f ′|T′w , λ|T′w , p
′|T′w) = (S′w, σ

′
w, τ

′
w), we still have that S′w = Sw.

In fact, only τ ′w might differ from τw as the vertex v is a permutation α ∈ O(n;n) = Σn that acts
on a labeling p ∈ O(n; k1, . . . , kl) by permuting the leaves of the labeled tree representing p.
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For relation (3’) in the definition of W0, the relation gives a unique way to reduce a tree if an
arity zero vertex is attached to another vertex, so the representative with no arity 0 vertices is
unique and nothing needs to be checked.

Finally, we check that Ψ is a map of operads. Consider a composition (T1, f1, λ1, s1, p1) ◦i
(T2, f2, λ2, s2, p2) of reduced representatives in W0O, and let Ψ(Tj , fj , λj , sj , pj) = (Tj , σj , τj , Bj , tj)
for j = 1, 2. Composition in W0O is induced by grafting a tree T2 onto the ith leaf of T1, creating
a new internal edge of length 1. If T2 has at least one vertex of arity 2, this corresponds exactly
under Ψ to adding a new bracket T2 of weight 1 in the composed tree T1 •σ1(i),τ2 T2 where the
composition here is by insertion. If not, then, since (T2, f2, λ2, s2, p2) is reduced, T2 has either no
vertices or a single arity 1 vertex, so T2 is either the exceptional tree η or a corolla Cn. In each case,
the newly added edge in the composed tree T1 ◦i T2 will be collapsed when going to a reduced tree,
corresponding under Ψ to a composition in BO where no extra bracket is added. This finishes the
proof. �

Lemma 6.10. For every (n;m1, . . . ,mk) the map Ψ : W0O(n;m1, . . . ,mk) −→ BO(n;m1, . . . ,mk)
is a bijection.

Proof. We start by checking that Ψ is surjective. So let (T, σ, τ, B, t) of BO(n;m1, . . . ,mk) with
B = {Sj}j∈J and t ∈ [0, 1]J . We may always choose a representative where all brackets have non-
zero weight, so we assume that tj 6= 0 for any j ∈ J . We will construct an element (T, f, λ, s, p) ∈
W0O(n;m1, . . . ,mk) in the preimage of (T, σ, τ, B, t).

If B = ∅ is the empty bracketing then define T to be the corolla with k leaves, with f coloring its
leaves m1, . . . ,mk in the ordering given by λ, and the root by n and p labeling the unique vertex by
(T, σ, τ). The weights s are trivial in this case. By definition, Ψ takes this element to (T, σ, τ, ∅, 0)
as required.

We now assume that B = {Sj}j∈J is non-empty. To encode the leaf labelling τ on T , it is
convenient to choose a non-reduced representative of its preimage, using a tree T with one valence
1 vertex at its root. We define T as follows: we set V (T) = {vτ , vT } ∪ {vj}j∈J , where the vertex vj
corresponds to the bracket Sj ∈ B, vT corresponds to an additional “trivial bracket” ST := T , and
vτ will be associated to the permutation τ . To construct the tree, we set vi above vj if Si ⊂ Sj ,
connecting the two vertices by an edge ei if there is no k ∈ J such that Si ( Sk ( Sj , where we
allow Sj = ST . This edge ei is colored by the number |L(Si)| of leaves of the smaller tree Si and we
define its length by setting si = ti is the weight of the corresponding bracket. The nesting condition
on the brackets implies that no cycles are formed this way. We also connect vT and vτ by an edge
of length 1, colored by n = |L(T )|, which is also the color of the root of the tree.

Finally for each vertex v of T , we attach a leaf lv to the vertex vi ∈ V (T) if Si is the smallest
tree of the bracketing containing v, attaching it to vT if v is contained in no bracket. This leaf is
colored by the arity of v in T . This defines the tree T, with edge lengths s and edge coloring f .

We pick some planar structure for T. (Recall that elements of W0O are only defined up to
non-planar isomorphism, which is why there is some freedom here.) Note that the leaves of T
correspond exactly to the vertices of T . The ordering λ : {1, . . . , k} → L(T) is determined by σ and
this identification. This defines the tuple (T, f, λ, s).

All that remains is to define the decoration p of the vertices of T by elements of O. We need to
have that (T, σ, τ) is given by the composition of the elements of the vertices of T so to determine
the decorations in T, what we need is to “undo” the compositions in T marked by the bracketings.

Let vj ∈ V (T). We define p(vj) to be the element (Sj/ ∼, σj , τj) ∈ O(out(vj); in(vj)) where
Sj/ ∼ is the planar tree Sj with each subtree Si ( Sj collapsed to a corolla with the same set of
leaves, σj orders the vertices according to the above chosen planar ordering of T, where we note
that the incoming edges of vj correspond precisely to the vertices of Sj/ ∼, and τj labels the leaves
of Sj/ ∼, which are also the leaves of Sj , in the order given by the planar embedding of T . (Here
it is important that the chosen planar structure of T is compatible with the chosen order σj of
V (Sj/ ∼). On the other hand, the chosen order τj of L(Sj/ ∼) is not important, as we will fix it
below using the vertex vτ .) This determines p uniquely on all vertices {vj}j∈J ∪ {vT }. Finally, the
vertex vτ is labeled by the permutation τ ∈ Σn, considered as an element of O(n;n).
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This finishes the construction of (T, f, λ, s, p). To compute its image under Ψ, we have to pass
to a reduced representative, which means collapsing the edge between vτ and vT and composing
their labeling. (The length of that edge is forgotten.) We have that Ψ(T, f, λ, s, p) = (T, σ, τ, B, t),
by our choice of p for the tree T and its leaf-labeling τ , our choice of λ for the ordering σ of the
vertices, our choice of vertices of T for B, and with a direct correspondence between the length si
of the edge ei and the weight ti of Bi.

To finish the proof, we check that Ψ is injective. We will check that, up to the equivalence
relations defining W0O, there is a unique reduced (T′, f ′, λ′, s′, p′) in the preimage of (T, σ, τ, B, t).
Note that the number of vertices of such a reduced representative is determined by the tree T and
the cardinality of B. We consider first the cases where T′ has 0 or 1 vertex.

If T′ has no vertices, then T′ = η representing the identity element in O(1; 1), B = ∅, and, up to
the equivalence relations of W0O, there is only one possibility for (T′, f ′, λ′, s′, p′).

Suppose now that T′ = Ck has exactly one vertex of arity k. The leaves of T′ are in one-
to-on correspondence with the vertices of T , with λ′ ordering its leaves, and f ′ coloring them
m1, . . . ,mk, n, with mi the color of λ′(i). We can choose a representative of (T′, f ′, λ′, s′, p′) so that
the planar structure of T′ = Ck is given by the ordering σ of the vertices of T . Then the labeling p
of the vertex is necessarily precisely (T, σ, τ). So there is only one possibility for (T′, f ′, λ′, s′, p′).

Finally, if T′ has at least two vertices, then it must have precisely |B| + 1 vertices arranged
in a tree according to the nested structure of the bracket, and k leaves, with each leaf attached
to the vertex corresponding to the appropriate bracket. The root vertex of T corresponds to the
whole tree T . The coloring of the edges is determined by the arity of the vertices and brackets in
T , and the labeling of the leaves λ is determined by the ordering σ. The vertices are decorated
by tuples (Tj , σj , τj), with Tj determined by the bracketing B, σj determined by the nesting of
the bracketing once a planar structure for T′ is chosen. Choosing a different planar structure will
give an equivalent element of W0O (in fact also of WO). The ordering τj is likewise not uniquely
determined by the situation, but a different choice that does yield the same tuple (T, σ, τ, B, s)
under Ψ will be equivalent in W0O, using relation (2′). This finishes the proof of injectivity.

�

We are now ready to prove our main result in this section, namely that W0O and BO are
isomorphic as topological operads.

Proof of Theorem 6.4. In Lemma 6.9 we constructed a map of topological operads

Ψ : W0O −→ BO.

Combining this with Lemma 6.10 we know that, for each tuple (n;m1, . . . ,mk), the map

Ψ : W0O(n;m1, . . . ,mk) −→ BO(n;m1, . . . ,mk)

is a continuous bijection. As the source of this map is a compact space (π0W0O(n;m1, . . . ,mk) =
O(n;m1, . . . ,mk) is finite and there are finitely many reduced representatives (T, f, λ, s, p) defining a
cube in each component), and the target is a Hausdorff space, Ψ is therefore a local homeomorphism
and hence an isomorphism of topological operads. �

Remark 6.11. A corollary of the result we just proved is that W0O is the realization of an operad in
posets, namely the operad BO. The operad WO can likewise be seen as the realization of an operad
in posets, namely the poset of elements of the free operad FO, with poset structure generated by
edge collapses. The map of operads q : WO → W0O is the realization of a map of posets. Indeed,
the map q : WO →W0O ∼= BO respects the poset structure because collapsing an edge in T, which
defines the poset structure underlying WO, corresponds under the map q to forgetting a bracket,
which defines the poset structure underlying W0O = BO.

Appendix A. The explosion category of Ω

In Section 4.1 we introduced an enriched version of the dendroidal category Ω̃0 which is closely
related to the category of BO-algebras. As mentioned in the introduction of Section 4, the idea of
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the category Ω̃0 is to encode homotopy coherent Ω–diagram, and hence Ω̃0 should be connected to
the explosion category of Ω, as defined by Leitch [25] and Segal [37, Appendix B].

In this appendix we describe the explosion category of Ω, denoted Ω̃, and show that our topo-

logical category Ω̃0 sits between Ω̃ and Ω in the sense that there exist equivalences of topological
categories

Ω̃ Ω̃0 Ωq

p̃

p .

The explosion construction and the W–construction are very closely related in spirit. One might

thus expect a relationship between Segal Ω̃–diagrams and WO–algebras, similar to the relationship
between Segal dendroidal spaces (Ω–diagrams) and O–algebras, and between Segal homotopy den-

droidal spaces (Ω̃0–diagrams) and W0O– or BO–algebras. Theorem A.6 below will show that such
a relationship exists, but without being as close as in the other cases: WO–algebras identify with

a full subcategory of the category of reduced strict Segal Ω̃–diagrams.

A.1. The explosion of Ω. For each morphism g : S → T in Ω, we define a poset of paths
PathΩ(S, T )g whose objects are the factorizations of g : S → T in Ω

S T1 . . . Tn−1 T,

g

g1 g2 gn

where we identify two factorizations if they differ only by identity morphisms. In particular, each
such factorisation (g1, . . . , gn) has a unique reduced representative containing no identity morphisms
unless n = 1 and g is the identity on S. (Such a factorisation can be thought of as a path in the
nerve of Ω.) The poset structure is by refinement of factorisation: (g1, . . . , gn) ≤ (g′1, . . . , g

′
m) if

n ≤ m and there is a monotone map α : {0, . . . , n} → {0, . . . ,m} such that α(0) = 0, α(n) = (m),
and gi = g′α(i) ◦ · · · ◦ g

′
α(i−1)+1 for each 1 ≤ i ≤ n.

We denote the geometric realization of this poset by

Kg := |PathΩ(S, T )g|.

Definition A.1. The topological category Ω̃ has the same objects as Ω. Morphism spaces in Ω̃ are
defined as

HomΩ̃(S, T ) =
∐

g∈HomΩ(S,T )

Kg =
∐

g∈HomΩ(S,T )

|PathΩ(S, T )g|.

Composition of morphisms of Ω̃ is given by concatenation of factorizations.

Example A.2. Fix a tree T with |L(T )| = n leaves and three inner edges: e1, e2, e3. Recall that
Cn denotes the corolla with n leaves. Let ∂e1 , ∂e2 , ∂e3 denote the inner face maps in Ω associated to
each inner edge, and let g = ∂e1∂e2∂e3 : Cn → T be their composition. Then g admits a factorization

Cn T1 T2 T.

g

as a composition of three inner face maps for each permutation of {1, 2, 3}. The elements of

PathΩ(Cn, T )g that involve only these three inner face maps form a subposet with ([1],
g−→) as

minimum, and for each permutation σ ∈ Σ3 the elements

([3],
∂σ(1)−−−→

∂σ(2)−−−→
∂σ(3)−−−→) ([2],

∂σ(1)−−−→
∂σ(2)∂σ(3)−−−−−−→) ([2],

∂σ(1)∂σ(2)−−−−−−→
∂σ(3)−−−→).
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Each permutation σ this way contributes to a square

(
∂σ(1)∂σ(2)−−−−−−→

∂σ(3)−−−→) (
∂σ(1)−−−→

∂σ(2)−−−→
∂σ(3)−−−→)

(
g−→) (

∂σ(1)−−−→
∂σ(2)∂σ(3)−−−−−−→)

in this subposet, and the dendroidal identities tell us that these squares together form the following
hexagon inside |PathΩ(Cn, T )g|:

Additional elements of PathΩ(Cn, T )g can be obtained by inserting tree isomorphisms. This example
should be compared to Examples 3.4 and 3.5 which can be interpreted as computing morphism

spaces in the category Ω̃0 likewise associated to trees with three internal edges, where in one case
a pentagon occurs, and in the other it is a hexagon.

Lemma A.3. For each g ∈ HomΩ(S, T ) the space Kg = |PathΩ(S, T )g| is contractible.

Proof. The poset PathΩ(S, T )g has the trivial factorisation S
g−→ T as a minimal element. �

Let p̃ : Ω̃→ Ω be the functor that is the identity on objects and projects each morphism space Kg

to g. Considering Ω as a discrete topological category, the lemma immediately gives the following
proposition.

Proposition A.4. The functor p̃ : Ω̃→ Ω induces a homotopy equivalence on morphism spaces.

Note that the proposition identifies Ω with the “path component category” π0Ω̃, which has the

same objects as Ω̃ and Homπ0Ω̃(S, T ) := π0(HomΩ̃(S, T )).

A.2. The relationship between Ω̃ and Ω̃0. The category Ω̃0 sits between Ω̃ and Ω in the sense
of the following proposition.

Proposition A.5. There is a functor q : Ω̃ → Ω̃0, which is the identity on objects and induces a

homotopy equivalence on each morphism space. Moreover, the composition p ◦ q = p̃ : Ω̃→ Ω is the
projection functor of Proposition A.4.
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Proof. Fix two objects S, T ∈ Ω̃. Recall from Definition A.1 that

HomΩ̃(S, T ) =
∐

g∈HomΩ(S,T )

Kg

for Kg = |PathΩ(S, T )g| is the realization of the poset of factorizations of g, and Kg is contractible.
Likewise by Definition 4.4

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg

and Lg =
∏

v∈V (S)

|B(g(Cv))| is the realization of the poset Lg of bracketings of the trees g(Cv), with

Lg likewise contractible. So to prove the proposition, it is enough to produce a functor q which is
the identity on objects and takes Kg to Lg for each g. We will define the functor by defining a poset
map

qg : PathΩ(S, T )g → Lg
and show that it is compatible with composition.

Fix a map g : S → T in Ω. An object of PathΩ(S, T )g is a factorization (g1, . . . , gn) of g and to
such a factorization of g, for each v ∈ V (S), we associate a bracketing of g(Cv) as follows: set

Bv = {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1
w∈V (gi◦···◦g1(Cv))
Sw(g(Cv) large

This is a (possibly empty) bracketing as these sets are by definition nested. We then define
qg(g1, . . . , gn) = (Bv)v∈V (S). Note that this association is a map of posets as refining a factor-
ization will correspond under qg to an inclusion of bracketings.

We are left to check that the maps qg assemble to define a functor, i.e. that they are compatible

with composition in Ω̃ and Ω̃0. Let f : R→ S be another morphism in Ω. We need to check that

PathΩ(S, T )g × PathΩ(R,S)f

qg×qf
��

// PathΩ(R, T )g◦f

qg◦f

��
Lopg × L

op
f

// Lopg◦f

commutes. Because the target is a poset, it is enough to check that it commutes on objects. Let
(g1, . . . , gn) and (f1, . . . , fm) be objects of PathΩ(S, T )g and PathΩ(R,S)f . By definition, their
composition is (f1, . . . , fm, g1, . . . , gn) ∈ PathΩ(R, T )g◦f . We have qf (f1, . . . , fm) = (Bfx)x∈V (R)

and qg(g1, . . . , gn) = (Bgv)v∈V (S) with

Bfx = {Sy = fm ◦ · · · ◦ fi+1(Cy)}1≤i≤m−1
y∈fi◦···◦f1(Cx)
Sy(f(Cx) large

and bracketing of f(Cx) ⊂ S, and

Bgv = {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1
w∈gi◦···◦g1(Cv)
Sw(g(Cv) large

a bracketing of g(Cv) ⊂ T . By definition, qg(g1, . . . , gn)◦qf (f1, . . . , fm) is the collection (B̄x)x∈V (R)

of bracketings of each tree g ◦ f(Cx) ⊂ T defined by

B̄x =
( ⋃
v∈f(Cx)

Bgv

)
∪
( ⋃

v∈f(Cx)
g(Cv)(g◦f(Cx) large

{g(Cv)}
)
∪
( ⋃

Sy∈Bfx
g(Sy) large

{g(Sy)}
)
,

where Bgv is considered as a bracketing of g ◦f(Cx) via the inclusion g(Cv) ⊂ g ◦f(Cx). Now we see
that this is exactly the bracketing of g ◦ f(Cx) defined by the factorization (f1, . . . , fm, g1, . . . , gm),
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which indeed is the union of the sets

{g(Sy) = g ◦ fm ◦ · · · ◦ fi+1(Cy)}1≤i≤m−1
y∈fi◦···◦f1(Cx)
g(Sy)(g◦f(Cx) large

∪ {Sv = g(Cv)}v∈f(Cx)
Sv(g◦f(Cx) large

∪ {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1
w∈gi◦···◦g1◦f(Cx)
Sw(g◦f(Cx) large

.

Hence the poset maps qg assemble to define a functor q : Ω̃ → Ω̃0 as claimed. Moreover, one

readily checks that the composition with the projection p : Ω̃0 → Ω is the canonical projection

p̃ : Ω̃→ Ω. �

A.3. WO–algebras as Ω̃–diagrams. In Section 4.2 we showed that BO-algebras describe den-

droidal Segal spaces. For completeness, we now show how homotopy dendroidal spaces SΩ̃op are
related to WO-algebras.

We will only need to consider Ω̃–diagrams X : Ω̃op → S that are reduced, i.e. such that X(η) = ∗.
Recall that in this case, for X : Ω→ S, the Segal map becomes the map

X(T )
χ−→

∏
v∈V (T )

X(Cv)

induced by the restriction maps T → Cv in Ωop. Considering these morphisms as morphisms of Ω̃,

we likewise have a Segal map for X : Ω̃→ S in the reduced case.

In analogy to the case of dendroidal and homotopy dendroidal spaces, let (SΩ̃op)strict denote the

full subcategory of SΩ̃op of Ω̃–diagrams X : Ω̃op → S such that X(η) = ∗ and such that the Segal
map χ as above is an isomorphism for every T 6= η. We have the following:

Theorem A.6. There exists a functor

Ψ : WO−Alg→ (SΩ̃op)strict

that embeds the category of WO-algebras as a full subcategory of the category of reduced Ω̃–diagrams
satisfying the strict Segal condition.

As we will see in the proof, Ω̃–diagrams are governed by a version of WO where the trees T have
an additional level structure, and WO–algebras identify then as the subcategory of diagrams where
this level structure does not matter. If one wished to describe a category of homotopy dendroidal
spaces which is isomorphic to WO-algebras, one could use this observation to take an appropriate

quotient of Ω̃. As this is particularly messy, and not the main focus of this article, we have elected
not to include such a construction.

Proof. The proof is similar to that of Theorem 4.8 treating the case of BO–algebras. We start with
the definition of the functor Ψ. Let P = {P(n)}n≥0 be a WO–algebra with structure maps

αP : WO(n;m1, . . . ,mk)× P(m1)× · · · × P(mk) −→ P(n).

We associate to this data an Ω̃–diagram

Ψ(P) = Ψ(P, αP) : Ω̃op → S

as follows. Set Ψ(P)(η) = ∗ and, for T 6= η in Ω̃, set

Ψ(P)(T ) =
∏

w∈V (T )

P(|w|).

For every morphism g : S → T in Ω, we need to define maps

Ψ(P)(g) : Kg ×
∏

w∈V (T )

P(|w|) −→
∏

v∈V (S)

P(|v|).

As in Theorem 4.8, we do this one vertex of S at a time.
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Recall that Kg is the realisation of the poset PathΩ(S, T )g of factorizations

S
g1−→ T1

g2−→ . . .
gn−1−−−→ Tn−1

gn−→ T

of g in Ω. For each v ∈ V (S), we consider the restriction of these maps to Cv ∈ S:

(∗) Cv
g1−→ g1(Cv)

g2−→ . . .
gn−1−−−→ gn−1 ◦ · · · ◦ g1(Cv)

gn−→ g(Cv) ⊂ T.
Recall from Remark 6.11 that WO is the realization of an operad in posets, whose elements are
those of the free operad FO (identifying elements of FO with elements of WO in which all weights
of internal edges are 1). We will now use the restriction (∗) of (g1, . . . , gn) to Cv to construct a
labeled planar tree

(T, f, λ, p) ∈ FO(|v|; (|w|)w∈V (g(Cv)))

by induction on the height of the tree:

Starting at the root, we attach a vertex v̄ of valence |V (g1(Cv))|. The incoming edges of v̄ are
labelled in accordance with (g1(Cv), σv, τv), where σv is a chosen ordering of the vertices of the tree
g1(Cv), and τv is induced by the planar structure of g1(Cv) ⊂ T1. Specifically, the incoming edges
of v̄ are labeled by the vertices of g1(Cv) and ordered via the map σv.

For each vertex w ∈ g1(Cv), which is now an incoming edge of v̄, we can attach a vertex w̄ of
valence |V (g2(Cw))|. These incoming edges are labeled with the tuple (g2(Cw), σw, τw), as in the
previous case.

More generally, for vertices with height 2 ≤ i ≤ n, the tree T has a vertex ȳ for every vertex
y in (gi−1 ◦ · · · ◦ g1)(Cv), attached to the previously constructed vertex x̄ associated to the vertex
x ∈ (gi−2 ◦ · · · ◦ g1)(Cv) satisfying that y ∈ gi−1(Cx). We label ȳ by the tuple (gi(ȳ), σy, τy) with τy
induced by the planar structure of Ti, giving Cȳ the planar structure dictated by the chosen σy.

We now set f : E(T) → N to be the unique meaningful colouring which makes T an element of
FO(|v|; |w1|, . . . , |wk|). We set the ordering σ of the vertices w1, . . . , wk of g(Cv) in accordance to
the resulting planar structure on T. As the set of vertices of g(Cv) is also the set of leaves of the
tree T, this also defines λ. We note that the tree constructed this way is in no way reduced and
will, a priori, have many arity one vertices labelled by identities. We can use relations defining FO,
however, to remove such vertices and give an equivalent element in FO.

This assignment of the restriction of a factorisation (∗) to a labelled tree T respects the poset
structure of PathΩ(S, T )g and WO as refining the factorisation corresponds to undoing the collapse
of edges, namely if (g1, . . . , gn) ≤ (g′1, . . . , g

′
m), then the image (T, f, λ, p) of the first factorisation

can be obtained from the image (T′, f ′, λ′, p′) of the second by collapsing the edges corresponding
to the added levels, as collapsing level in the tree correspond in this construction to composing
consecutive maps gi.

In this way we can apply the structure map αP one vertex at a time and define a map

(A.1) αv : |PathΩ(S, T )g| ×
∏

wi∈V (g(Cv))

P(|wi|) −→ P(|v|)

and we can define
Ψ(P)(g) = (αv)v∈V (S).

By construction, the action of Ψ(P ) on morphisms commutes with composition in Ω̃, and thus

Ψ(P) : Ω̃op → S defines a functor. That the Segal map for Ψ(P) is an isomorphism for every T 6= η
follows immediately from our definition of Ψ(P).

The assignment P 7→ Ψ(P) requires only the data of underlying symmetric sequence of P and
the algebra structure maps αP . This data is natural under maps of WO-algebras and thus

Ψ : WO−AlgS −→ SΩ̃op

is a functor.

It remains to check that Ψ is an embedding of a full subcategory. Injectivity on objects follows
from the fact that if P and Q satisfy that Ψ(P) = Ψ(Q), then we necessarily have that P(n) = Q(n)
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for each n, as given by the value at the corolla, with agreeing symmetric group actions as given
by the isomorphisms of corollas, and the structure maps αP and αQ likewise must agree as the
value of the structure map on every element of WO is the value of the functor Ψ(P) = Ψ(Q) on

an associated morphism of Ω̃ obtained by choosing a level structure on the tree and interpreting
the collapse of each level of the tree as a morphism in Ω. As morphisms of WO–algebras are
determined by what they do on spaces P(n), we see that the functor is faithful. It is also full as
natural transformations between diagrams originating from WO–algebras, will necessarily respect
the WO-algebra structure of their values at the corollas.

�

Remark A.7. The reader might be tempted to compare the functor Ψ(−) from Theorem A.6 with
the homotopy coherent nerve of a topological operad P. This is a functor

w∗ : O−Alg→ SetΩ
op

defined by
(w∗P)(T ) = HomOp(WΩ(T ),P),

where WΩ(T ) denotes the Boardman-Vogt W -construction applied to the free operad generated
by a tree T (Example 2.4). The functors Ψ and w∗ are not equivalent on operads, though if
one has a WO-algebra P which happens to be an operad then one can define a dendroidal space
XP ∈ SΩop/w∗P, where the later denotes the slice category. For more on this point of view, see
[32, Remark 6.2] or [5, Corollary 1.7].
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[15] Kosta Došen and Zoran Petrić. Hypergraph polytopes. Topology Appl., 158(12):1405–1444, 2011.
[16] W. G. Dwyer and D. M. Kan. Equivalences between homotopy theories of diagrams. In Algebraic topology and

algebraic K-theory (Princeton, N.J., 1983), volume 113 of Ann. of Math. Stud., pages 180–205. Princeton Univ.
Press, Princeton, NJ, 1987.

[17] Daniela Egas Santander. Comparing fat graph models of moduli space. arXiv preprint arXiv:1508.03433, 2015.
[18] Eva Maria Feichtner and Bernd Sturmfels. Matroid polytopes, nested sets and bergman fans. Portugaliae Math-

ematica. Nova Série, 62(4):437–468, 2005.
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