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ABSTRACT. We use algebraic arc complexes to prove a homological stability result for symplectic
groups with slope % for rings with finite unitary stable rank. Symplectic groups are here interpreted
as the automorphism groups of formed spaces with boundary, which are algebraic analogues of
surfaces with boundary, that we also study in the present paper. Our stabilization map is a rank
one stabilization in the category of formed spaces with boundary, going through both odd and
even symplectic groups.

1. INTRODUCTION

Let R be a commutative ring. The symplectic group Sp,,, (R) is the automorphism group of the
hyperbolic space H®", where H = (R?, \y) is R? equipped with the non-degenerate alternating
form Ay = (_01 é) A pair (M, ), with M an R-module and A an alternating form, is called
a formed space, and one has traditionally studied the stability properties of symplectic groups as
coming from stabilizing by direct sum with copies of H in the category of formed spaces.

In the present paper, we improve the best known stability range for the homology of symplectic
groups in the case of rings R with finite unitary stable rank usr(R) (see Definition 2.21), by working
instead in the new category Fy of formed spaces with boundary (M,\,0). Here 0 : M — R is
the additional data of a linear map, which we think of as a boundary. We then replace the rank
two stabilization map @ H by a rank one stabilization #X with the object X = (R,0,id) of Fy,
where # is a monoidal structure on Fy, with the property that both X#29 and X#29%1 are closely
related to 9. More specifically, there is an identification Spy,(R) = Aut(X#2"*!), while the
intermediate odd symplectic group Spy,,_1(R) := Aut(X#2") identifies with a parabolic subgroup
in Sp,,,(R). These particular odd symplectic groups have appeared elsewhere before e.g.; in [5] or
in [17, 16] in the context of homological stability, but maybe defined in a more ad-hoc manner.

Our main result is the following:

Theorem A. Let R be a commutative ring with usr(R) < oo and set ¢ = 0 if R is a PID, and
¢ = 2usr(R) + 2 otherwise. Then the map

H;(Sp,,(R);Z) — Hi(Sp,,4+1(R); Z)

is an epimorphism for i < "3, and a monomorphism for i < ”_TC_?) (n odd) and for all i (n is
even). In particular, restricting to even symplectic groups we get that

H;(Spay(R); Z) — Hi(Spag42(RR); Z)

2g9—c

is an epimorphism for + < == and an isomorphism for i < 29—7;_2.

The above slope 2/3 stability result improves the earlier results of Charney [3, Cor 4.5] and
Mirzaii-van der Kallen [13, Thm 8.2], who gave a stability result for even symplectic group with a
slope 1/2 for respectively Dedekind domains and rings with finite unitary stable rank. The range
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given here is however not optimal for finite fields, where stability is known to hold with the better
slope 1 instead by Sprehn and the second author [20] (for fields other than F3), and for local
rings with infinite residue field, where a slope 2 result was recently proved by Schlichting [16].
Rationally in the case R = Z, the stability slope is known to be exactly 1 by [21].

Finite degree coefficients. As is often the case for homological stability results, stability also
holds for finite degree coefficient systems. A sequence of compatible Sp,,(R)-representations M,,
is here called a finite degree coefficient system if the maps M,, — M, 41 are injective with trivial
iterated cokernels, and a certain braid condition holds, see Definitions 5.3 and 5.5.

Theorem B. Let R be a commutative ring with usr(R) < oo and set ¢ = 0 if R is a PID, and
¢ = 2usr(R) + 2 otherwise. Let M, be a coefficient system of degree . Then the map

H;(Sp (R); Mn) = Hi(Sppi1(R); M)
is an epimorphism for ¢ < %&"H and an isomorphism for ¢ < %3“2

Stability results for even symplectic groups with finite degree coefficient systems appear in [15,
Thm 5.15-16] and [4, Thm 3.25], with a stability slope 1/2 (corresponding to 1/4 in terms of the
rank n). One should though note that, while examples tend to fit in both our framework and the
framework of [15, 4], the definition of finite degree coefficients in those papers actually differs from
ours. See Remark 5.7 for more details.

Abelian coefficients. Theorem 5.2 states that stability also holds with abelian coefficients M,
that is those systems of coefficients coming from an action of H;(Sp,,(R);Z) = H1(Sps(R);Z) on
a fixed module M, with essentially the same bounds as in Theorem A, improving again on earlier
results of [15, 4]. However this is only relevant when H;(Sp,,(R);Z) is non-zero. In particular it
is not relevant for R = Z by [1, Lem Al].

Geometric interpretation. When R = Z, the symplectic group Spy,(Z) is also the automor-
phism group of the middle homology of a surface of genus g that preserves the intersection form. In
this case, the sequence of odd and even symplectic groups naturally fits in the following diagram,
where B,, denotes the braid group on n elements and I'y, = 7o Diff (S, ;) the mapping class of a
surface of genus g with b boundary components:

By By Bs e Bag11 Bagi2
FO,l F072 Fl,l e Fg’1 Fg’Q

R | |

Spo(Z) — Spy(Z) — Sp(Z) — ... —= Spgy(Z) — Spag1(Z) — ...

Here the map Byyq; — I'y; identifies the braid group with the hyperelliptic mapping class group,
the subgroup of I'y; that preserves the hyperelliptic involution, while the map T'g; — Spyg; 1(Z)
comes from the action of diffeomorphisms on the middle homology of the surface, see Section 2.1.

The top two sequences of groups were used in [6] to give a short proof of the best known
isomorphism range for the homology of the mapping class group of surfaces, where the ranges
obtained precisely match those of Theorem A. The proof in [6] uses stabilization with a disc in a
certain category of bidecorated surfaces, and the present paper can be seen as an algebraic version
of this proof. As we will see in Section 2.1, there is a monoidal functor from the category of
bidecorated surfaces to that of formed spaces with boundary, and our stabilizing object X =
(R,0,id) is the image of the bidecorated disc under that functor.
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Note that the subgroup of Sp,,(Z) that is the image of the braid group under the above maps
has since be studied in [12], where they show that it also stabilizes.

Orthogonal and unitary groups. It is natural to ask whether Theorems A and B also hold for
orthogonal or unitary groups, that are often treated simultaneously to symplectic groups. Indeed,
these groups also identify with the automorphism group of a version of H®", in the context of
formed spaces with a different flavour of form parameters, with alternating forms replaced by
symmetric or Hermitian forms, see e.g. [19]. Our proof here however does not directly adapt to
these other groups. In fact, a naive adaptation of the framework presented here to symmetric or
Hermitian forms, stabilizing with the analogue of X in such contexts, relates instead to a different
family of groups, unrelated to stabilizing with hyperbolic summands. (See Remark 2.19 for more
details.)

Algebraic arc complexes and the proof of Theorems A and B. To prove Theorems A
and B, we use the general stabiltity machine of [15, 9]: we show that the stabilization maps con-
sidered come from the action of an Es-module (the braided monoidal subcategory of Fy generated
by X) on an Ej-algebra (the monoidal category Fy). In fact the results hold more generally for
the stabilization maps

Autr, (A#XT") — Aut g, (A#XFH

for A= (M, ), 0) any formed space with boundary. (See Theorems 5.1 and 5.8.)

Stability follows if one can show that a certain destabilization complez is highly connected.
Guided by the case of mapping class groups of surfaces, we identify this destabilization complex
with an algebraic version of the disordered arc complex of [6]. An arc in a formed space with
boundary (M, A, 0) is defined here as an element a € M such that d(a) = 1. Building on [18, Sec
6], we then define what it means for an arc to be non-separating and disordered in this algebraic
context, see Definitions 3.4 and 3.14.

As already noted in [18], the connectivity of the non-separating arc complex can be deduced from
that of a certain poset of unimodular vectors, see Proposition 3.10 and Theorem 3.7 that generalize
earlier results of [13, 4, 18]. We then deduce the connectivity of the disordered arc complex
(Theorem 3.16) mimicking the geometric argument of [6]. The proof uses the interplay between
the arc genus, that is the number of X—summands that can be split off, and the hyperbolic genus,
that is the number of H-summands one can split off. It requires most importantly having a good
grasp on how the arc genus behaves when “cutting along a simplex of arcs”. The key properties
of the ring used are the finite unitary stable rank, that allows cancellation of H—summands, and
the fact that, for rings with finite Bass stable rank and M with large enough hyperbolic genus,
any [ : M — R unimodular restricts to a unimodular map on some hyperbolic summand, see
Proposition 2.23. The stability slope 2/3 comes from the fact that the arc genus behaves just like
the geometric arc genus when cutting arcs, under our assumption on the rings, see Corollary 2.27.
It was surprising to us that this geometrically inspired argument works for rather general rings;
there are for example no restriction on the characteristic. All the way through, our results have
slight improvements for PIDs because of their special proporties recorded in Lemma 2.24.

The identification between the disordered arc complex and the destabilization complex requires a
weak cancellation property for formed spaces with boundary. We give in the paper two cancellation
results, with very different proofs: one valid for general rings with finite unitary stable rank, see
Theorem 4.1, and a second result that works for PIDs and is deduced from a classification of
formed spaces with boundary in that particular case, see Theorems B.3 and B.1.

Organization of the paper. In Section 2 we define the category of formed spaces with bound-
aries, and study its properties. We define and relate the arc and hyperbolic genera. Section 3
studies algebraic arc complexes and proves the high connectivity of the disordered arc complex.
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Section 4 gives the equivalence (up a skeleton) between the disordered arc complex and the com-
plex of destabilization. The results of Sections 3 and 4 are then combined in Section 5, to prove
the stability theorems.
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2. FORMED SPACES WITH BOUNDARY

In this section, we define a braided monoidal category Fy of formed spaces with boundary,
that is an algebraic version of the category of bidecorated surfaces of [6]. A bidecorated surface
is an (oriented) surface S equipped with two marked (oriented) intervals in its boundary. It
has a monoidal structure induced by gluing intervals in pairs. The category of formed spaces
with boundary defined here will be the algebraic shadow of the category of bidecorated surfaces,
with objects behaving like the first homology of the surface relative to the two intervals, with an
appropriately defined intersection form, and a “boundary map” corresponding to the boundary
map in the long exact sequence of homology groups. We will also construct a monoidal structure
on Fy that corresponds to the one of bidecorated surfaces.

We start by recalling what formed spaces are, in the context relevant to symplectic groups, that
is where the forms are alternating forms.
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Let R be a commutative ring.

Definition 2.1. A formed space is a pair (M, \) with M a finitely generated free R—module and
A: M ® M — R an alternating form on M, i.e. A is a R-bilinear map such that \(v,v) = 0 for
all v € M. We denote by F the category of formed spaces with morphisms the module maps that
preserve the forms.

The category F is symmetric monoidal, with monoidal structure @ induced by taking the direct
sum of modules and orthogonal direct sum of forms.

The hyperbolic form is the formed space H = (R?, \y) for Ay given in the standard basis by

the matrix
0 1
Mot = (_1 0).

The 2g-dimensional hyperbolic formed space H%9 is isomorphic to the formed space (Hy (Sg), A)
with Sy a closed surface of genus g and A the intersection pairing on Sy, and the symplectic group
Spay(Z) identifies with its automorphism group:

Sp2g(R) = AUt}—(H@g)a
see e.g. Example 6.1(i) in [13].
We will work with the following enhanced version of the category F:

Definition 2.2. The category Fy of formed spaces with boundary has objects triples (M, \,0)
where (M, \) is a formed space and 0 : M — R a linear map. Morphisms in Fy are structure-
preserving module maps.

The subcategory of formed spaces (M, A, d) with 9 = 0 is isomorphic to the category F defined
above. The case of particular importance to us is actually the opposite case, namely the triples
(M, A, 9) where 0 is surjective instead.

We define a monoidal structure on the category Fjy of such objects by setting

(M1, A1, 01)#(Ma, A2, 02) = (My © Ma, \i# 2,01 + 02)
where o
_ A1 1 02
MtAs = (—agal 2o > :
The monoidal unit is 0 := (0,0,0). On morphisms the monoidal structure is given by direct sum.
One checks that this monoidal structure is strictly associative.

Remark 2.3. While the above definition of the monoidal structure was guided by the geometric
gluing of surfaces, it is also a natural choice if one thinks of it purely algebraically. Indeed, an
object in Fp is a triple (M, A, ) with A € A2M" and € MV. There are natural isomorphisms
(My @ Ma)V = MY ® My and A?(M; @ M)V = A2MyY @ A’My © MY ® M,/, making the choices
O1#0s = 0182 and \iF s = A\ ® Ao @ 010 with respect to the above canonical decomposition,
“most obvious” choices. These correspond to the choice given in the above definition.

Note that the functor F — Fy taking (M, A) to (M, A,0) is a monoidal functor. On the other
hand, the forgetful functor F5 — F is not monoidal. We will see below that the monoidal structure
of Fj is chosen so that there is a monoidal functor from the category My of bidecorated surfaces
mentioned above, to Fj.

Our main example of a formed space with boundary (and also the minimal such object with 0
surjective) is

X =(R,0,id).
It is an example than can be associated to the disc in the category of bidecorated surfaces, as we
will explain in the following section.
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FIGURE 1. Two bidecorated surfaces (S, Iy, I1) and their associated surface ST =
SUH
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N

2.1. Formed spaces with boundary from bidecorated surfaces. Recall from [6] the category
My of bidecorated surfaces. It has objects triples (.5, Iy, I1), where S is an oriented surface and
Iy, I; are two disjoint compatibly oriented intervals marked in its boundary, and morphisms are
mapping classes fixing the marked intervals.

To a bidecorated surface S = (S, Iy, I1), we associate a new surface ST = S U H obtained from
S by attaching a handle H = I x I to S along the identification of 91 x I with Iy U I; — 95.
(See Figure 1.) Since (S, Iy, 1) is oriented datum then S* is naturally oriented, so there is
a natural intersection pairing on Hi(S™;R) induced, under the Poincaré duality isomorphism
H1(S*;R) = HY(ST,85%; R), by the (relative) cup product H!(ST,85%: R)@ H'(S*,05; R) =
H?(S*,05%; R) = Ho(ST; R) = R. The long exact sequence in homology H.(—) = H.(—; R) for
the pair (ST, H)

0=Hi(H) — Hi(S*) — Hi(ST, H) = H (S, Iy UL,) % Ho(H) = Ho(S™)
shows that there is an isomorphism H(S™) = H;(S, Ip U I1). The inverse map
M = Hy(S,IyuI) — Hi(S™)

is given explicitly by representing classes in M by collections of arcs and circles, and closing any
arc component in Hy (S, Io U I1) using the core I x {3} of the handle.
Now we define a functor
F: My — Fy

by

F(S, Iy, Il) = (Hl(S, Iy u Il), A, 8)
where 0 : Hy(S,Ip U ;) — ﬁO(IO U I) & R(by — by), for by,b; the midpoints of Iy, I, is the
boundary map in the long exact sequence for reduced homology, and A is the intersection pairing
on Hq(S"), identified with H;(S, Io U I1) by the above isomorphism. On morphisms, the functor
F' takes a mapping class to its induced map on relative homology.

Remark 2.4 (Curved forms). The above construction of the surface ST may seem a little ad hoc.
It is possible to instead work directly with (H1(S, IopUI;),d), replacing the alternating form A with
a curved form )| satisfying the condition X (x,y)+ N (y,x) = 20(2)d(y). This “curved” symmetry
equation arises indeed geometrically when defining an intersection product on Hy (S, Io U I1): one
can define an asymmetric intersection product X (a,b) on classes a,b with potentially non-trivial
boundary, by choosing a representative of a with boundary in (0, %) in Iy and I; and for b with
boundary in (%, 1) instead. Ome can check that the resulting form is not alternating on classes
that have non-trivial boundary, and instead satisfies the above equation.

There is an equivalence of categories between the category of alternating forms with boundary
(M, \,0) and that of curved forms with boundary (M, X, d), where the correspondence is given
by setting N (z,y) = Az, y) + 9(x)0(y). This form N will play a role a few places in the paper,
for example to define what it means for a formed space with boundary to be non-degnerate, see
Section 2.3.
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Note that adding a handle to form the surface S* from the tuple (S, Iy, I1), interpreted as the
association (H1(S,IpUI),\,0) — (H1(ST),\), becomes the forgetful functor Fy — F. Note also
that the formed space (H1(S, IoU11), A, 9) contains (H1(S), A|g,(s),0) as a subspace, where Hj(.S)
identifies with ker(9d), and where |y, (s is the standard intersection pairing of H;(S). This type
of subspace will play an important role below. (See also Remark 2.8.)

Example 2.5. Consider the disc D = (D?, Iy, I1) in the category M. We have
F(D) = (H{(D* Iyu 1), 0) = (R,0,id) = X.

Explicitly, Hq(D?, Iy, I1) = R generated by an arc p from by to by in the disc. The surface (D?)*
is a cylinder and the generator if Hy((D?)7") is represented by the middle circle in the cylinder.

Recall from [6, Sec 3.1] that the monoidal structure of My is defined for Sy = (S, I3, I1) and
Sy = (S2a13’112) by
S1#S59 = (SlUSQ/N, Iy, Il)
where, for 7 = 0,1, the equivalence relation identifies the second half of I ]1 with the first half of
IJ2, and the interval I; is the union of the first half of I Jl and the second half of Ijz.
A particulary interesting example for us is the surfaces obtained as iterated sums of discs in
this category: by [6, Lem 3.1], there is an isomorphism

D¥9ti= (S Iy, 1), i€ {1,2}

to a surface of genus g with one or two boundary components, where the marked intervals lie in
distinct boundaries in the latter case.
Taking homology, we have

Hl(Sl # Sy, 1oL Il) = Hl(Sl,I(% |_|Ill) @Hl(SQ,Ig L 112),

with boundary map 0 = 0y + J2. The following proposition shows that the intersection pairing
of Hi(S1 # S2,Ip U I) identifies with the sum of the intersection pairings for S; and Sy, with the
sum defined above in the category Fy:

Proposition 2.6. The functor F : My — Fj is monoidal. In particular, for i € {1,2},
F(D#Qngi) = X#29+i = (R2g+i, /\X#2g+i,({“)X#2g+i)
where X = (R,0,id) = F(D) (see Example 2.5).

This result will be useful to have a geometric intuition for the formed space X#", and allow us
to import results from the geometric side to the algebraic side.

Proof of Proposition 2.6. Let S = Sy # S9 and (M;, \;, 9;) = F(S;). We need to show that F(S) =
(Ml @ Mo, A\, 01 + 62) with A = A # .

We first describe ST in terms of S and Si. Write H = HyU¢ H, for H = I x I, Hy = I x [0, 3],
H,=1x [} 1] and C = H,N H, is the core of the handle. We have

2
(S1#99)" = (S1UHp)Ue (S2UH,) ~ S Ui~ S;—,

where we denoted by H' and H? the handles attached to S; and Ss.

Using Mayer-Vietoris on the right-hand-side we find that the inclusions Sj C ST induce an
isomorphism of abelian groups Hi(S;") ® Hi(Sy) = Hi(SY), i.e. M = M; & M>. Moreover,
naturality of the long exact sequence of the pair and of Mayer-Vietoris gives that 0 = 91 + 0s.

Pick bases (ay,...,am—1,p) of Hi(S1,I} UI}) and (af,...,al,_q,p') of Hi (S, I? U I?) with
p,p’ arcs and the classes a; and a;- having trivial boundary. Consider the corresponding bases

(a1, ...y am-1,pm UC) of Hi(S]) and (a},...,al,_q,pl, UC) of Hi(Sy). In these bases, we see
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FIGURE 2. Transverse representatives of the extended arcs pUC and p'UC crossing
in H

that only the last generators of each basis have a potential intersection. In particular, we see that
the intersection pairing of the sum is correct on all the other generators.

Thus, to finish the proof we need to check that A\(p U C, p' UC) = 1. This intersection happens
purely in the handle H, where the arcs cross, due to the definition of the glued surface S; # Ss,
see Figure 2. O

Remark 2.7 (Choices of bases for X#" and their geometric description). The underlying module
of X#" is R".

As explained in Example 2.5, X = (R,0,id) identifies with F/(D) and 1 € R corresponds to a
generator of Hy(D?, Iyl I;) which we pick as the unique isotopy class of arc in the disc going from
Iy to I;. The standard basis of X#" = (R", ), d) then corresponds to the collection of arcs in D*”
from Iy to I going through each of the discs composing D*". These arcs are denoted p; in [6]; see
Section 4.1 of that paper for some of their properties.

An alternative geometric basis, more like that used in the proof above, would be the curves
a; = p; * Pz'_+11 (or in homological notation [p;] — [pi+1] for i = 1,...,n — 1), together with the
arc p,. The curves a; from a chain in the underlying surface of D**, that is a; and a;;1 have
intersection number 1 and curves further apart in the sequence do not intersect (see [6, Lem 3.5]).
One then needs an additional arc, e.g. py, to get a basis of Hy(S, Io U I7).

Remark 2.8 (Adding a handle H versus summing with X). We can reinterpret the surface
St = S U H defined above as the underlying surface of S#D since adding the handle H is
essentially the same operation as summing with a disc in the category Mo, with the only difference
that we forget the marked intervals after gluing H. The algebraic version of the identification
Hy(S,[,UI,) = H{(ST) = H (S#D), with their corresponding intersection forms, is the following:
for any (M, A, 0n) = (N, An,On)#X one has (ker(Ou), At |ker(9,,)) = (N, An) as alternating
forms. This fact will play a role in Section 3, in the proof of Lemma 3.13, when we study the
formed space in the complement of a split X-summand. It will also be proved at that point in the
more general algebraic context.

2.2. Braided monoidal structure. We will formulate our main stability result as stability of
the automorphism groups of objects of Fy with respect to the stabilization map summing with
the object X. To apply the framework of [15], or its generalization by Krannich in [9], one needs
an action of a braided monoidal category on the category Fy. We will define this action by giving
a braided monoidal structure on the subcategory of Fy generated by X. This structure will be
constructed using the geometric model, namely the category Mo.

In [6, Sec 3.2], it is shown that the monoidal category My is not braided, but that none-the-less
the disc-object D is a Yang-Baxter element in Mo, that is, it comes equipped with a morphism
T:D#D — D# D satisfying the braid relation:

(T # idD)(idD #T)(T # idD) = (idD #T)(T # idD)(idD #T).
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The underlying surface of D#D is a cylinder, and T is the Dehn twist along the middle circle of the
cylinder. It turns out that, just as in [6], the inverse Dehn twist 7! is actually most convenient
for our purpose. Given that F : My — Fjy is a monoidal functor, it follows that the pair (X, 3),
for 3 = F(T~1), is a Yang-Baxter element in Fy. What we will show here is that, unlike D, the
object X satisfies the stronger condition that the full monoidal subcategory of Fy generated by it
is braided, i.e. § is also natural in morphisms of Fy. (We prove the naturality property of 5 only
for completness. It is not as such necessary for our main results.)

Proposition 2.9. The twist 3 : X#2 — X#2 defines a braiding on the full monoidal subcategory
Fa,x of Fy generated by X. Moreover, the resulting block braid

B : X X#M 2y x#my X1

is explicitly given in matrix form, with respect to the standard basis of Z"™™ by the matrix
A 1 . ;
o= (g, ) with () = (217412

Proof. The hexagon identity follows from the Yang-Baxter equation, as a direct consequence of
the Yang-Baxter equation for T—1 [6, Sec 3.2]. The matrix description of 3, , can be read out
from the effect of block braids on the arcs denoted p; in [6], whose homology classes correspond to
the standard generators of Z"t™ under the functor F: The computation of the braiding on these
arcs is done in the proof of Proposition 5.7 in [6], and the matrix description for /3, ,, can be read
directly from this computation.

Left is to check naturality of the braiding, i.e. that for any ¢ € Aut(X#") C GL,(Z) and any
Y € Aut(X#™) C GLy(Z) we have By m o (6 DY) = (¢ & ¢) 0 Bpm. This holds if Ay, = Ay =
1 A n, which we check now.

Explicitly, if ¢ and 3 are given in matrix form by matrices B and C, then

2Zjbj1 22jbjn

—2> . b ... —2> . bip
An,m¢ = An,mB = Z.:] ’ Z.:] ’

(—1)m+i2 >oibin .. (—1)m+i2 >, bin
and A ‘ A
QZZ-(—]_)H—ICM QZi(—l)H_lCli . QZZ-(—]_)H—ICl

VApmn = ChApm = QZi(_l)i+1CQi 221-(—1)”10% 2Ei(_1)i+102

22( )z+1m 22( )z+1 Coni - - 22( )z+1

The map 9 is represented by the matrix 0 = (1 1 ... 1) with respect to the standard basis,
hence the equation 0B = 9 gives that each column in B must sum to 1, giving the identity
Am,nB = Am,’nu

To check that C'A,, , = A, » we will use both the invariance of 9 and A: The fact that 0C = 0
gives that CT(879)C = 0709, and since CTAC = ), we have that CTN'C = ) where \' = A+ 0970

is the “curved” form of Remark 2.4. In matrix form, we have

1 2 2 ... 2 1 -2 2 ... (=1)m1'2
0 1 2 ... 2 0 1 -2

)\/: with ()\/)—1:
0 0 1 2 0 0 1 -2

o
o
—_
o
o
=
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from which we can compute that

(1t 1
: ~1
(A/)_laT — .1 — (—l)m_l )
1 (=1)m-t
Now putting together that CT = NC~1(X)~! and CT9T = 97, we get that C((\)~197) =
(N)~19T, from which the identity C' Ay, = Apmpn follows. O

Remark 2.10. The last part of the proof recovers the fact, also noted in [12, Cor 3.5], that the
vector v, = e; — eg + --- + (—=1)""le, in Z" is preserved by the automorphism group of X7#".
This special vector behaves differently depending on whether n is odd or even: in the first case
A(vp, —) = 0 and it generates the radical of A, while in the second case A(vy,, —) = 0. The existence
of this special vector of two different flavours will be visible in our description of X#” in the odd
and even case in Proposition 2.16 below. Moreover, from the point of view of the curved form ),
which is non-degenerate on X#", the vector v, is characterized by X (v,,—) = 0 on X#" as one
can check by evaluating on the standard basis.

Remark 2.11. Note that the failure of naturality of the twist T" in the category Ms is measured
by conjugation with the hyperelliptic involution on one of the factors (see [6, Prop 5.7]). Now the
hyperelliptic involution acts as —1 on each of the standard generators [p;] of X** = Hy(D#", IoI;)
and hence the obstruction to naturality in the category Ms disappears when going to Fjy.

2.3. The hyperbolic genus and the arc genus I. Recall from above the hyperbolic formed
space H = (R?,\y) in F. Let H¥ = H @ --- & H its g-fold sum.
The hyperbolic genus (called Witt indez in [4]) of a formed space M = (M, \) € F is

gu(M,\) :=max{g e N | M = H®9 oM’ in F}.

Remark 2.12. We could likewise define the hyperbolic genus of a formed space with boundary
(M, X\, 0) € Fy using the same formula, replacing H by the object (H, 0) of Fy, setting the boundary
map to be trivial. Note that (H,0)79 = (H®9,0) since the boundary map is trivial. In fact, the
(H,0)—genus of (M, \,0) in Fy is really the same thing as the hyperbolic genus of (ker 9, A|xer)-
It will appear in this latter form in our computations below.

For the rest of the paper the most relevant quantity will be the arc genus (or X—genus) of a
formed space (M, \, 9), defined as

gx (M, \,0) ;= max{g € N | M = M'#X"9 in Fp}.

This is the quantity that will rule the relevant stability bounds.

The above definitions of hyperbolic and arc genus are based on how many copies of H or
X one can split off (M,\) or (M, \,0). We will see below, in Lemma 2.14, that the splitting
condition “comes for free” for such objects. The result will use that the formed spaces X#" are
non-degenerate, in a sense that we define now.

Recall that a formed space (M, \) is non-degenerate if the form A : M ® M — R is a non-
degenerate pairing. The hyperbolic space H® is for example non-degenerate for every g. For
formed spaces with boundary, we generalize this definition as follows: Recall that the curved form
associated to a formed space (M, A, d) is the form N defined by X (x,y) = Az, y) + 9(x)d(y).

Definition 2.13. A formed space with boundary (M, X, 0) is non-degenerate if the curved form
N : M®M — R is a non-degenerate pairing, i.e. if the map M — MY, m — N (m,—) is an
isomorphism.
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The formed spaces with boundary X#" are non-degenerate for any n > 1, as can be checked by
inspecting their curved forms, whose matrix is given in the proof of Proposition 2.9 above.

Lemma 2.14. (i) Any morphism H®Y ER (M, ) in F gives an orthogonal splitting
(Mv )‘) = HPI @(Im(f)la )"Im(f)J-)'

(ii) Any morphism X#7 EN (M, )\, 0) in Fpy gives a splitting

(M, X, 0) = (M \ Im(f), \lyi\tm(p)> Ol anam( ) #EX "
where for N € M welet M\ N:={me& M: XN(n,m)=0Vn € N}.

Proof. Part (i) follows from the fact that H®Y is non-degenerate, see e.g. [4, Chap 3]. The same
proof applies to Part (ii), as we detail now.

Part (ii): Since ) is non-degenerate on X#" then f has to be injective and we get a splitting
M = (M \Im(f))@Im(f) as R-modules. Observe that 9 = 9|y/\im(f) © 9|m(s) sPlits with respect
to the above decomposition. By definition, if x € M \ Im(f) and y € Im(f) then N(y,z) =0
and hence A(y,z) = —9ydx so that A also agrees with the sum A|yp\ ym(p)#FAm(y) On cross-terms.
Thus, we get

(M, A, 0) = (M \Im(f), N an\tm(s)> Ol an\im() FIM(F)s Altm(p)s Oltm(r))-
Since f is injective and preserves the data then (Im(f), Alim(s) Oltm(y)) = X#" as required. O

The following enhanced version of the above splitting result will be useful later, when identifying
the destabilization complex:

Lemma 2.15. Let f, f' : N#X#" =5 M be isomorphisms in Fy and suppose that flxn = f|xn.
Then f' = fo (g#idxn) for g € Autr, (N).

Proof. By the definition of # and the previous lemma it follows from the assumption that f(IN) =

M\ f(X#") and that f/(N) = M\ f(X#"). Since f|xn = f'|xn, then f(N) = f'(N), and the
map g = f' o f!|y gives the result. O

Thus, to get bounds on the genera it suffices to produce maps from H® or X#" and the
splitting is automatic. We will show later in Section 2.5 that the hyperbolic and arc genera are
related. We start by relating now the formed space X#" to the hyperbolic space H®9.

Proposition 2.16. There are isomorphisms of formed spaces with boundary
X#29 2 (HP9,0 = Neg,—)) = (R¥, Ayos, 0= Meg, —))
X#HH > (YD 0) # X = (RY DR, M\yes ©0, 0 = prg).
Proof. We will show the result by induction on the number n of X—summands, doing the cases

n =1,2,3 by hand first.
For n = 1, the result is trivial.

For n = 2, our definition of X#2 is (R27>‘ = _01 (1)

standard basis vectors in this basis. Then e := x — y, f := y defines a new basis such that

XH#H2 _ (R(e,f>,)\ — (_01 (1)> ,0 = (O 1) = )\(67_)>

> ,0 = (1 1)) Let z,y denote the

as required.
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For n = 3, our definition of X3 is

0 1 1
#3 _ 3 _ | _ —_
X# = (B2 = Lol D=0 1 1))

Let z,y, z denote the standard basis vectors in this basis. Thene:=z—y, f :=y—2z,u:=z—y+=2
defines a new basis such that

0

X#3 = (R<e, fra= -1

D=(0 0 1)) =(,04X
0

S O =
o O O

as required.

For an even number n = 2g > 4, we have that X#29 = X#29-14 X which by induction is
isomorphic to (H9™1, 0)#X#X = (H971,0)#X#2. The result then follows by applying the above
description of X#2.

Finally for and odd number n = 29 + 1 > 5, we have that X#29t1 = X#2(9-D+14 X#2 which
by induction is isomorphic to (H9™1, 0)#X#X#2, and the result follows from the above expression
for X#3, O

Proposition 2.17. Aut(X#%9) = Stabgp, (r)(eg) and Aut(X#29+1) = Spoy(R).
See [12, Thm 3.4] for an alternative proof of this result.

Proof. By Proposition 2.16 we have Aut(X#29) & Aut(H®9,0 = A(ey, —)), but using that H® is
non-degenerate we can re-write the right hand side as Aut(H®9,e,) = Stabsp,,(r)(eq)-

By Proposition 2.16 we have Aut(X#2971) = Aut((H®9,0)#X). Let AV : M — M" be defined
by AV(m) = A(m,—). Then d71(1) Nker \V is preserved by any automorphism, and by the
above description it consists of a single element = which generates X in (H%9,0)#X. Moreover,
(x)t = HPY = ker  must also be preserved by any automorphism. Thus, Aut((H®9,0)#X) C
Aut(H®) = Spy,(R), which implies the result as the other inclusion is trivial. O

In order to get our main results, we need to compare the classical stabilization map on (even)
symplectic groups induced by — @ H in the category F with our double stabilization map induced
by —#X7#2 in Fy. The following result says that the two stabilization maps agree.

Lemma 2.18. The following diagram commutes

—#idx —F#idx

Aut(X#29+1) Aut(X#29+2) Aut(X#29+3)
l incl i incl l
SPag(R) ——— Stabs,, ) (cg1) —— = Spy, o(R)

where the vertical maps are the isomorphisms obtained in Proposition 2.17 and the horizontal
maps are the stabilization maps. Moreover, the bottom horizontal composition is — @ idy.

Proof. The isomorphism Aut(X#26+!) = Sp, (R) comes from the identification X#29T1 = %9 4 X
of Proposition 2.16, together with the fact that the last X summand is necessarily fixed by au-
tomorphisms, because it is generated by the only boundary 1 element x = v, that is orthogonal
to ker d;. The isomorphism Aut(X#29+2) = Stabsp, ., (r)(eg) is obtained from the previous one,
using first that
X #2092 X#2g+1#X = P9 #&){#27

and then using the explicit identification given in the proof of Proposition 2.16 (with x = v,
and y = z449) to write X#2 = (H{eg+1, fo41),0 = Aeg+1,—)), where eg11 = vy — T2542 and
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fé 11 = T2g+2. In particular, commutativity of the first square follows from the fact that if

¢ € Aut(X#QQH) then ¢#idx fixes vy — X242 = €441 since it fixes both v, and x9442.
From the proof of Proposition 2.16, the isomorphism Aut(X7#29+3) = SPag42(R) is obtained
from the 2g 4 1 case, using first that

X#23 — x#UHL U XH#2 _ yPI L XL XH2 — YO H 4 X

where for the last isomorphism we have X#3 generated by Vg, T2g+2, T2g4+3. Now following the
identifications given in the proof of that result, we see that the last H-summand has a new
hyperbolic basis (€g+1, fg+1) = (Vg — T2g42, T2g4+2 — T2443), while the last X-summand is generated
by vy —22g42+224+3. In particular notice that ey 1 is the same as before while f;11 = fé+1 — 2443,
and that the last X-summand is generated by eg41 4 22443 := vg41. Hence, if ¢ € Aut(X#29+1) =~
Stabsp, ., (r) (eg+1), its image p#idy in Aut(X#29+3) fixes e,11, because ¢ fixes it, and fixes the
last generator xog43. Hence it fixes both the last H-summand and the last X-—summand. Thus,
the second square also commutes. The fact that the bottom composition is just — @ idy follows
by construction. O

Remark 2.19 (Other form parameters). The orthogonal group O, ,(R) and the unitary group
Upn(R) can both be defined, just like the symplectic group Sps, (R), as the automorphism group of
the hyperbolic space H", just changing the form parameters, working with quadratic or Hermitian
forms instead of alternating forms, see e.g. [13]. The category Fy can be defined in these other
contexts, and the object X exists just as well. Adapting accordingly the definition of the monoidal
structure in Fy, we can also ensure that X#X = (H, ). However, it will no longer hold that X#"
has a large hyperbolic genus as n increases, and hence the sequence of groups Aut(X#") will not
be related to the classical groups Oy, ,(R) and U, ,(R) in those cases. For example, in the case of
symmetric forms one can check that over Z the form associated to X#" has signature (1,n — 1)
and hence its hyperbolic genus is 1 for any n > 2.

Remark 2.20 (Direct sum monoidal structure). The category Fy has a monoidal structure #
as discussed in Section 2, but it also has a more obvious monoidal structure @ given by direct
sum (Mi, A1,01) @ (Ma, Ao, 02) = (M1 & Ma, \1 @ A9, 01 + 02). This second monoidal structure is
symmetric but not relevant for our purposes since Ayen = 0 for all n so {X®"}, > is unrelated to
symplectic groups. However, by Proposition 2.16 X#29 g X#2h > x#2(9+h) g0 the full subcategory
C of Fy with objects formed spaces with boundary which are isomorphic to some X#29 for g > 0,
carries two natural monoidal structures: # and @. It turns out that they are equivalent as
monoidal structures but not as braided monoidal ones (hence in particular the face maps of the
corresponding destabilization complexes are a priori different). More precisely,

(i) The identity functor F = Id¢ : (C,®) — (C, #) is strong monoidal. In fact, we can give an ex-

plicit example of strong monoidality L for the functor F' as follows: given M; = (M;, A\;,0;) €
Fy for i € {1,2} we let

Lagy vy F(MY)#F(My) —=— F(My & My)

(z,y) » (z — (Gy) - ma,y),

where m; € M; is uniquely characterized by 9; = \;(m;, —).
(ii) There is no non-zero braided strong monoidal functor (C,®) — (C, #).
Part (i) can be checked explicitly using Proposition 2.9 and Remark 2.10 and using that 9;m; = 0,
and part (ii) follows from the fact that the braidings of Proposition 2.9 never square to the identity
on non-zero modules.
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2.4. Properties of the base ring. In this section we will address the question of which (com-
mutative) base rings R satisfy the main results of this paper. These conditions will be some of the
so called “stability conditions”.

Recall that a vector m € M is called unimodular if it generates a split R-summand in M.
Equivalently, m is unimodular if there exits ¢ € M such that ¢(m) = 1. More generally,
a sequence (mi,...,my) of vectors in M is called unimodular if the canonical map R(mi) &
-+ @ R(my) — M is a split injection. Equivalently, (mi,..., my) is unimodular if there exist
Ply.veyPn € MY such that gi)l(m]) = 51'7]'.

Definition 2.21. [13, Sec 5 and Def 6.3]

(1) A ring R satisfies the stable range condition (S,) if for every unimodular vector (ro, ..., m,)
in R"*! there are tg, ...,t,_1 € R such that the vector (ro+toTn,...,"n_1+tn_17) € R®
is unimodular. If n is the smallest such number we say that R has stable rank sr(R) = n,
and it has sr(R) = oo if no such n exists.

(2) The wunitary stable rank usr(R) is the smallest number n > sr(R) and such that the
subgroup ESpao,+2(R) of elementary matrices acts transitively on the set of unimodular
vectors in R?"2,

The group ESpan+2 is defined in [13, Sec 6]. We will not use the explicit description of this
group, but rather the transitivity and cancellation properties derived from the unitary stable rank
condition in [13, 4].

By definition, sr(R) < usr(R). The following are some examples of rings with bounds on the
unitary stable ranks.

Example 2.22. [13, Ex 6.5]

(i) A commutative Noetherian ring R of finite Krull dimension d satisfies usr(R) < d + 1. In
particular, if R is a Dedekind domain then usr(R) < 2 and for a field k, the polynomial ring
K = k[ty, ..., t,] satisfies usr(K) <n + 1.
(ii) More generally, any R-algebra A that is finitely generated as an R-module satisfies usr(A4) <
d+ 1 for R again a commutative Noetherian ring of finite Krull dimension d.
(iii) Recall that a ring R is called semi-local if R/J(R) is a left Artinian ring, for J(R) the
Jacobson radical of R. A semi-local ring satisfies usr(R) = 1.

The following result may be seen as somewhat surprising, as it gives a good behavior of hy-
perbolic summands under a genus condition ruled by the stable rank sr(R), and not the unitary
stable rank usr(R). In the following section, we will combine this result with finiteness of the
unitary stable rank to deduce some important properties of the hyperbolic genus that will be used
for the rest of the paper.

Proposition 2.23. Let R be a (commutative) ring with sr(R) < oco. Let (M,\) € F with

g (M, \) > @ and let [ € MY be unimodular. Then there is a hyperbolic summand H =
(H, A\ g) C (M, ) such that [|g is unimodular in H".

Proof. We will proceed in two steps, the first one is a special case and the second one is to deduce
the general case from it. Write g := g (M, ).

Step 1. Suppose first that (M, \) = HP ©(R, 0). Forgetting the form, we can identify M = R29+!

as an R-module. Denote x1,...,72441 the standard basis vectors of R?9+1 where the first 2g
vectors span H®Y and Z2g+1 spans the summand (R, 0).
Since [ is unimodular then (I(z1),...,l(x2),(z24+1)) € R?*9*! is a unimodular vector. By

assumption 2g > sr(R), so by definition of the stable rank there exist ¢,...,%t2, € R such that
(Uz1) +t1l(m2g41), - - - Umog) +t2gl(w2911)) € R is unimodular. Thus, there exist ai, ..., a5 € R
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such that Z?il ai(l(x;) + til(z2941)) = 1. Note that the vector (ai,...,azs) € R?9 is necessarily
itself also unimodular.

Now consider u = (ugp,u1) € R @ R = M, where ug = (Zfil a;x;) and u; = (Zfil ait;)Tag41.-
By construction [(u) = 1, and ug is unimodular. Let v € H®Y be such that A(ug,v) = 1. Now
we also have A(u,v) = 1 since xg441 is orthogonal to H®9. Then H = (u,v) C M is a hyperbolic
summand by Lemma 2.14(i), and it has the desired properties.

Step 2. Now consider a general formed space (M, \). Up to isomorphism, (M, \) = HPI ©(N, Ay).
Since [ is unimodular, then there is some z € M such that [(z) = 1. Write x = ¢ + 21 with
1o € H®9 and 1 € N. Since N is orthogonal to H®? and any vector is isotropic, we get a (not
necessarily injective) morphism in F

¢ =id @ : H@Q@(R7 0) — HYI @(Nv)“N) = (M7 A)

Note that the pull-back map I’ := [ o ¢ is unimodular since I'((zg,1)) = l(zg + x1) = 1 by
construction. Thus, by Step 1 there is a hyperbolic H C H®Y ®&(R, 0) such that '| is unimodular
in HY. Hence, by Lemma 2.14(i), ¢(H) C (M, )) is a hyperbolic summand and by construction
U ¢(zry is unimodular in ¢(H)", as required. O

Since PIDs have finite unitary stable rank, all of the above applies to them. However, we will in
the following treat the case of PIDs separately, because PIDs have special properties that allow to
get slightly better results than for general rings. We summarize these properties in the following
lemma:

Lemma 2.24. Let R be a PID and M a finitely generated free module. Then

(i) If m € M is non-zero then m = r - m’ where r € R and m’ € M is unimodular. Moreover,
GL(M) acts transitively on the set of unimodular vectors in M.
(ii) If A € A2M" is an alternating form on M then X is isomorphic to a canonical form

k

P dHa(R,0)

=1

such that dj|da]|---|di are non-zero and unique up to multiplying by units of R, and dH
means <R2 ( 0 d )
"\—=d 0
(iii) If (M, \) € F then gy (M, N) is half the number of units in the Smith normal form of a matrix
representing A.

Proof. To prove (i), we can assume M = R" for some n. Pick standard basis ej,...,e, and
let m = rie; + -+ + rpen, 13 € R. Then let r € R be such that there is an equality of ideals
(r1,...,rn) = (r) in R. We must have r # 0 since m # 0 and we can write r; = rr} for unique
ri € R. Thenlet m’ = rjei+---+r}e,. By construction r € (r1,...,7,) so there are ay,...,a, € R

such that r = a;r1+- - - aprp, so 1 = a1y +- - - aprl,. Thus, m' is unimodular and m = rm’, proving
the statement.

The moreover part follows by Smith normal form since we can assume without loss of generality
that M = R™.

The proof of (ii) can be found in [14, Theorem IV.I]. It is stated for skew-symmetric forms in
characteristic not 2, but the same proof works also for alternating forms in characteristic 2.

Part (iii) follows immediately from (ii) as any two matrices representing A will have the same
Smith normal form, and the Smith Normal Form of the canonical form defined above is given by

diag(dl,dl,...,dk,dk,O,...,O). ]



16 ISMAEL SIERRA AND NATHALIE WAHL

2.5. The hyperbolic genus and the arc genus II. Our goal now is to relate the hyperbolic
and arc genera and then get bounds on how much the arc genus can decrease when taking kernels
of linear functionals. We will later define the operation of “cutting arcs” in a given module, see
Section 3.3, and these results will imply bounds on how the arc genus decreases when cutting arcs.
Given a formed space with boundary (M, \, ), we will control its arc genus using the hyperbolic
genus of (M, ) and that of the kernel of 9. To begin with, we summarize some properties of
hyperbolic forms that will be used for the rest of the paper.

Proposition 2.25. Let R be a ring and (M, \) a formed space of genus g = gy (M, ).
Suppose that g > usr(R) + 1 or R is a PID.
(i) If f: H — (M, ) is a morphism in F, then gy (Im(f)*, Altm(pyr) =9 — 1.
(ii) The group Aut(H®9) = Sp,,(R) acts transitively on the set of unimodular vectors of R%,
(iii) If I € MY is unimodular, then there is a hyperbolic basis (e1, f1,...,€g, fg) in M such that
lle1) =1, I(e;) =0 for 2 < i < g, and I(f;) = 0 for all i. Moreover, if R is a PID, then for
any [ € H", there is a hyperbolic basis e, f such that I(f) = 0.
(iv) If I € MY is unimodular, then gy (kerl, A|ker;) > g — 1. Moreover, if R is a PID then the
unimodularity condition can be dropped.

Proof. Part (i): Let us first consider the case that R is not a PID. By Lemma 2.14(i) we have
(M,A) =2 H EB(Im(f)J-,)\hm(f)L). Hence gy(M,\) = g > 1+ QH(Im(f)J-,)\hm(f)L). For the
reversed inequality, we have that (M,\) = H® O(N,\y) = HB(HI ' @(N,\y)). Given that
g > usr(R) + 1, cancellation ([4, Cor 3.14]) gives that (Im(f)", AMlim(pyr) = HI"LD(N, An),
proving the result.

When R is a PID, use again Lemma 2.14(i) to write (M,\) = H@(Im(f)l,)\hm(f)l). The

number of units in the Smith normal form of a matrix representing A is thus the number of units
in the Smith normal form of a matrix representing )\|Im( £+ plus 2. This gives the result by Lemma
2.24(iii).
Part (ii): This follows directly from the definition of usr(R) under the assumption g > usr(R)+1.
When R is a PID, we need to check that the result also holds for small values of g. Let x € H®9 be
a unimodular vector. Since ) is unimodular, there must exist y € H®9 such that A(x,y) = 1. Thus,
(x,y) is a hyperbolic summand in H®9, and it follows from Lemma 2.24(ii) that the orthogonal
complement (x,y)* is isomorphic to H®9~1. This reduces the computation to genus 1, where
we have that Spy(R) = SLa(R) (since R is commutative), from which transitivity follows by
transitivity of the G La(R)-action, which can be shown by writing any unitary vector in coordinates
as a matrix and using that its Smith normal form is (1, 0).

Part (iii): Assume first that ¢ = gx(M,\) > usr(R)+ 1. Then g > sr(R) +1 > ST(QR), SO we

can find a hyperbolic summand H C (M, ) such that [|3 is unimodular by Proposition 2.23, and
write (M, \) = H&(M, ) by Lemma 2.14(i). Now use part(i) to deduce that gy (M,\) = g — 1
and thus we can write (M, \) = H®I &(N, Ay ) such that l|;e, is surjective.

Since Al es is non-degenerate then there is v € H®Y unimodular such that |es = A(v, —)|es.
Let (e1, f1,--., €4, fg) be a hyperbolic basis of H®9. By part (ii) we can apply an automorphism
of H®Y to assume without loss of generality that v = — f;, which gives the result.

Now suppose that R is a PID and consider first the case where [ € H" is any linear map. Pick a
hyperbolic basis e, f of H and let d € R be the generator of the ideal (I(e),l(f)), i.e. (d) = Im(l) C
R. If d = 0 then we are done. Otherwise, let A,C € R be such that d = Al(e) + CI(f). Now
consider the ideal (A,C) C R. We claim that (A, C) = R: let r € R be a generator for (A, C) then
A=rA", C=rC forsome A',C" € R, s0d =rd whered = A’l(e)+C"I(f) € (I(e),l(f)) = (d), so
d" = ud for some u € R. Thus, d = rd’ = rud, so ru = 1 so r is a unit, as required. Therefore, there
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are B, D € R such that AD — BC = 1. Hence there is a matrix (g IB; € SLy(R) = Spy(R),

sending the hyperbolic basis e, f to a new hyperbolic basis €/, f’ such that I(e') = d and d|I(f").
Applying the symplectic transformation f' +— " — (I(f")/d)e’ gives the last part of the statement.
Assume finally that [ € MY is unimodular with R a PID, and let (¢/, f') be a basis of a
hyperbolic summand in M with I(f’) = 0 as just obtained. Consider M’ =< ¢/, f’ >+ M. Since
[ is unimodular, there is some x € M’ such that I(te'+x) = 1 for some t € R. Let f" =te’+x+ f'.
Then I(f”) =1 and A(€¢/, ) =1 so H = (¢/, f"") is a new hyperbolic summand of M in which [ is
surjective. Now we can proceed as in the non-PID case, using the results already proved in part
(i) and (ii).
Part (iv): In the non-PID case, this folows from part (iii) by considering (es, fa,...,eq, fg). In
the case that R is a PID, write (M, \) = H®9 &(N, Ay). Consider the restriction of [ to H®9. By
non-degeneracy it can be written as Ao (v, —) for some v € HP9. If v = 0, the result is trivial.
Otherwise, use Lemma 2.24(ii) to write v = rv’ for some r € R\ {0} and v' € H®9 unimodular.
Since (v')* C H¥ is contained in ker!, it suffices to prove that g((v')*) > g — 1. This follows
from part (ii) since we can assume v’ = ej. O

Recall the formed space X = (R,0,id). Note that gx(H,0) = 0 for the simple reason that
(H,0) = (R?,\%,0) has no “arc” vector with boundary 1. More generally, if we want to have
gx (M, \,0) > 0 then we need 9 to be surjective, which in our context is the same as unimodular,
provided that M # 0. In general, we have the following result relating gx to gu:

Proposition 2.26. Let R be a ring and (M, X, 0) a formed space with boundary over R.
(a) gx (M, \,0) <1+ g (M, )+ gp(ker 9, Nkers)-
In particular, if gx (M, A, 9) > 2n then gy (M, A, 0) > n.
(b) If usr(R) < oo and one of the following three conditions holds:
(i) 9 is unimodular and R is a PID.
(ii) O is unimodular and gy (M, \) > usr(R) + 1.
(ili) gx (M, 90) > 2usr(R) + 2.
then equality holds: gx (M, \,0) =1+ gy (M, \) + gy (ker 9, Mkera)-

Proof. We first show that gx (M, \,9) < 1+ gy (M, ) + gy(ker 0, A|kers) always holds.

Pick a morphism X#" EN (M, \,0) with n = gx(M,\,0). If n = 2g, Proposition 2.16 gives
that the underlying form on X#" is #%9, and we can pick a hyperbolic basis in H#®9 such that
0 = Me1,—) so kerd D 0@ HI! in this basis. Using f, we then get that gy (M,)\) > g and
g (ker 0, Mkerg) > g — 1. If n = 2g + 1, Proposition 2.16 gives that f restricts to a morphism
of formed spaces (H%9,0) — (M, )\, 0). Thus, gu(M,\) > gy(kerd, Ners) > g and the in-
equality also follows. Finally, from the inequality, it follows that gz (M, \) < n — 1 implies that
gx(M,\,0) <2(n—1)+1=2n—1, giving the second part of (a).

Now we will show the reverse inequality gx (M, \,0) > 1+ gy (M, \)+gx (ker O, M|ker o) whenever
0 is unimodular and gy (M, \) > usr(R) + 1 or R is a PID, that is (b) assumption (i) or (ii). (Note
that when 0 is not unimodular we trivially have gx (M, A, ) = 0 and the inequality does not hold.)

By Proposition 2.25 (iv), gy (ker 0, Mkera) > gu (M, A)—1. On the other hand, g3 (ker 9, A|kerg) <
gx (M, N). Hence there are two cases: when M and ker d have the same hyperbolic genus, and
when they differ by one.

If g3(ker &, Akers) = g1 (M, ) = g then pick a morphism of forms H%9 2 (ker 0, A|kera)- By
Lemma 2.14(i), there is a splitting M = Im(¢) ® Im(¢4)*. By construction Im(¢) C ker @ and by
assumption 0 is surjective, 80 Olpy, (g1 must be surjective too. Pick z € Im(¢)* with o(z) = 1,
then ¢ @ x : (H¥P9,0)#X — (M, \,d) is a morphism, and the source is isomorphic to X#29F1 by
Proposition 2.16, giving the result by Lemma 2.14(ii).
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If gy(ker 0, Mkera) = gu(M,\) — 1: let g := gyn(M,)\). By Proposition 2.25(iii) with [ = 0
there is a morphism ¢ : H® — (M, \) such that 9(¢(e1)) = 1 and A(é(f1)) = I(g(e2)) =

- = 9(¢(fy)) = 0. In particular, ¢ gives a morphism ¢ : (H%9,0 0 ¢) — (M, ), ) and by
construction 0 o ¢ is surjective, hence unimodular. By Proposition 2.16 and Proposition 2.25(ii)
we have (H%9,00¢) = X#29, giving the required result by Lemma 2.14(ii). This proves (b) under
assumptions (i) or (ii).

Finally, if we assume that gx (M, \,0) > 2usr(R) + 2 then 0 is automatically surjective and
hence unimodular; and gy (M, ) > usr(R) + 1 by (a), which finishes the proof by the previous
part. O

The following corollary will give us in the next section an estimate of the arc-genus of forms
obtained after “cutting arcs”.

Corollary 2.27. If R has usr(R) +1 < oo, M has gx(M,\,d) > 2usr(R)+4, and | € MV
satisfies that {I,0} C MV is unimodular. Then

QX(keTla /\|kerla a|kerl) > gX(M7 A, a) —2.
Moreover, if R is a PID then no lower bound on the arc genus gx (M, \, ) is needed.

Proof. To prove the result, we will apply Proposition 2.26 to both M and its submodule ker .
Note first that the unimodularity condition implies that 9 and 9|ye;; € (kerl)" are unimodular.
If R is a PID, assumption (b)(i) then holds for both M and ker(1).
In the non-PID case, we check that both modules have large enough hyperbolic genus, checking
assumption (b)(ii) instead. Given that gy (M, ) > gy (ker 9, Alkera), we have that

1+ QQH(Ma )‘) >1 +gH(M7 )‘) +gH(keraa)‘|ker8) > gX(M7 )\76) > 2UST(R) + 47

where we used Proposition 2.26(a) for M for the second inequality (that holds with no assumption)
and our assumption here for the last inequality. This is only possible if g3 (M,\) > usr(R) + 2,
as it has to be an integer. Since [ € M" is unimodular, Proposition 2.25(iv) now gives that

(21) g'H(kGI‘l, >‘|kerl) > gH(M’ )‘) -1= UST(R) + 1.

Therefore, we can apply Proposition 2.26(b) to both (M, A, 0) and (ker !, A|er1, Olker1), in both
the PID and non-PID case, to get

gx(M, X\, 0) =14 gy (M, \) + g (ker 9, Mkers)
< 24 gy(kerl, N|kert) + g3 (ker 9, A|kers)
using again (2.1), and
gx (ker I, Alyer s, Olkert) = 1+ gao(kerl, Alkert) + gw(ker I Nker 9, Alxer inker )
> gu(kerl, Alxert) + gw(ker 9, Alkera)-
where we applied Proposition 2.25(iv) to [|kerg to get the inequality
g (ker I Nker 0, Akerinkera) > ga(ker 9, Ners) — 1.

Combining the above two inequalities gives the result. O

3. ARC COMPLEXES

In this section, we define algebraic analogues of arc complexes and study their connectivity.
Our goal is to define an algebraic version of the disordered arc complex of [6] and show that it
is highly connected. The proof of connectivity will be parallel to the proof in the geometric case,
using a complex of “non-separating arcs” along the way. We will see that algebraic arc complexes
are closely related to posets of unimodular vectors, classically used to study linear groups. And in
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Section 4, we will show that the algebraic disordered arc complex identifies with the destabilization
complex for stabilization by X, in the sense of [15].

We will work with three types of simplicial objects: simplicial complexes, semi-simplicial sets
and nerves of posets. We start with a short section detailing how connectivity results can be
passed between such types of objects in a specific situation. This will allow us to combine existing
results proved in the context of posets, proof techniques developed in the context of simplicial
complexes, while also using vertex ordering properties of semi-simplicial sets.

3.1. Simplicial complexes, semi-simplicial sets and posets. Recall that a simplicial complex
S has a set of vertices, and p-simplices are given as unordered collections of p+ 1 distinct vertices.
On the other hand, in a semi-simplicial set X = X,, there is a set X, of p-simplices for every p,
and face maps d; : X, = X,,_1 for each ¢« = 0,...,p. Applying face maps repeatedly associates to
any p-simplex o € X, an ordered collection of p + 1 not necessarily distinct vertices in Xy. And
this ordered collection of vertices need not determine o.

Any simplicial complex S can be given a semi-simplicial set structure by picking a total ordering
of its set of vertices, defining the face map d; : S, — S,—1 to be the map forgetting the ith vertex.
To S, we can also associate the semi-simplicial set S°?, with the same vertices as S and with a
p-simplex for each ordered sequence (ao,...,a,) of vertices of p-simplices {ao,...,a,} of S. So
S has (p + 1)! simplices for every p-simplex of S.

To S, we can likewise associate two posets: the poset sS of simplices of S, oredered by inclusion,
and the poset P(S) of sequences (ao,...,ap) of vertices of S with the property that {ao,...,a,}
is a p-simplex of S, ordered by refinement. That is, for every p-simplex of S, there is one element
in the poset sS and (p + 1)! elements in the poset P(S).

Lemma 3.1. Let S be a simplicial complex, with its associated semi-simplicial set S°"¢ and poset
P(S) as above. Then P(S) = sS8°"? is isomorphic to the poset of simplices of S°¢. Moreover, if
o ={ao,...,ap} is a p-simplex of S, and P(S)q,,....a, denotes the subposet of sequences in P(S)
that end with ao, ..., ap, then

P(8)ag,ap = 5 (Links() ")
is isomorphic to the poset of simplices of the order complex of the link of o = {ap,...,ap} in S.
Proof. The statement follow directly from the definitions. O

The geometric realization of a simplicial complex or semi-simplicial set has a copy of the standard
p-simplex AP for each p-simplex, glued along face inclusion, and the geometric realization of a
poset has a p-simplex AP for each length p chain ag < --- < a, in the poset. When we talk about
connectivity properties of such objects, we will always mean the connectivity properties of their
geometric realization. Recall that the geometric realization of the poset of simplices sS identifies
with the barycentric subdivision of §. In particular, S and sS have the same connectivity.

A simplicial complex S is called weakly Cohen-Macaulay (or wCM for short) of dimension n if
it is (n — 1)-connected, and the link of any p-simplex o in S is at least (n — p — 2)-connected.
Proposition 2.14 of [15] states that when S is wCM of dimension n, then S¢ is necessarily at
least (n — 1)-connected. Building on this result, the following proposition shows that, under the
wCM property, the connectivity properties of S, S°¢ and P(S) are closely related:

Proposition 3.2. Let S, S°"? and P(S) be as above. Then the following are equivalent:
(i) S is wCM of dimension n;

(i) 8o is (n — 1)-connected and (Links({aq, ... ,ap}))ord is (n — p — 2)-connected for every
p-simplex {ag, ..., ap} of S;
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(iii) P(S) is (n — 1)-connected and P(S)qq,....q, is (n — p — 2)-connected for every p-simplex

(ag, - .., ap) of S
Proof. First note that (ii) and (iii) are equivalent since we have P(S) 2 s8¢ and P(8)q,,....q, =
s Links({ao, - - -, ap})°"® by the lemma, and since the realization of poset of simplices of a simplicial

object identifies with the barycentric subdivision of the realization, and hence are homeomorphic.

We will show that (i) and (ii) are equivalent. Assuming (i), [15, Prop 2.14] gives that S is
(n—1)-connected. Now note that, if o, 7 are simplices in S with 7 € Links(c), then Linky i (»)(7) =
Links(7 % ). It follows that if S is wCM of dimension 7, then the link of any p-simplex o in S is
wCM of dimension n — p — 1. Indeed, if 7 is a g-simplex, then 7% ¢ is a (p + ¢ + 1)-simplex, and
the assumption on & implies that Linky o) (7) is (n —(p+q+1)=2)=((n—p—1) —q¢—2)-
connected, as needed. So we can also apply [15, Prop 2.14] to Links({ao, ..., ap}) to deduce that
Links({ao, . .., a,})"% is (n — p — 2)-connected, showing that (i) implies (ii).

Assume now that (ii) holds. Forgetting the orderings induces a map on realizations |S°"¢| — |S],
and picking a total ordering of the vertices of S defines a section of that map. It follows that S
is at least as highly connected as S°"?. Likewise, Links(c) is at least as highly connected as
Linkg (o). Hence (ii) implies that S is wCM of dimension n. O

Finally, we give an adaptation of the simplicial approximation result for simplicial complexes,
to semi-simplicial sets of the form S°¢:

Proposition 3.3. Let S be a simplicial complex and Y € 8% a sub-semi-simplicial set of the
order complex of S. Let K, L be finite simplicial complexes, with L a subcomplex of K. Let
f:|K| — |8°"| be a continuous map such that the restriction f|r, is a semi-simplicial map from
L to Y for a semi-simplicial set structure on L. Then there exists a relative subdivision (K, L)
of (K, L), a semi-simplicial set structure on K, extending that of L and a semi-simplicial map
g: K, — 8 such that g|; = f|. and g is homotopic to f keeping L fixed.

Proof. Consider (f,f) : (K|, |L|) = (|S|%,Y]) = (|sS8°4|,|sY|), with s8¢ and sY denoting
the poset of simplices, or equivalently barycentric subdivisions, of S¢ and Y. The barycentric
subdivision of any simplicial object has the property that any p-simplices is determined by its
p + 1 (distinct) vertices. Hence, forgetting the ordering of the vertices, it can be considered as a
simplicial complex, and we can use PL approximation of [23] for simplicial complexes. This gives
a subdivision K, of K (relative to L) and a simplicial map

K, — s8?

restricting to f on L and such that (f’, f) =~ (f, f).

Consider the forgetful map u : s8¢ — S that takes a vertex of sS?, that is a simplex
(ag, ..., ap) of S to the last vertex a,. This defines a simplicial map since a simplex of sS°"
is a chain of simplices of S¢, and the last vertices of such a chain necessarily define together a
simplex of S (of possibly smaller dimension). Moreover, using linear interpolation in the simplices,
one can check that, on realizations and after identifying [sS°"¢| = |S°"¢|, this map is homotopic
to the identity.

Finally we can define a semi-simplicial set structure on K, extending that of L as follows: Let
o = {vo,...,v4} be a g-simplex of K,.. Because any p-simplex of S°"? has p + 1 distinct vertices,
the image of ¢ under the composed map

g: K, L ssord 2y gord

is determined by the collection of images {g(vo), ..., g(vq)}, that forms a p-simplex of S for some
p < ¢, together with the map 6, : {vo,...,v,} — {0,...,p} that records where the vertices are
mapped. We need to pick, for each such simplex o, an ordering of its vertices that makes 6, order
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preserving. We start by picking, arbitrarily extending that of L, for each vertex v of S, an
ordering of the vertices of the subcomplex of K, of simplices mapped to v. Now for a general
simplex o with g(o) = (vo,...,vp), we can write 0 = 0y, * -+ * 0, Where o, is the face of o
mapped to v;. We order the vertices of o using on each o,, the ordering already chosen in the
previous step, extending it to the total ordering induced by the ordering of the vertices v;. O

3.2. Complexes of non-separating arcs. Let (M, A, ) be a formed space with boundary. Re-
call that a collection v1,...,v, € M is unimodular if it generates a split R"-summand. In what
follows, we will write A(a,b) = a @ b for A the form in the formed space a and b are considered in.

Definition 3.4. Let M = (M, A, 0) be a formed space with boundary.

(i) An arcin M is an element a € M such that d(a) = 1.
(ii) An arc a is non-separating if {a @ —, 9} is unimodular in MY = Hom(M, R).

Note that an arc is automatically unimodular in M since we can split M = kerd @ R(a) as
R-modules. On the other hand, a @ — is not necessarily unimodular in M"; in fact it can be the
zero map, see e.g. the arc x — y + z in X#3 in the proof of Proposition 2.16. If 9 is assumed
surjective, it is by definition unimodular in MV, so the non-separating condition is equivalent to
requiring that a e — is unimodular in (ker 9)".

If a is a geometric arc in a bidecorated surface (S, Iy, I1) going from Iy to Iy, then its homology
class [a] defines an arc in the above sense in the associated formed space with boundary (M, A, 9)
described in Section 2.1. And if a is a non-separating arc, then that precisely means that there
exists a curve ¢ in S “connecting both sides of a”, i.e. an element ¢ with dc = 0 and a e c = 1.
So a geometric non-separating arc in a bidecorated surface will likewise define an algebraic non-
separating arc.

Definition 3.5. (i) The algebraic arc complex A%9(M,d) is the simplicial complex whose ver-
tices are arcs in M, and where a collection of arcs {ap,...,a,} defines a p-simplex if the
vectors together form a unimodular sequence.

(ii) The algebraic non-separating arc complex B(M, A, 0) has vertices non-separating arcs, and a
collection of arcs {ao,...,ap} forms a p-simplex if {ap® —,...,a, ® — 0} is unimodular in
MYV, i.e. the arcs are jointly non-separating.

As indicated above, the last condition has a geometric meaning when the arcs come from
(pairwise disjoint) geometric arcs in a surface. It actually precisely corresponds to being non-
separating by a Mayer-Vietoris argument. It can equivalently be stated as: {ap e —,...,a, ® —}
is unimodular in (ker @)Y, provided 9 is itself surjective. Observe also that the condition in (ii)
implies that of (i) so there is an inclusion B(M, \,d) C A%9(M, ).

Our first goal in this section is to prove a connectivity result for B(M, A, 9). It will folllow from
a result about certain posets of unimodular sequences, as studied in particular by van der Kallen,
Maazen, Charney, see e.g. [22, 11, 2]. We will not actually need the connectivity of A™9(M,\),
but it will be a direct consequence of these other results. We will work with the following posets:

Definition 3.6. Let U(M) denote the poset of ordered non-empty unimodular sequences in M.
For N < M a submodule and m € M an element, we define U(M,m + N) to be the subposet of
U(M) of unimodular sequences in M of elements of the form m + n with n € N.

Our first connectivity results will be formulated in terms of the stable rank sr(R) of Defini-
tion 2.21 and following relative rank

r(M,N) :=max{rk(L) : L C N is a direct summand of M}.
Theorem 3.7. Let M be a finitely generated free module. The poset U(M,m+ N) is (r(M,N) —

sr(R) — 1)-connected, and for vy,...,v; € UM, m + N), the subposet UM, m + N)y, . v, of
sequences ending in (vi,...,v) is (r(M,N) — sr(R) — k — 1)—connected.

k
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This result that can be found in [18, Thm 6.5] in the case R = Z, and is based on earlier results
of [22, 2.6],[4, Thm 2.4]. A complete proof is given in Appendix A.

Let U(M) and U(M,m + N) denote the corresponding simplicial complexes of unimodular
vectors: vertices of U(M) are unimodular vectors, and a collection of unimodular vectors forms
a p-simplex in U(M) if they together form a unimodular sequence. And U(M,m + N) is the full
subcomplex of U (M) on unimodular vectors of the form m + n for n € N.

Theorem 3.7 has the following consequence:

Corollary 3.8. Both U(M,m + N)°" and U(M, m + N) are (r(M,N) — sr(R) — 1)-connected.
Moreover U(M, m + N) is wCM of dimension r(M, N) — sr(R).

Proof. The result thus follows from combining Theorem 3.7 with Proposition 3.2 since the poset
U(M,m + N) identifies with the poset of sequences P(U(M, m + N)). O

Proposition 3.9. Let M be a finitely generated free module of rank rk(M) and 0 : M — R a
linear map. If 9 is surjective, then the algebraic arc complex A9 (M, 9) is (rk(M) — sr(R) — 2)-
connected.

Proof. Since 0 is surjective, we have that A9 (M, ) is non-empty, proving the result for rk(M) —
sr(R) —2 < —1. Hence we can assume that rk(M) > sr(R) + 2.

The complex of A%9(M,d) identifies with U(M,a + kerd) for a € M an arc. Since 0 is
surjective then kerd C M is a summand, so we have that r(M, kerd) = rk(kerd). Moreover,
REM) o~ N>~ R @ kerd as R-modules, since M is finitely generated free. Then cancellation, [4,
Proposition 2.7], gives that ker @ = R™(M)~1 since rk(M) > sr(R) + 1. The result then follows
from Theorem 3.7. O

The connectivity of the complex of geometric non-separating arcs is usually deduced from that
of the complex of all arcs. In the algebraic case, while there is a map B(M, \,d) — AX9(M, )), it
is more convenient to deduce the connectivity of B from that of an arc complex closer to it and
whose connectivity is also determined by Theorem 3.7. We describe this complex now.

Let \Y(ker 3) be the submodule of (ker )V of maps that can be written as c ¢ — for ¢ € ker 9.
Fix some arc m. There is a map

B(M, X, 0) — U((ker )", m @ — + XY (ker 9))

associating to a the map a e — : kerd — R.
For M = (M, \,0), we write

r(M, X, 0) :=r((ker 0)", A" (ker 9)).

Proposition 3.10. Let (M,\,0) € Fy. Then B(M,\,0) and B(M,\,0)°"? are (r(M,\,0) —
sr(R) — 1)—connected.

Recall from [8] that a simplicial complex X is a complete join complex over another simplical
complex S if there is a surjective map 7 : X — § and vertices xg, ..., z, of X form a p-simplex
if and only if the projections 7(xg), ..., m(xp) form a p-simplex in S. The proof will use that the
simplicial complex B can be seen as a join complex over the simplicial complex of unimodular
sequences just described.

Proof. The forgetful map B(M, \,0) — U((ker )V, m e — + AV (ker 9)) taking an arc a to the map
ae— : ker  — R exhibits B(M, ), ) as a complete join complex over U((ker 9)", me—~+\" (ker 9)).
Indeed, a vertex of B(M,\,0) is a vertex ¢ of U((kerd)V, m e — + \V(ker 9)) together with the
choice of an arc a € M such that ¢ = a e —, and we can write a = m + ¢ for some ¢ € ker 0.
Moreover, the condition for arcs ag,...,a, to form a p-simplex of B(M, X, 0) is determined by
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whether their images form a p-simplex in U((ker 9)¥,m e — + A\ (ker 9)).

Now U((ker 0)¥,m e — + XV (ker 9)) is wCM of dimension r((ker 3)¥, AV (ker 9)) — sr(R). It then
follows from [8, Prop 3.5] that B(M, )\, 9) is also wCM of dimension r((ker )", AV (ker 9)) — sr(R),
and in particular (r((ker 9)V,\Y(ker 9)) — sr(R) — 1)-connected. Finally by [15, Prop 2.14], the
ordered complex B(M, ), d)°¢ has the same connectivity. O

The following result will allow us to rewrite the above connectivity bound in terms of the arc
genus.

Proposition 3.11. Let (M, \,0) be a formed space with boundary such that gx(M,\,0) >
2usr(R) + 2, or R is a PID. Then r(M, X\, 0) > gx(M, A, 0) — 2.

Proof. The result is trivial if gx (M, \,0) = 0, so we can assume without loss of generality that
gx (M, X, 0) > 1, i.e. that 0 is unimodular. By Proposition 2.26(b)((i),(iii)) we have
9x (M, X,0) = gp(M, ) + gy (ker 0, Alier o) + 1.
By Proposition 2.26(a), the inequality gx (M, A, d) > 2usr(R) + 2 implies gy (M, \) > usr(R) +1,
and hence by Proposition 2.25(iv) we have
2g3(ker 9, Alkers) = g (M, A) + gp(ker 9, Alkers) — 1.

Pick a hyperbolic subspace L C ker d such that (L, A|) = H%&r N Then, V(L) is a direct
summand of (ker 9)¥ because of the orthogonal decomposition ker & = L@ L+ (see Lemma 2.14(i)).
Thus r(M, X,0) = r((kerd)V, XV (kerd)) > rk(AV(L)) = rk(L) = 2gy/(ker d, ), which proves the
result since the above computations give that 2gy (ker 9, \) > gx (M, A, 9) — 2. O

The above results assemble to the following result:

Corollary 3.12. Let (M, \,d) be a formed space with boundary with gx (M, \,9) > 2usr(R) + 2,
or such that R is a PID, then B(M, ), d) and B(M, X, 0)°"¢ are (gx (M, X, 3) —sr(R)—3)-connected.

3.3. Cutting arcs. Following the geometric argument in [6], we need to understand the effect of
“cutting a simplex of arcs” in B(M, X, 9).

Recall from Lemma 2.14 that for N C M, we denote M\N = {m € M | N(n,m) =0Vn € N},
where X' (n,m) = A\(n, m)+0ndm. Given a p-simplex o = {ag, - -- ,a,}, we will write M\o = M\N
for N = (ao, ...,ap) the subspace generated by the arcs. Given that d(a;) = 1 for each i, we can
rewrite this subspace as

P
M\o := ﬂker(@%—aio—) C M.

i=0
We call (M\a, A[p\o; 9| ar\o) the cut formed space.
When ay, ..., a, are homology classes of geometric arcs in a bidecorated surface, the cut formed

space M\o identifies with the relative first homology group associated to the surface obtained
by cutting the corresponding collection of (geometric) arcs, for an appropriate choice of marked
intervals Iy, I; in the cut surface.

The main result we will need about cut formed spaces is the effect cutting arcs has on the rank
and arc-genus.

Lemma 3.13. Let 0 = {ao,...,a,} be a p-simplex in B(M, X, D).
(i) If either rk(M) > sr(R) +p+1 or R is a PID then
rk(M\o) =1k(M) — (p+1).
(i) If either gx (M, A, 0) > 2usr(R) 4+ 2p+4 or R is a PID then
9x (M\o, M anes Olane) > 9x (M, A, 0) — (2p +1).
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Proof. By definition {age —, - ,a, e —,d} is unimodular in M so {0 +ape—, - ,0+a,e—}is
also unimodular, which implies that rk(M\o) = rk(M) — (p + 1) which applies under the current
assumption by [4, Prop 2.7] , proving (i) when R is not a PID. For R a PID we use the same
argument noting that M \ o is a summand of the free finitely generated R-module M with quotient
isomorphic to RPT! so it has to be free of rank rk(M) — p — 1 by the classification theorem of
finitely generated modules over PIDs.

We will show that gx (M\o, A|yn\gs 9ane) = 9x (M, A, 0) — (2p + 1) by induction on p. Let us
begin by assuming the case p = 0 and finish the induction, and then we will study the case p =0
in detail.

Let 7 = {ao,...,ap—1}, then 7 is a (p — 1)-simplex in B(M, A, ) so by induction we have
9x (MA\T, Ml apvrs Olany) = gx (M, A, 0) — (2p — 1). We want to apply Corollary 2.27 to M\7 with
0 =0y, and | = (0 + ap ® =)\, Since {ag® —, -+ ,a, ® —, 0} is unimodular in MYV then so is
{0+ape—,---,0+a, 10—,0+a,e—,0}. Therefore {(0+ a, ® —)[rs\r,0|ar\+} is unimodular
in (M\7)". Moreover, either R is a PID, or we have

gx (M\T, A an\e> Olans) = gx (M, X, 0) — (2(p —1) +1) > 2usr(R) +2p+4 —2p+ 1 = 2usr(R) 45,

using induction for the first inequality and the assumption for the second one. Hence we can apply
Corollary 2.27, and it gives the required result to finish the induction step.

Now let us consider the case p = 0, so that 0 = {a}. Here we cannot apply the above induction
step since that would only show that gx(M\o, A|yn\o,Olare) = 9x(M, A\, 0) — 2 instead of the
required improved bound gx (M\a, A|yp\o, 9lane) = 9x (M, A, 9) — 1. To simplify the notation let
us denote M = M\o =ker(d+ae—), A = Alane and d= O|an\o for the rest of this proof.

By definition, a defines a map X — (M, \,9) so by Lemma 2.14(ii) we have an isomorphism
(M, \,0) = (M, \,0)#X.

Since {a ® —, 8} is unimodular in MV, then 9 is unimodular in MY. Without loss of generality
rk(M) > 2 (otherwise the result we want to show is trivial), and hence rk(M) > 1 by the first
part of this lemma, since the assumption of (ii) is stronger than that of (i) because 2usr(R) + 2 >
sr(R) + 1.

By Proposition 2.26(a) and our assumption on gx (M, A\, 9), we have that gy (M, X, 9) > usr(R)+
2, and (b)(ii) of the proposition gives that

gX(Ma )\7 6) =1+ gH(M7 >\) + gq.[(ker 6, )‘|ker6)‘

Applying now Proposition 2.25(iv) with [ = 0 +a e —, we also get that g (M, \) > usr(R) +1, so
we can also apply Proposition 2.26(b)(ii) to M, which gives

gx(M, 5\, é) =1+ gH(Mv x) + gH(keré’ 5\‘keré)'

We are left to compare the terms in the formulas for gx (M, \,d) and gx (M, \,d). We first
show that there is an isomorphism of formed spaces

(3.1) f:(keraa)\h(er@) i} (Mv:\)

so that they both have the same H-genus. (This is an algebraic version of the geometric observation
in Remark 2.8.) Indeed, the map f can be defined by f(u) = u—(aeu)a, with inverse g : M — ker d
defined by g(v) = v — d(v)a, where one checks that both maps preserve the forms.

Secondly, the unimodularity of {a @ — 8} in MY implies that there is x € M such that dz = 0
and a e x = 1. We then claim that the forms (ker 0, 5\|ker<§) and ({a,z)", Al(a,z)+) are isomorphic,
so they have the same H-genus. Indeed, the maps f : kerd — (a,z)%, f'(u) = u + (z ® u)a, and
g : la,z)t = kerd, ¢'(v) = v — (dv)a, give a pair of inverse isomorphisms preserving the forms.
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Since (a,z) C M is isomorphic to H then Proposition 2.25(i) implies that gz ({a,z)", Alfa,zyr) =
gu (M, \) — 1, which finishes the proof. O

3.4. Disordered arc complexes. Geometric arcs in a surface with the same endpoints bg, by in
the boundary and with disjoint interiors, are naturally ordered at by and b;. This leads to two
natural subcomplexes of the complex of all (non-separating) collections of such arcs: the one where
the orderings of the arcs at by and by agree, and the one where the ordering is reversed. The latter
is the first one that was considered in the literature, and it goes under the name the ordered arc
complex. The first one is the one whose algebraic version will be relevant to us, and, to distinguish
it from its “opposite” version, it goes under the name disordered arc complez. (See [6, Sec 2]). We
define now its algebraic analogue:

Definition 3.14. The algebraic disordered arc complex D(M, \, D) is the simplicial subcomplex
of B(M, A, 0), with the same vertices and where {ay, ..., a,} forms a p-simplex in D(M, X, 0) if it
is a p-simplex of B(M, A, 0) and its vertices can be ordered in such a way that a; e a; = 1 for all
i< .

More generally, for o = (ao, ..., ap) a simplex of B(M, \,0), we define D,(M, X, 0) to be the

simplicial subcomplex of Linkg(s 5 0) (o) on the vertices b such that bea; =1 foralli =0,...,p,
with bo, ..., b, forming a p-simplex if they can be ordered in such a way that b; e b; = 1 for all
1<].

Note that the vertices of a simplex of D(M, \,0) are canonically ordered if char(R) # 2, so
the complex is actually naturally a subcomplex of B(M,\, )" in that case. Also, a vertex b
in the link of a simplex o in D(M, \,d) will have a position with respect to o in that case; as
apparent in the above definition, we will be particularly interested in vertices “below ¢”, i.e. such
that b e a; = 1 for all vertices a; of 0. These different positions of vertices in the link do not exist
in characteristic 2, making the characteristic 2 case actually simpler, as we will see in the proof of
the theorem below.

Lemma 3.15. Let o be a simplex of B(M, A, 9). Then D.,(M, \,0) = D(M\o, A ayp\os 9 a\o)-

Proof. We will check both inclusions. Let us write o = (ao,. .., ap).

Let 7 = (b, ..., bq) be a g-simplex in D,(M, A, 9), then (b, ...,bq,a0,...,ap)isa (p+q+1)-
simplex in B(M, \,0). By definition, b; e a; = 1 = 9(b;) for all i,j so b € M\o is an arc in
the cut formed space for all i. Unimodularity of {9,bye —,...,b,® —, ape® —,...,a,e—}in MV
implies unimodularity of {9[yp\s,b0 ® —,...,b; @ —} in (M\o)V. Thus, {bo,...,by} is a g-simplex
in B(M\o, A|lan\os 9 m\o)- Finally, the condition b;  b; = 1 for i < j shows that 7 is a g-simplex
in D(M\U7 A‘M\a? 8‘M\0’)

Conversely, if 7 = (bo, . .., by) is a g-simplex in D(M\o, A|yn\o, O|an\o) then 9(b;) = 1 for all 4, so

each b; € M is an arc too, and {9|yp\,,bo® —, - -+ ,b;® —} is unimodular in (M\o)", which implies
unimodularity of {9,bpe —, -+ ,b,® —, ape —,--- ,a, e —} in MV since {d,ap® —, - ,a, ® —} is
unimodular in M"Y by definition. Finally, condition b; € M\o says b; ® a; = 9(b;) = 1 for all i, j,
Thus, 7 is ¢g-simplex in D, (M, X, d), as required. O
Theorem 3.16. Let (M, \,0) € Fy. The complex D(M, A, 9) is gx(M’)"a)EQUST(R)_6—connected.
If R is a PID, the connectivity bound can be improved to W—wnnected.

The idea of the proof is to deduce the connectivity of the disordered arc complex D(M, A, 9) from
that of the simplicial complex B(M, \,d). When the characteristic of R is not 2, we will actually
work with the associated semi-simplicial set B(M, \, 9)°"%. We will use a “bad simplex argument”,
appropriately adapted to order complexes of simplicial complexes in the characteristic not 2 case;
see Remark 3.17 for general comments about the generalization from simplicial complexes to such
semi-simplicial sets, in the language of the general framework given in [7, Sec 2.1].
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Proof. Let A(R) =5 if R is a PID and A(R) = 2usr(R) + 6 otherwise. So we want to show that
D(M, \,0) is w—connected. Note that A(R) > sr(R) + 3, since sr(R) = 2 when R is
a PID, and since 2usr(R) + 6 > sr(R) + 3 in the general case.

When gx (M, \,0) < A(R) — 4 the result is vacuously true. When gx (M, \,0) € {A(R) —
3, A(R) — 2, A(R) — 1} we just need to show that D(M, X, d) # ), which is the case since A(R) > 5
(in both cases) so we can pick a split X#2 summand in M by Lemma 2.14(ii) and the generator
of the first X—summand will be a non-separating arc in M, and hence also a vertex of D(M, A, D).

Thus, we can assume without lost of generality that

(3.2) gx (M, X, 0) > A(R) > sr(R) + 3.
We will prove the result by induction on rk(M), noting that rk(M) > gx (M, A, 9).
Let f:S* = D(M,\,0), k < M. We want to show that f is null-homotopic. We
will start with the case of char(R) # 2. The inequalities (3.2) give that
gx (M, )\, 0) — A(R)
3

k< <gx(M,\,0)— A(R) < gx(M,\,0) — sr(R) — 3.

Thus, B(M, \,0)°"® is k-connected by Corollary 3.12. Thus we have a commutative diagram

(3.3) Sk D(M, A, 0)

-
-
-
-
-
A

DFk+1 4f> B(M, )\’ a)ord

where the vertical maps are the obvious inclusions.

By Proposition 3.3, we can approximate the pair (f, f ) by a simplicial map, with respect to some
PL approximation of D**!. We will inductively replace f until its image lies inside D(M, \,0),
hence producing the required null-homotopy.

We say that a p-simplex o in D1 is bad if f(0) = (ag, - ,a,) and there exists some j > 0
with ag ® aj # 1.

Observe that by definition vertices are never bad. In fact, any bad p-simplex satisfies p > p’ > 1.
Note also that the condition of being bad is “dense”, in the sense that if f (o) does not lie in
D(M, X, 0) then o contains a bad simplex as a face. Therefore it suffices to give a procedure to
modify f so that it has fewer bad simplices, and then apply this procedure until there are no bad
simplices left.

Let o be bad of maximal dimension p. Consider Link(c) C D*+1. We claim that

f(Link(c)) € D_7 (M, \,0) C B(M,\,9)°

<f(o)

Indeed, let 7 € Link(c), and let f(7) = (al, - ,ah) € B(M, A 0)°rd. If a; e a; # 1 for some
0<i<p and0<j<gq with v a vertex of 7 mapped to a}, then v * o is a bad simplex of
strictly larger dimension than o, contradicting the maximality assumption. Likewise, we must

have a] o a} =1forall 0 < i < j < q as otherwise, if v,w are vertices of 7 mapping to a; and
/
J

again the maximality. Given that 7 * o maps to a simplex of B(M, ), d)°", we must have that
/!

(ag; - - - ,ay) forms a simplex of D_ () (M, X,0).
Let M’ = M\f(o) < M, X = Ay and & = 8|y, then D_jy) (M, 0) = DM, N,0) in a
canonical way as in Lemma 3.15. To apply induction, we need to check that rk(M’) < rk(M).

a’; respectively, then v * w * ¢ would be a bad simplex of larger dimension than o, contradicting
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Using (3.2), we have

< gx (M, )\, 9) — A(R)
- 3

Since o is a simplex in D**1 it follows that

P+1<p+1<k+2<gx(MA\0) —sr(R)<rk(M)—sr(R).

k <gx(M,\0)— A(R) < gx(M,\,0) — sr(R) — 2.

Hence Lemma 3.13(i) gives that rk(M’) = rk(M)—(p'+1) < rk(M), and so we can apply induction
and conclude that D(M’, X', &) is gX(M/’Xéa/)fA(R)—connected.

We want to use the same lemma to estimate the genus of M’. If R is not a PID then A(R) =
2usr(R) + 6 so

2
oW 42 < 2k +4 < g(gX(M,A,a)—A(R))+4

< gx(M,X\,0)— A(R)+4 = gx(M,\,0) —2usr(R) — 2

which gives that gx (M, X\, ) > 2usr(R) + 2p’ + 4.
Thus Lemma 3.13(ii) also applies giving

gx (M, N, 0') > gx (M, X\,0) — (2p + 1) > gx (M, X, 0) — 3p/,

since p’ > 1 because o is bad. When R is a PID then Lemma 3.13(ii) applies unconditionally
without an apriori bound on the arc genus getting the same end result.

Together, this gives that D(M’, X, ) is (k — p') > (k — p)-connected. Now Link(c) = Sk
since ¢ is a simplex in the interior of D**! because it is bad. Hence the map f |Link(s) €Xtends to
amap F : DFP+L 5 D(M’', N, 9'), which by Lemma 3.15 we can view as a map

. pk—p+1 R
F:DFPH D (M, 0).

By PL approximation (that can be directly applied since D is a simplicial complex), we can assume
that F is simplicial with respect to a triangulation of D¥~P*+! extending that of Link(o).

Now, we can modify the PL structure of D¥*1 inside Star(c) = Link(c) * 0 = D¥ P+ 4 9o, and
we can replace f |st(s) With the map

Fx f: DFPH s 9o = Star(c) — B(M, X, 9)°"¢

where we order the vertices in the target by putting those coming from D*~P*! before the ones
from do. Now we claim that we have reduced the number of bad simplices of maximal dimension
p. Indeed, if 7 = 79 * 71 € D* P+ x 9o has image (ay, ... , Qg, @iy s - - -5 G;,.), then by construction
a;, € M’ for all i and J(a}) = 1 so a; e a; =1 for all 4,j. Also, aj ea; =1 for all i > 0, so the
only way this can be bad is if 79 = (). Thus, 7 C Jo has dimension less than p, as required. This

finishes the proof in the case of char(R) # 2.

If char(R) = 2, we start likewise with a map f : S* — D(M, ), d), but we now extend it to a
map f : DFF1 — B(M, \,0), instead of to B°"(M, \,d). Just as above, we approximate f by a
simplicial map, from a PL triangulation of the disc, and we want to modify f inductively so that
it eventually has image in D(M, A, ).

We say that a p-simplex o in D¥t1 is bad in the char(R) = 2 case if f(o) = (ag,-- - ,ay) and
for every i = 0,...,p/, there exists j # ¢ with a; @ a; # 1. Let o be a bad simplex of maximal
dimension p. We claim that we again have that

A~

f(Link(0)) € D_j, (M, X,0) C B(M,\, ).
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Indeed, if v is a vertex of the link, then we must have vea; = 1 for alli = 0,...,p’, by maximality
of o, and likewise of (v, w) is a 1-simplex in the link, then we must have v @ w = 1 by maximality
of 0. The rest of the proof proceeds exactly as in the char(R) # 2 case. O

Remark 3.17 (Bad simplex argument for semi-simplicial sets). We describe here how the proof
to Theorem 3.16, in the characteristic not 2 case, can be interpreted as a quite direct adaptation
to semi-simplicial sets of the bad simplex argument, as formalized in [7, Sec 2.1]. For brevity, we
will write B(M) = B(M, A,0) and D(M) = D(M, \, D).

The heart of the proof of the theorem is to modify a map D*f! — B(M)°, from a PL
triangulation of the disc to the ordered complex of B(M), so that its image in the end lands in the
subcomplex D(M) of disordered arcs. To achieve this, we defined the notion of a “bad” simplex: a
simplex (ao, ..., ap) is bad if there is a j > 0 such that ap e a; # 1. Our definition of badness uses
the ordering of the vertices, and hence does not make sense in B(M). This is the reason we work
with B(M)°"? rather than B(M), even though D(M) can also be considered as a subcomplex of
the simplicial complex B(M).

Our badness condition has the property that

(1) Any simplex of B(M)°"¥\ D(M) has a bad face;
(2) If two faces of a simplex are bad, their join is also bad.

In [7], for a simplex o of the larger complex, B"(M) in our case, they call a simplex 7 in its link
good for o if any face of 7 x ¢ that is bad is a face of . In our case, we see that the simplices
that are good for o will necessarily be part of the “down-link” Link.,, the simplices 7 in the link
such that 7% ¢ is a simplex, with the vertices of 7 placed before those of ¢ in the ordering. In fact
the subcomplex G, of simplices that are good for o identifies with the complex D, (M), that we
showed in Lemma 3.15 to be isomorphic to D(M \ o).

Following [7, Prop 2.1], keeping in addition track of the ordering of the vertices, we can apply
the bad simplex argument to show that D(M) is n-connected, deforming any disc of dimension
k+1 <mn+1, if we can show that G, is (n — p)-connected for each bad p-simplex o. Now this is
done by induction, treating the first case by hand, and using our genus estimate for M \ 0. In our

case, 1 = %, where ¢ is a constant, and Lemma 3.13 says that g(M \ o) > g(M) — (2p + 1).
g(M)—(§p+1)—c > Q(M)g?)p—c

The needed connectivity of G, follows from the fact that
any p > 1, which is enough since there are no bad 0-simplices.

=n —p for

4. CANCELLATION PROPERTIES AND DESTABILIZATION COMPLEX

In order to get the final homological stability results we need to compare the disordered arc
complex to the canonically defined destabilization complex in [15]. This comparison will use a
cancellation property in the category Fpy, that we start by describing.

4.1. Cancellation. In this section we prove a general cancellation result based on the dual unitary
stable rank, with a proof using the connectivity of the disordered arc complex D. In Appendix B,
we prove a stronger cancellation result in the case when the base ring R is a PID, using instead a
classification result for formed spaces with boundary that is only valid for PIDs, see Theorems B.1
and B.3.

Theorem 4.1 (General cancellation). Let (M;, \;,0;) € Fy with 0; surjective for ¢ = 1,2 and
such that

(M, A1, 01)#X = (Mo, Ao, 02)#X.
If gx(Ml, )\1,81) > QUST(R) + 5 then (Ml, )\1,61) = (MQ,)\Z,@Q).
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Proof. Let (M, \,0) = (M, \1,01)#X and let aj,ay denote the canonical generators of the X-
summands under the identification

(kava) = (Mla)‘laal)#X = (M27)‘2782)#X7

where we have fixed an isomorphism as in the statement. For i = 1,2 we have that (M;, \;, ;) =
(M \ ai, Ml p\a;> Olara;) by Lemma 2.14(ii), and our assumption on 0; is equivalent to saying that
the arcs ay, as are non-separating. The above cancellation property is thus equivalent to the fact
that Autz, (M, A, 0) acts transitively on the set of non-separating arcs in (M, A, 0).

We will now show that transitivity of the action follows from the connectivity of the complex
D(M, X, d), which holds by Theorem 3.16 since gx (M, A, 9) > 2(usr(R)+1)+4 by our assumption.

Observe that the set of vertices of D(M, A, ) is precisely the set of non-separating arcs. Thus
it suffices to show that if a1, a2 are connected by a sequences of edges in D(M, A, d), then there
is an automorphism in Autz, (M, A, 0) taking a; to az. Without loss of generality assume that
(a1,as) is a l-simplex in D(M, ), ). Then it defines a morphism (a1,as) : X#2 — (M, \,9),
and by Lemma 2.14(i) we have a splitting (M, \,0) = (M', X, d')#X#2 where M’ = M \ (a1, az)
denotes the cut form. Now the braiding Bi % on the last two coordinates defines such a morphism,
finishing the proof. O

In the language of [15], the above theorem says that the category Fy satisfies local cancellation,
see Definition 1.9 in that paper.

Remark 4.2. One could define the cancellation stable rank csr(A, R) of an R-module A to be
the smallest integer k& with the property that for any NV € Fy

N#XH#PH = AL X7 with gx(N) >0 and 0<p<n—k = N A#X#P7L

In this language, Theorem 4.1 says that csr(A, R) < 2usr(R) + 6 for any R-module A. And
Theorem B.1, proved in the appendix, improves the above bound to csr(A, R) = 2 when R is a
PID.

Note that the connectivity of the destabilization complex is always related to a local cancellation
property, see [15, Lem 2.3]. But here we do not know yet that the complex of disordered arc is
(essentially) the destabilization complex in the sense of [15], and in fact we will use the cancellation
result to show the equivalence between the two complexes.

4.2. The destabilization complex. The monoidal category Fy of formed spaces with boundary
introduced in Section 2 has a subcategory Fy x, generated by the object X = (D?,0,id), that is
braided monoidal by Proposition 2.9. The monoidal structure of the full category F5 then makes
the classifying space BFj into an Ej-module over the Ey-algebra BFjp x in the language of [9],
see in particular Section 7 of that paper that gives this particular generalization of the set-up of
[15] needed here.

Given a choice of an object A of Fy, there is a destabilization complex W, (A, X) associated
to stabilization by X, whose connectivity, under mild conditions, rules homological stability for
adding copies of X. We describe the space (semi-simplicial set) W,,(A, X) below, and relate it to
the disordered arc complex D(A# X7#"). Before doing so, we will modify the category Fp slightly,
as in [15, Rem 1.1], to force a stronger cancellation property than the one given by Theorems B.1
and 4.1, as the stronger cancellation property is needed to be able to deduce homological stability
from the connectivity of W, (A, X). This will have the effect of modifying W, (A, X) so that it is
the correct complex of destabilization.

Define F5(A, X) to be the category with one object Ny := A#X#F for each k > 0, and with the
automorphisms groups Autz, (/NV}) as only morphisms. Now BF§(A, X) is again an Fj-module
over the Fp-algebra BFy x via the sum #, and it satisfies local cancellation by construction: For
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al0<p<n-1,
Np# X#PHl o A X# — N = A#X7#"P~L and in particular k =n —p — 1.

We are now ready to define the destabilization complex.

Definition 4.3. [9, Def 7.5] Let A be a formed space with boundary, and let n > 1. The
destabilization complex W, (A, X) is a semi-simplicial set with set of p—simplices

Wi(A, X)p = {(Ni, f) | Ny = A#XHE and f: Ny#X#PH S A% X# in F5(A, X))/~

where k = n—p—1 is necessary for the isomorphism to exist as we just saw, and (N, f) ~ (Ng, f')
if ' = fo(g#1id) for some g € Autr,(Ny). (The data of the complement Ny, is actually superfluous
her, since Nj, = Ny,_,—1 is the only possibility.)

The ith face map is obtained by adding a copy of X to the complement N and precomposing
f with an appropriate braiding to get a new pair d;(Ng, f) = (Nx#X,d; f) = (Ng11,d; f) with

Id#B 4 (#id , oy
dif - Ne#XH#XP — 272 s Ny XIS XHX#P0 Ly Ad X,

There is a simplicial action of Aut(A#X#") on W, (A, X) by postcomposition.

Note that the action of Aut(A#X7#") on W, (A, X) is transitive on the set of p-simplices for all
p by construction. (This is in fact equivalent to the local cancellation property enforced on the
category, see [15, Thm 1.10(a)]). Hence we have an identification

Win(A, X), = Aut(A#X7") ) Aut(A#X#rr1),

4.3. Disordered arcs as a destabilization complex. Suppose (M, \,0) € Fy has genus
gx(M,\,0) = n, so that we can write M = A#X#" for some A € Fy. We will now relate
the disordered algebraic arc complex D(M, A, d) and the destabilization complex W, (A, X) just
defined.

Recall that the vertices of simplices of D(M, A, J) are canonically ordered when char(R) # 2.
Hence D(M, \,J) can be considered as a semi-simplicial set in that case, the ith face a simplex
o = (ag,...,ap) being the simplex d;o obtained from o by removing its (i + 1)st vertex a;. In
the characteristic 2 case, D(M, \,d) cannot be identified with a semi-simplicial set, and we will
instead compare D(M, A, 9) to the simplicial complex S, (A, X) associated to W,,(4,X). The
complex Sy, (A, X) has the same vertices as W, (A, X), and vertices vy, ...,v, form a simplex in
Sn(A, X) if there exists a p-simplex of W, (A, X) having vy, ..., v, as its vertices. By [15, Thm
2.10], under good conditions, the simplicial complex S, (A, X) is highly connected if and only if the
semi-simplicial set W,,(A4, X) is highly connected, which implies that it is most often equivalent
to work with the one or the other for the purpose of homological stability. (In this case, we will
indeed be in the situation where W,,(A, X) has (p + 1)! simplices for each p-simplex of S,, (A, X),
having one for each ordering of the vertices, and we could equivalently compare D°"¢(M, \, 9) with
Wo(A, X))

Proposition 4.4. Let (M, )\, 0) = A# X#" be a formed space with boundary with gx (M, X, 9) >n.

(i) If ¢ € D(M, X, ) is a p-simplex then M = M\o # X#PF1,

(ii) p-simplices of D(M, ), d) are in one-to-one correspondence with maps f : X#P+1 — (M, X, 0)
such that 0 is still surjective on the cut form M\ Im(f).
(iii) If char(R) # 2, then

Sk§n72usr(R)f6D(M7 A, a) = Sk§n72usr(R)76(Wn(A7 X))
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(iv) If char(R) = 2, then
8k<n—ousr(r)—6D(M, A, 0) = sk<p_susr(r)—6(Sn (4, X)).
When R is a PID, the isomorphisms in (iii) and (iv) hold for the (n — 2)-skeleta.

We could have changed the definition of D to make the isomorphism hold for the full semi-
simplicial set/simplicial complex instead of for the stated skeleta, but this would have no effect on
our main results.

Proof. Without loss of generality, we can assume that M = A#X#",

Part(i): A p-simplex o = (ag,...,a,) defines a morphism f, : X#P*1 — (M, \,9) in Fp sending
the i-th standard basis element of the underlying module RP*! to a;, since the conditions a;ea; =1
for i < j and 0(a;) = 1 for being a p-simplex in D(M, A, 9) precisely say that A and O restrict to
Axp+1 and Oxp+1 on the submodule generated by these arcs. The result now follows from Lemma
2.14(ii) since M\o = M\ Im(f,).

Part(ii): We have already seen in the proof of Part (i) how to associate to a simplex o a map
fo : X#P+1 — M. Now the non-separating condition implies that there is an element a of M\o
such that 0(a) = 1, giving the required surjectivity. Conversely, if f is a map as in the statement,
then the evaluation of f at the standard generators of X#P*+! gives a collection of arcs a; = f(e;41)
that satisfy a; @ a;j = 1 for all ¢ < j, because f respects the form. Moreover, by the surjectivity

assumption we can find a € M such that da = 1 and a € M \ Im(f), so {ap® —,...,a, ® —,0}
is unimodular by evaluating this collection of maps on the elements ay, ..., a,,a themselves and
observing the corresponding matrix has rank p + 2. Thus, ¢ = (ag,...,a,) defines the required

simplex with f, = f.

Part(iii): There is a forgetful map sk<,_ oWy, (A4, X) — D(M, X, 0) taking a p-simplex (N, f) =
(Np—p—1, f) of Wy(A, X), with f : N#X#PTL — M, to the collection of arcs (f(eq),-- -, f(ep))
for eg,...,e, the standard basis vectors of the X #P+1_summand in the source. Here the non-
separating condition for the arcs is guaranteed by the fact that (N, f) is not a maximal simplex,
so that N = A#X#7~P~1 has at least one X -summand, where we observe that any simplex is the
face of an n — 1-simplex by using the transitivity of the action of Aut(M,\,d) on the simplices.
This map is injective Lemma 2.15. Surjectivity of the map when restricting both complexes to
their (n—2usr(R)—6)-skeleta (resp. (n—2)-skeleta in the PID case) follows from cancellation: Let
o = (ap,...,ap) be ap-simplex in D(M, X, 0) with p < n—2usr(R)—6 (resp. p < n—2). By Part(i)
we have M = A#X7#" = M\ 0#X7#P1 so by the cancellation Theorem 4.1 (resp. Theorem B.1),
we have that M \ o0 = N,,_,_1. Thus, we get f : Nn_p_lq&yéX#PJrl =N Vs taking values ao, ..., ap
in the standard basis of X#P+1,

We are left to check that the map is simplicial. Because both semi-simplicial sets admit a
simplicial action by Aut(A#X #") that it transitive on p-simplices for every p, and the map is
equivariant, it is enough to check that the map respects the face maps of our favorite p—simplex.
Consider the simplex (A#X#"P~1 id). Its image in D(M, \,d) is the collection of arcs defined
by the last p + 1 standard generators inside the submodule X#", and the face maps in D are
the forgetful maps, with d; forgetting the i + 1st arc in that collection. We need to check that
this corresponds to the face map in the source, defined using the braided structure. This comes
down to the same computation as in the geometric case, since the braid action is geometric:
by Proposition 2.6, X#" identifies with F(D*") and the braiding is defined as the image of the
geometric braiding in D**. The last part of the proof of [6, Prop 4.4] computes the effect of
the block braid 5)_(;1-7  on the standard generators p,—,_1,...,pn, whose homology class are, by

definition the standard generators e,—p—1,...,e, of X #7. Just as in the geometric case, the
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conclusion of the computation is that the face map d; in the destabilization complex has the effect
of forgetting €, —p—14-

Part (iv): We now assume that char(R) = 2. The forgetful map W,(A,X) — D(M,\,0) is
still well-defined an surjective, but it now factors through S, (A4, X), since, if different orderings
of the same vertices define a simplex in W, (A, X), they will have the same image in D(M, A, 9).
The map S, (A4, X) — D(M,\,0) is still surjective, and now it is also injective since if (N, f)
and (N, f') have the same image in D(M, )\, d), that means that we have an equality of sets
{f(eo),..., flep)} = {f'(e0),--., f'(ep)}, which in turn means that (N, f) and (N’, f’) represent
the same simplex in S, (A4, X) since vertices of S,(A, X) are determined by their value on the
corresponding generator e; in X#PT!. Finally the map is an equivariant simplicial map for the
same reasons as in the characteristic not 2 case. O

Corollary 4.5. Let A € Fy. The destabilization complex W, (X, A) is n=2usr(R)=T_oonnected. If

3
Ris a PID, W, (X, A) is "g5—connected.

Proof. Let k = L%WJ (resp. k = [252] if R is a PID). Note first that the result holds
trivially when k < —2. For k = —1, we need to check that W,,(A4, X) is non-empty, which follows
in both cases from the fact that n > 2 under this assumption. So we can assume k > 0.

By Theorem 3.16 we know that D(A#X7#") is k'-connected for k' = L%T(RHW (or k' =
|252] if R is a PID), and by Proposition 4.4, the complexes D(A#X#") and W,(4,X) (re-
spectively S, (A, X) in characteristic 2) share the same m-skeleton for m = n — 2usr(R) — 6 (or
m =n — 2 if R is a PID). To prove the result, it is enough to check that both k < £/, which is
immediate, and £ < m — 1, where in the characteristic 2 case, we also use [15, Theorem 2.10] to
get the connectivity of W, (A, X) from that of S, (A4, X).

In the non-PID case, m = n — 2usr(R) — 6 and k = [™1]. So we need to check that |52 | <
m — 1, which holds as long as m > 0. This covers the case ["+] > 0.

If R is a PID, we have m = n — 2 and k = 2], and the inequality |2 ] < m — 1 holds as
long as m > —1, which covers the case |™2] > 0 as needed. O

Remark 4.6 (The destabilization complex in terms of matrices). When A = 0, the underlying
module of A#X#" is R", and hence the group Aut(X#") can be considered as a subgroup of
GL,(R). Given that the action of Aut(X#") on the set of p-simplices W,,(0, X), is transitive for
every p, it is possible to use matrices to describe the semi-simplicial set W,,(0, X). We explain here
that simplices in W,,(0, X) correspond to collections of column-vectors in matrices in Aut(X #").
This is the point of view taken in the article [12], see Lemma 3.14 in that paper.

Indeed, as in Part (iii) in the proof of Proposition 4.4, we can consider the forgetful map
W, (0,X), — (R™)PTL taking a p-simplex (N, f), with f : N#X#PHL — X#" to the collec-
tion (f(eo),.-., f(ep)) of images of standard basis vectors in X#P1. This map is injective by
Lemma 2.15 and, if we represent morphisms f by matrices, has image the collections (¢p—p, ..., ¢n)
of last p+ 1 column vectors of matrices in Aut(X#"). Finally, the same braid group computation
used in the proof of the proposition shows that the ith face map in W,,(0, X) corresponds, under
this map, to the map forgetting the ith vector in the collection. From this it follows that in fact
any collection of (p + 1) column vectors in a matrix representing an element of Aut(X#") defines
a p-simplex of W (0, X), and any simplex can be represented that way.

5. THE HOMOLOGICAL STABILITY THEOREM

Our main stability theorem is now a direct application of the “stability machine” of [15] and its
generalization [9]. We explain here how this works.
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Recall from Section 4.2 the category F§(A, X) with objects the formed spaces with boundary
N, = A#X#F for all k > 0 and their automorphisms as morphisms. This category is a module
over the braided monoidal category Fy x, with the action induced from the monoidal structure of
Fy. This action in particular encodes the stabilization maps

on - Auty, (A#X#T) —Hdx, Autr, (A# X7

that we will be studying. Note that these maps are injective by definition (for example by con-
sidering their matrix forms). We are most particularly interested in the case A = 0 is the trivial
module, since

Autz, (X#2"H1) = Sp, (R)

is the symplectic group, with Autz, (X #2") a group one could define as an “odd symplectic group”
(see Proposition 2.17).

As we will verify now, the main result of [15, 9] directly applies to the above stabilization maps.
It says that if the complex of destabilizations (of Section 4.2) is highly connected, as we have just
shown, then stability holds, also with certain types of twisted coefficients. We start by stating and
proving the result with constant coefficients.

Theorem 5.1. Let R be a ring with finite dual unitary stable rank. The map

Hi(Aut}-a(A#X#n);Z) —#idx, Hi(AUth(A#X#”H),Z)

is an epimorphism for i < %T(R)_g and an isomorphism for ¢ < %T(R)_G. When R is a PID

the map is an epimorphism for i < "Tfl and and isomorphism for i < %4_

Moreover, if A =0 and n = 2¢g + 1 is odd then the map

—#id
#idx

H;(Autz, (X#%971);7) H;( Autr, (X#2972),7)

is a monomorphism for all 4.

Proof. Let us begin by proving the first part. By Proposition 2.9, the category Fp x is braided.
As F§(A, X) is a module over Fp x, [9, Lem7.2] shows that the classifying space BF§(A, X) is an
E7-module over the Es-algebra BFy x.

W, (A, X) is the semi-simplicial set denoted WEW(A#X#), in [9, Def 7.5]. By Section 7.3
in that paper, it is homotopy equivalent to the semi-simplicial space W (A#X#"), of [9] since
F5(X,A) is a groupoid satisfying cancellation, and the stabilization maps o, are injective. By
Remark 2.7 of that paper, this determines the connectivity assumption of Theorem A in that
paper: the canonical resolution of the assumption of the theorem is m-connected, if and only if
the space W (A#XF") is (m — 1)-connected.

Define the grading gr : F5(A, X) — N by

n—3 R is a PID
n —2usr(R) — 5 otherwise.

|

Given that W (A4, X) is (%)%onnected by Corollary 4.5, we have that the canonical resolution
is (w>fconnected. Hence we can apply [9, Thm A and Rem 2.24(i)], which give that the

stabilization map o, induces an isomorphism in homology in degrees ¢ < % and an epimorphism
for ¢ < #, which gives the result.
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To prove the last part of the statement, suppose (M, \,0) = (N, Ay, On)#X € Fy. Then there
is a diagram

Autr, (N, Ay, 0N)

S NTCf

Autzr, (M, )\, 0) - Autr(ker 9, Mer o)

where ¢, d, e are the canonical maps, Rad(M,\) = {m € M : A\(m,—) = 0} denotes the radical,
and s is the stabilization map, and where cf is conjugation by the isomorphism f of (3.1) (with
N = M, see also Remark 2.8). We claim that the diagram commutes.

Indeed, the map f is given explicitly by f(u) = u — A(a,u)a with inverse f~1(v) = v — d(v)a,
where a generates the right X-summand. Let o € Autz,(N,\,0) and n € N. Then ¢(a)(n) =
a(n). Going the other way around the square, we have

f((eos)(@)(fH(n)) = f((a#idx)(n — d(n)a))
= f(a(n) —d(n)a) = a(n) — d(n)a — A(a,a(n))a + d(n)A(a,a)a
= a(n) — d(n)a+ d(a(n))a+0 = a(n)
where the last equality holds since d(a(m)) = d(m). Thus, commutativity follows.
Finally, when (N,\y,dy) = X#29%1 the top composition d o ¢ identifies with the isomor-

phism Autz, (X#29+1) = Autz(H?) = Spay(R) of Proposition 2.17, and the commutativity of the
diagram implies that s is injective, also in homology, as required. O

Aut(N, Ay) —— Autr (i)

Proof of Theorem A. The statement of Theorem A follows by taking A = 0 in the previous
result, applying Proposition 2.17 to identify Aut(X#"*!) = Sp,(R). The fact that the map
H;(Spn(R),Z) — H;(Spn+1(R),Z) is always injective for n even then follows from the last part of
the previous result. Finally, Lemma 2.18 gives that the stability map under consideration agrees
with the classical one on (even) symplectic groups. O

5.1. Non-trivial coefficients. Under the same assumptions as for constant coefficients, homo-
logical stability also automatically holds for certain systems of twisted coefficients. These come in
two flavours: abelian coefficients and finite degree coefficient systems. We describe them now, and
state the corresponding stability results.

Consider the abelianization Aut(A#X#") — Hy(Aut(A#X#"),Z). Theorem 5.1 gives that

the maps

Hi(Aut(A# X7, 7) — Hy(Aut(A#X7", 7)) — ...
are eventually isomophisms. This way we can consider any module M over the stable group
Hy(Aut(A#X#°),Z) as a Aut(A#X7#")-module by restriction. Such a coefficient system is
called abelian.

By [10, Lemma A1.(i)] it is known that H;(Spag(Z),Z) = 0 for g > 3, hence abelian coefficient
systems are not interesting in the case R = 7Z, which is the main motivation of this paper. However
other other rings R these abelianizations do not need to vanish. For such rings, Theorem A of [9]
applies just as for constant coefficients, and give the following result:

Theorem 5.2. Let R be a ring with finite dual unitary stable rank, and M an Hy (Aut(A#X7%°), Z)-
module. The map

Hi( Autz, (A#X#7);2) 7% H;(Auty, (A#X#0H),2)

%T(RH‘ and an isomorphism for ¢ < 2w )T When R is a PID

3
n—2 n—>5

the map is an epimorphism for ¢ < "5= and and isomorphism for 7 < "3

is an epimorphism for ¢ <
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The other type of non-trivial coefficients we will consider are those of finite degrees, that we
will define now.

Definition 5.3. [9, Def 4.1] A coefficient system for the groups G, = Autg, (A#X#") with
respect to stabilization by X is a G,-module M, for each n > 1 with G,-equivariant maps
Sp : Mp — My satifying that the braiding id 44 x#n #0511, switching the last two X-summands
in A#X #’”2, acts trivially on the image of M,, in M, 2 by the double stabilization s, o sy,.

When A = 0, a coefficient system is thus a sequence of compatible symplectic group representa-
tions for all n’s, odd and even, satisfying the braid condition just described. Given a sequence of
classical symplectic representations, one can attempt to produce a coefficient system in the above
sense by setting My, = May,y1, since Ga, = Sps,_;(R) is a subgroup of Ga,4+1 = Sps,(R) (by
Proposition 2.17), and check whether the braid condition is satisfied. Such a construction will
however not be relevant for us here, since such coefficient systems are never of finite degree (in the
sense of Definition 5.5 below) unless they are constant.

Example 5.4. (i) Suppose A = (M, \,9). The simplest example of a coefficient system is to
set M,, = M @ R"™, the underlying module of A#X#". Then id x Aut(X7#2) acts trivially on
the image of M @ R" in M & R"t?2 = M @ R™ ® R?, and so the braiding in particular acts
trivially.

(ii) The previous coefficient system is not irreducible, and admits the following sub-coefficient
system: let M, = ker(0: M & R" — R). When A = 0, we have that Ms, 1 = R*", and one
checks that on odd entries this coefficient system identifies with the defining representation
of the symplectic groups, see [12, Rem 3.7].

(iii) Additional examples over the rationals are discussed in [12, sec 4.2].

Given a coefficient system M = {(Mp)n>1, (Sn)n>1}, one can define its suspension XM by
setting X M,, = M,,+1 and

. id
St DMy = Myyq S5 Moo <8 o SM
One checks that this is again a coefficient system, and that the maps s, assemble to define a
morphism of coefficient systems M — XM, see [9, Def 4.4]. Denoting ker M and coker M the
coefficient system obtained by taking the cokernel of this map, we can now define the degree of a
coefficient system:

Definition 5.5. [15, Def 4.10] A coefficient system M = {(M;,)n>1, (Sp)n>1} is of
(i) (split) degree —1 at ng is M,, = 0 for all n > ny.
(ii) degree r at ng if ker M is of degree -1 at ng and coker M is of degree r — 1 at ng — 1.
(iii) split of degree r at ng if ker M is of degree -1 at ng and coker M is split of degree r — 1 at
ng — 1, where a coefficient system is split if all its structure maps s,, are split injective in the
category of coeflicient systems.

Example 5.6. (i) Constant coefficient systems are of degree 0.

(i) The coefficient system M, = M @© R", with s, : R* — R""! the standard inclusion, as in
Example 5.4(i), is a split coefficient system of degree 1, with cokernel the constant (and hence
degree 0) coefficient system R.

(iii) Taking A = 0 as in Example 5.4(ii), the coefficient system M, = ker(0 : R® — R) is a
coefficient system of degree 1, with cokernel the constant (and hence degree 0) coefficient
system R.

Remark 5.7. While standard examples of coefficient systems will tend to fit in our set-up, sta-
bilizing with X in the category Fjy for formed spaces with boundary, just as well as in the more
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classical stabilization with H in the category F of formed spaces, there is no direct translation
between finite degree coefficient systems in the sense of the above definitions and finite degree
coeflicient systems coming from the same definitions but in the context of the category F instead,
as in [15, Sec 5.4] or in [4].

Theorem 5.8. Let R be a ring with finite dual unitary stable rank, and let M = {M,, s, }n>1 be
a coefficient system of degree r for the groups {Autz, (A#X#")},>1. The map

Hi(Autz, (A#X#7); M) —29% [, (Aut g, (A#X#), My yq)

. . . . n—2 —3r—2 . . . n—2 —3r— .
is an epimorphism for i < % and an isomorphism for ¢ < %. When R is

a PID the map is an epimorphism for i < "%37" and and isomorphism for i < %
Proof. This follows just like from Theorem 5.1, from applying [9, Thm C]. O

Proof of Theorem B. Theorem B follows from the above result by setting A = 0, applying Propo-
sition 2.17 to identify the automorphism groups with symplectic groups. ([l

APPENDIX A. CONNECTIVITY OF THE COMPLEXES OF UNIMODULAR SEQUENCES

In this section we will prove Theorem 3.7, which gives a bound on the connectivity of the poset
of unimodular sequences constrained to an affine subspace. The main ingredient of the proof is
a generalisation of a result of van der Kallen in [22], combined with further generalisations by
Friedrich in [4] and the first author in [18].

As in [22, 4], for a set X we let O(X) denote the poset of finite non-empty sequences of elements
of X, ordered by refinement.

We say that F' C O(X) satisfies the chain condition if it is closed under taking subsequences.
For (vi,---,vn) € F we let F,, ,,) denote the poset of sequences (wi,---,wn) € O(X) such
that (wy, -+, Wm,v1, - ,v,) € F.

If M is an R-module, the poset U(M) identifies with the subposet of sequences in O(M) which
are unimodular. And for N < M a submodule and [ € M an element, we have

UM, l+N)=0(1+N)nU(M)
is the subposet of U(M) of unimodular sequences in M of elements of the form [ +n with n € N.

The proof of Theorem 3.7 uses the following lemma from [22], which we state here for conve-
nience.

Lemma A.1. [22, Lem 2.13] Suppose F' C U(M) satisfies the chain condition. Let X C M be a

subset.

(1) If O(X) N F is d-connected, and O(X) N F, .
(v1,-++ ,vm) € F\ O(X), then F is d-connected.

(2) If O(X) N Fy, ... ) 18 (d+ 1 —m)-connected for all sequences (vq,--- ,vp) € F\ O(X), and
there is a length 1 sequence (yo) € F with O(X) N F C F{y,), then F is (d + 1)-connected.

- wm) 18 (d — m)-connected for all sequences

It will be convenient for the sake of the proof of the theorem to work in M := M & R*, so
we always have additional unimodular vectors at hand, and we will consider posets of the form
O(X)NU(M®), with X an affine subspace of M or the union of two such. Note that for N < M,
the posets

UM, l+N) =2 UM+ N)=0(1+N)nUM=>)
are isomorphic. The proof follows closely [4], and consists in checking that the argument there
(and heavily inspired by [22]) carries over.

Recall that
r(M,N) :=max{rk(L) : L C N is a direct summand of M}.
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Proof of Theorem 3.7. Let e; denote the first standard generator in R < M* = M & R*. We

will prove the result by induction on r = r(M, N) = r(NN, M) using the following two additional

statements:

(a) OU+NUI+N+e)NUM>®) is (r(M,N) — sr(R))-connected.

(b) O(l+ NUI+ N +e1) NU(M>)y, ... 1) 18 (r(M, N) — sr(R) — k)-connected for any k > 1 and
(v1,--+,v) € UM).

We start by noting that (1),(2),(a) and (b) hold for r» < sr(R) — 1. Indeed, parts (1),(2) and (b)

are vacuously true in that case since any poset is (—2)-connected, and statement (a) is also true

since O(l + N Ul + N + e;) N U(M®) contains the one element sequence (I + e;) and hence is

non-empty, so (—1)-connected.

Thus we can assume that r = r(M,N) > sr(R). We fix R" =2 Ny < N a direct summand
exhibiting that r(M, N) = r. In particular, M = Ny & M’. We fix also a basis z1, ..., z, for Np.
Without loss of generality we can assume that [ € M’, as setting its Ny component to 0 does not
affect the subspace [ + V.

Proof that (b)r—1 = (b),.

Let Y =14+ NUl+ N +e; and (vq,---,v;) € Y a unimodular sequence. We need to show that
OY)NU(L*®) ;. ) is d-connected for d = r — sr(R) — k.

We start by finding f € GL(M ) such that f(Y) = Y and the projection f(v1)|n, is unimodular.
Indeed, since vy is unimodular in M, there is ¢ : M*>° — R linear such that ¢(v1) = 1. Write
v = Y Nz +a+b e No@d M & R®. Then ¢(vi) = Y;_; Niod(zi) + ¢la+b) =1 so
(A1, A, ¢(a + b)) is a unimodular vector in R" 1.

Since r > sr(R), there are pi,---, pr € R such that (A1 + pid(a+0b),--- , A\ + prp(a + b)) is
unimodular in R". Now define f : M® = Ng@® M' & R® — Ny ® M’ & R™ via

fn, vy, 2) = (i + me(y +2), v + gy + 2),y, 2)

where we have identified Ny with R" using the chosen basis. The map f is invertible, with inverse
of the same form. We have that both f, f~! satisfy that f(N) C N, f~}(N) C N, so f(N) =N
as a set. Also, for any z € M, f(z) € x + N and f~'(z) €  + N, hence f(z + N) =z + N as
sets. Thus, in particular f(Y) =Y as sets. By construction, f(v1)|n, is unimodular.

Now we need to treat the case r = r(M, N) = sr(R) separately: here we only need to consider
the case k = 1 and show that the poset is non-empty. Observe that by definition (f(v1),l+e1) is a
unimodular sequence in M, and hence so is (f ' (I4-e1),v1). Since [+e; € Y then f~1(I4+e1) €Y
too, so we are done.

Now let us treat the general case r > sr(R): In that case GL,(R) acts transitively on the set
of unimodular vectors of Ny = R", so we can now modify f so that f(v1)|n, = z1. Thus without
loss of generality we can assume that we are in the situation that the zi-coordinate of vq is 1.

Now set

Uk

X :=1l+NUI+N +e CY,
where N’ < N is the complement of the submodule generated by z7 in N. Then
OX)NF =0(X)NUM™)y,,..00) = OX)NT(M)

and (b),—1 implies that O(X) N F is (r — 1 — sr(R) — (k — 1))—connected, i.e. d—connected.
Likewise, given a sequence (u1,---,up) € F\ O(X), the poset F' N O(X)(y, . um) = OX) N
U(M®) (vo,... 001 ,sum) 18 (d—m)-connected by (b),—1, which implies that F' itself is d—connected,
as needed, by Lemma A.1(1).

Proof that (b); = (2),. We now set
X=I+NUI+N+x2, C I+N,

(v2,-., %)
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for N’ as above, and let
F=U(M,I+ N)(vl,m WUE) T Oo(l+N)N U(Mm)(vl, UK
where (v1,...,v;) € U(M). We need to show that F' is d—connected for d = r — sr(R) — 1 — k.
For m > 0 and a (possibly empty) sequence (u,- -+ ,un,) € F\ O(X) we have
FNOOX) @y um) = O+ N UL+ N 4 21) NUM™)
which is (r — 1 — sr(R) — (m + k))-connected by part (b), (which applies as k£ > 1). Hence Lemma
A.1(1) implies that F' is d-connected for d =r — 1 — sr(R) — k, as needed.

Proof that (a),—1,(2),—1 = (1), Let X and F be as above, just taking now k = 0, i.e. replacing
(v1,...,v;) with the empty sequence. Then FNO(X) is (r —1 — sr(R))—connected by (a),—; and
FNO(X)(uy o um) 18 (r =1 = sr(R) — k)—connected by (2),-1. Lemma A.1(1) then implies that
Fis (r — 1 — sr(R))-connected, as needed.

Proof that (1), (2), = (a),. Finally for (a) we will use Lemma A.1(2). We take
X=I[l+N and F=0(I+NUI+ N +e)NnUM™),

(U1, Um0, V)

with

Yo = l+eq.
Let (u1, - ,um) € F\ O(X). Without loss of generality we can assume that u; € I + N + e,
and we let ug = u; — s;uy for i > 2, where the s; € R are chosen so that the e;-component of ]
vanishes for 2 < i < m. Then,

O(X) N Flyy oo ) = O+ N) N UM™)
which is (r—sr(R)—m)-connected by (1), if m = 1 and likewise (r —sr(R)—1—(m—1))-connected
by (2), if m > 2. Note also that O(X) N F' C F{,,) is. Hence we can apply Lemma A.1(2) with
d =r — sr(R) — 1, which gives the desired connectivity of F. O

e i)

APPENDIX B. CANCELLATION AND CLASSIFICATION OF FORMED SPACES WITH BOUNDARY FOR
PIDs

The goal of this appendix is to improve the bounds of the cancellation Theorem 4.1 when the
ring R is a PID. The proof uses a classification of the objects of Fy that holds when R is a PID.
We start by stating the cancellation theorem, and then give the classification result.

Theorem B.1 (Cancellation for PIDs). Let R be a PID and (M;, \;, 0;) € Fp with 0; surjective
for i = 1,2 and such that
(My, A\, 01)#X = (Ma, A2, o) #X.
Then (Ml, )\1, 81) = (MQ, AQ, 82)
Note that the assumption that both 0; are surjective, and hence both (M;, A;, ;) have positive
arc genus, is needed. Indeed, Proposition 2.16 gives a decomposition X729t = (H9 0)#X but
X729 2 (H9,0).

The classification result used in the proof of the above theorem will be given in terms of the
following invariant:

Definition B.2. Let R be a PID and let (M, A, 9) be a formed space with boundary with M # 0.
Its form data is the tuple

]D)(M, )\,8) = (n,l,dl, ce ,dk,(sl, PN 75k+1)
where

(i) n =rk(M) is the rank of M;
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(ii) (I,dq,...,dy) is the Smith normal form of A, representing the form
diag(dy,dy,...,dg,dg,0,...,0)

with [ = n — 2k > 0 zeroes;
(iii) for 1 <i <k, (6;) = O(M;), where M; = {m € M :VYm' € M d;|\(m,m')}.
(iv) (0g+1) = O(Rad(M, N)), where Rad(M,\) = {m € M :Vm' € M X(m,m') = 0};

As already used in Lemma 2.24, the fact that the Smith normal form of A has the above form
follows from [14, Theorem IV.I|, where di|ds]|...|dy are uniquely determined up to scaling them
by units in R. The above form data adds to the Smith normal form the data of the ideals of R
given by applying 0 to the subspaces M; determined by A.

The §;’s are likewise well-defined up to scaling by a unit, and we have 5i_1|5i|df—_i15i_1 fori>2

because djl; i—1 C M; C M;_;. Setting Myp,q = Rad(M, \), we see that the relation still hold
fori=k+1.

We say that two tuples (n,l,d1,...,dy,01,...,0k11) and (n/, ', dy, ..., d}, 6, ...,0,,,) are equiv-
alent if n = n’, | = I’ and there are units u;, v; such that d; = u;d; and §; = v;0. The following
result gives a classification of all the objects in Fy:

Theorem B.3 (Classification of formed spaces with boundary over a PID). If R is a PID then the
isomorphism class of a formed space (M, \,0) € Fy with M # 0 is determined by its equivalence
class of form data D(M, A, 9).

Moreover, any form data (n,l,d,...,dg,01,...,0k+1) satisfying the relations dj|ds| ... |d; and
5i,1|5i|df—jl5i,1 for 2 < ¢ < k+1 is realized.

Proof. Suppose that (n,l,di,...,dx,d1,...,0k+1) is a tuple satisfying the above relations. We
start by constructing a standard formed space with boundary realizing it: Take M = R"™. Writing
the standard basis of R" as ey, fi1,..., €k, fx,91,--.,9;, define X via A(e;, fi) = d; for 1 < i < k
and A vanishes otherwise between standard basis elements, and define 9 via de; = §;, df; = 0 for
1 <i<kand0g; =041 for 1 <35 <.
One verifies that this form realises the given sequence of invariants using that M; has basis
d d d  d

{diieh diifla d7;627 d7;f27 ) fi7 €i+1, fi-‘rla <oy €k fk?glv v 7gl}7

Rad(M, \) has basis {g1,..., g}, and that 5i|j—;€6j for 1 < j <1 and 6;|0; for ¢t > i.

Given (M, \,0) € Fy with M # 0, we will now construct an isomorphism to the standard
formed space associated to its form data.

By Lemma 2.24(ii), the formed space (M, \) is isomorphic to the canonical formed space

k
P ara(R,0)
=1

determined by the first part of its invariants. Picking such an isomorphism allows us to assume
that M = R™ with standard basis ey, fi,...,¢eg, fx,91,---,g; such that \ agrees with the above
canonical form in this basis. It remains to show that we can apply an automorphism of (M, A) to
ensure that also 0 is canonical. We will proceed in several steps, each of which preserves A but
modifies 0 to make it closer to the standard one.

Step 1: This step will make 0 standard on Rad(M,\) = 0@ R

If | = 0 there is nothing to do, so suppose I > 1. We need to find an element in GL(0 @ R!) C
Aut(M, X) so that 9(gj) = 041 for 1 < j <. This is immediate if 6511 = 0 since in that case 0 is
the zero map on the radical. If not, 5341 generates the ideal d(Rad(M, \)) and Rad(M, \) = 0O R!,
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so there is a non-zero vector v € 0@ R! such that Ov = 64 1. Using Lemma 2.24(ii), we can write
v = rv' with » € R and v' unimodular. We must have v/ € Rad(M, \) since r # 0. Hence
Ov' € (6p41), giving that r is a unit so v is unimodular. Now GL(0 @ R!) acts transitively on the
set of unimodular vectors by Lemma 2.24(i), so we can apply an automorphism to ensure that
091 = 0p41. Finally, apply the automorphism given by g; — ¢g; + (1 — g’ )g1 for each 1 < i < to

ensure that 0 is standard on 0 & R..

In the remaining steps we will not modify gy, ..., g;; we will only modify the remaining basis
elements.

Step 2: This step makes 0 f; = 0 using an automorphism of d; H for each 1 < i < k.

By Proposition 2.25(iii) with [ = 0, there is an element ¢ € Aut({e;, fi, ), M(e, 1)) = Aut(diH) =
Aut(H) that takes (e;, fi) to a new basis (¢(e;), ¢(fi)) with 9¢(f;) = 0.

Step 3: This step makes Je;|0 1 for 1 < i < k using an automorphism of d;H ®(R',0) that
preserves the condition df; = 0 of the previous step and fixes R

If [ = 0 there is nothing to do, so suppose [ > 1. We will proceed in two steps. Firstly apply the
automorphism 1 € Aut(d;H ®(R',0)) defined by 1 (e;) = e; and ¥ (f;) = fi + g1, so that the new
basis has the property that 0y(e;) = de; and 9¢Y(f;) = dx11. Then we repeat step 2 to get new
bases €;, fi such that 9¢; generates the ideal (de;, 04 1), and in particular 9é;|6y,1, and 8 f; = 0.

To finish the proof we need to further change the hyperbolic bases (e;, fi) so that de; = ¢;
(keeping Jf; = 0). We will do so by decreasing induction on i in Step 5 repeatedly using the
following automorphism:

Step 4: Construction of an automorphism of d;H ®d;H for i < j ensuring that 8ei|8ej]fl—z8ei,
without affecting the above properties.

Fix ¢ < j and suppose that df; = 0 = 0f;. We first apply the automorphism ¢ € Aut(d;H ©d;H)
defined by

d.
Clei) =i C(fi)=fitej Cleg) =ej C(f) = fj+ Fei

which gives a new basis with the property that now 9¢(f;) = 86] and oC(f) = Zﬁez Applying
step 2 to the ith and jth summand then gives a new basis (e}, f/, € f’ ) such that de) generates

the ideal (Je;, Je;) and Oe) generates the ideal (Jej, %8@), while 9f; = 0, 0f; = 0. This gives
the desired congruences since Oe} then divides both OJe; and Z—Zaei, so that de;|0e); and Oe) divides

ael and & aej, and hence also dj el

" Observe that this special transformatlon changes the spans of both e;, f; and e;, f; but, as it is
an automorphism of (M, \), the submodules M, ..., My, Rad(M, \) are unchanged.

Step 5: This step inductively uses step 4 to ensure that de,, = é,, foreach m=1,... k.
Assume that for a fixed 1 < m < k we already have that de; = 6; for m+1 < j < k. Then we will
modify e, fm so that de,, = d,, (and 9f,, = 0). Here the start of the induction, the case m = k,
where the assumption holds trivially.

We make the induction step in two parts.

(i) This step applies an automorphism of d,,H @d,,+1H to ensure that de,|[0mt1] ... |dkt1-
If m = k, this holds by step 3 that already ensured that Oeg|dxt1, so there is nothing to
do. If m < k, apply the step 4 transformation with i = m < m + 1 = j. This changes
(ems fms €ms1, fma1) = (€ frns€mits fong1). We firstly claim that we sill have de], | =

Om+1, up to a unit: this is because 8e’m 41 generates the ideal (Jep 1, dgl“ Oep,) and depyq =
m41

dm+1 by induction hypothesis and m“ em € Mp,+1 by definition so 5m+1] 8em Secondly,
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del,, generates the ideal (dep,,0m41) so in particular del,|dmy1. Since Opmt1]. .. |0kt1 by
construction then we are done.

(ii) This step applies an automorphism of diH @ --- @ d,, H to ensure that 86m|%—ﬁaei for each
1 <i<m. '
Apply Step 4 inductively for each pair (i, j) with 1 < ¢ < m = j. This replaces (e;, fi, €m, fm)
with (ef, f!,el,, f},) satisfying in particular that 86%’%86;. Note that the modified e/,
generates the ideal (de,, %—T&ei). In particular it divides Oe,, and so the congruences obtained

in part (i) still hold, and likewise for the congruences 8em\52—’786i/ for i/ < i, for the same
reason. '

We are left to check that the above procedure does indeed force the equality de,, = &y, finishing
the induction step. By definition ¢, generates the ideal 9(M,,) and M,, has a basis given by

Ay dp , dp  dp }
—€1, —/ —_ —_ e P .
{dl 1 dl f17 d2 €2, d2 f27 76m7fma m+17fm+17 ) kafk:vgl) » i

By the above steps we have that 8em|‘f1—78ei for 1 <i <m-—1and dey,|0emi1]---|0g1 = --- = gy,
giving (up to a unit) the equality de,, = d,,. This finishes the proof.
O

Proof of Theorem B.1. By the surjectivity assumption on 8;, we have (M;, \;, 9;) = (M], \,, 0))#X.
Adding #X 7?2 to each side and using that X#3 = X# H (Proposition 2.16), we get isomorphisms

(M, M\, 01)# H = (My, M, 00)# X722 (Mo, Ay, 0o)# X722 (Mo, \o, O0)#H .

Thus, it suffices to study of cancellation by H instead. Now, the effect of —# H on the form
data invariants is as follows: let

D(M,\,0) = (n,l,dy,...,dg,61,02,...,0k+1)
be the original form data. Then,
D((M, X\ 0)#H) = (n+2,1,d},dy, ... djy1,07,05, ..., 0,0)
where (dy,07) = (1,01) and (d},d}) = (d;—1,0;—1) for 2 < i < k + 1, because 0 vanishes on H. In

17 7

particular, the form data invariants of (M, \,d) are determined by those of (M, A, 9)# H, which
implies cancellation. ([l
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