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FROM MAPPING CLASS GROUPS TO AUTOMORPHISM
GROUPS OF FREE GROUPS

NATHALIE WAHL

Abstract

It is shown that the natural map from the mapping class groups of surfaces to the automorphism
groups of free groups induces an infinite loop map on the classifying spaces of the stable groups
after plus construction. The proof uses automorphisms of free groups with boundaries which play
the role of mapping class groups of surfaces with several boundary components.

1. Introduction

Both the stable mapping class group of surfaces Γ∞ and the stable automorphism
group of free groups Aut∞ give rise to infinite loop spaces BΓ+

∞ and BAut+∞ when
taking the plus-construction of their classifying spaces. By the work of Madsen
and Weiss [16], BΓ+

∞ is now well understood, whereas BAut+∞ remains rather
mysterious. In this paper, we relate these two spaces by showing that the natural
map BΓ+

∞ → BAut+∞ is a map of infinite loop spaces. This means in particular
that the map H∗(Γ∞) → H∗(Aut∞) respects the Dyer–Lashof algebra structure.
To prove this result, we introduce a new family of groups, the automorphism
groups of free groups with boundary, which have the same stable homology as
the automorphisms of free groups but enable us to define new operations.

Let Fn be the free group on n generators, and let Aut(Fn ) be its automorphism
group. Note that Aut(Fn ) ∼= π0 Htpy∗(∨nS1), the group of components of the
pointed self-homotopy equivalences of a wedge of n circles. A result of Hatcher
and Vogtmann [11] says that the inclusion map Aut(Fn ) → Aut(Fn+1) induces an
isomorphism Hi(Aut(Fn )) → Hi(Aut(Fn+1)) when i � (n − 3)/2, and hence the
homology of the stable automorphism group Aut∞ := colimn→∞ Aut(Fn ) carries
information about the homology of Aut(Fn ) for n large enough.

Let Sg,k be a surface of genus g with k boundary components, and let Γg ,k :=
π0Diff+(Sg,k ; ∂) be its mapping class group, the group of components of the
orientation-preserving diffeomorphisms which fix the boundary pointwise. The
maps Γg ,k → Γg+1,k , induced by gluing a torus with two discs removed, and
Γg ,k → Γg ,k+1, induced by gluing a pair of pants, are homology isomorphisms
in dimension i � (g − 1)/2 by Harer and Ivanov [9, 14]. Let Γ∞ := colimg→∞ Γg ,1

denote the stable mapping class group.
There is a map f : Γg ,1 → Aut(F2g ) obtained by considering the action on the

fundamental group of the surface Sg,1 since π1(Sg,1) ∼= F2g . The spaces
∐

g�0 BΓg ,1

and
∐

n�0 BAut(Fn ) have monoid structures induced by the pair of pants
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multiplication on surfaces Sg,1 ×Sh,1 → Sg+h,1 and by wedging circles ∨nS1 × ∨m

S1 → ∨n+m S1 respectively. The map Bf :
∐

g�0 BΓg ,1 →
∐

n�0 BAut(Fn ) is a map
of monoids, and hence we have a map of loop spaces Z× BΓ+

∞ → Z× BAut+∞
on the group completion. The wedge product defines an infinite loop structure on
Z×BAut+∞ as it defines a symmetric monoidal structure on

∐
Aut(Fn ), thought of

as a category. The infinite loop structure on Z×BΓ+
∞, discovered by Tillmann [22],

is more complicated; Tillmann defines a cobordism 2-category S which is symmetric
monoidal under disjoint union and such that ΩBS � Z× BΓ+

∞. As BS is an infinite
loop space, so is its loop space Z× BΓ+

∞. Our main result is the following.

Theorem 1.1. There is an infinite loop space structure on Z× BAut+∞
equivalent to the one induced by wedging circles and such that the map

Z× BΓ+
∞ → Z× BAut+∞

induced by the action on the fundamental group is a map of infinite loop spaces.

To prove this theorem, we enlarge Tillmann’s cobordism category S by
introducing an extra ‘graph-like’ morphism. We obtain a new 2-category T which
contains S as a subcategory and such that ΩBT � Z× BAut+∞. The theorem then
follows from the fact that the inclusion S → T is a map of symmetric monoidal
categories.

The category T is closely related to the automorphism groups of free groups with
boundary, which we define now.

Let Gn,k be the graph shown in Figure 1 consisting of a wedge of n circles together
with k extra circles joined by edges to the basepoint. We call the k circles disjoint
from the basepoint boundary circles. The automorphism group of free group with
boundary An,k is by definition π0 Htpy(Gn,k ; ∂), the group of components of the
space of homotopy equivalences of Gn,k which fix the basepoint and the k boundary
circles pointwise. In particular, An,0 = Aut(Fn ). The group An,k is an analogue of
Γg ,k+1. In fact, Γg ,k+1 is a subgroup of A2g ,k . A description of An,k as an extension
of a subgroup of Aut(Fn+k ), as well as a presentation of the group, are given in
joint work with Jensen [15] and a description in terms of mapping class groups of
certain 3-manifolds is given in joint work with Hatcher [13]. This last description is
used in [13] to prove that the natural inclusions An,k → An+1,k and An,k → An,k+1

are homology isomorphisms in dimension i � (n − 3)/3.

k
n

Figure 1. Gn ,k .
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The boundary circles of Gn,k allow to define new gluing operations between
graphs and between graphs and surfaces. We use these operations to define the
2-category T, whose objects are the natural numbers, whose 1-morphisms are built
out of graphs and surfaces by gluing and disjoint union, and whose 2-morphisms are
homotopy equivalences fixing the boundary. The cobordism 2-category S of [22] is
the subcategory of T generated by the 1-morphisms built out of surfaces only. (See
Section 2.)

Theorem 4.1 says that ΩBT � Z× BAut+∞. The main ingredients of the proof
are the homological stability of the automorphisms of free groups with boundary
and a generalized group completion theorem. Our Theorem 5.1 then says that the
infinite loop space structure on Z× BAut+∞ induced by the symmetric monoidal
structure of T is equivalent to the one previously known, induced by wedging circles.

Tillmann proved in [23] that the map Z× BΓ+
∞ → A(∗) to Waldhausen’s space

A(∗) is a map of infinite loop spaces. Our result says that this map factors as a map
of infinite loop spaces: Z× BΓ+

∞ → Z× BAut+∞ → A(∗). The space QS0 factors out
of each of these three spaces (away from two in the case of the mapping class group)
and the first map on the QS0 factor is multiplication by 2. The work of Dwyer–
Weiss–Williams ([4], see also [23]) implies that the composite map Z× BΓ+

∞ →
A(∗) factors through QS0. It is unknown whether Z × BΓ+

∞ → Z× BAut+∞ already
factors through QS0, or for that matter whether Z × BAut+∞ is QS0. The rational
homology of Aut∞ is known to be trivial up to dimension 6 and is conjecturally
trivial in all dimensions [12]. On the other hand, the homology of the mapping class
group is known with any field coefficients [7] and is rather rich.

The paper is organized as follows. We construct the 2-category T in Section
2. In Section 3, we define a T-diagram which is used in Section 4 to show that
ΩBT � Z× BAut+∞. In Section 5, we show the equivalence of the two infinite loop
space structures on Z× BAut+∞. Section 6 gives an alternative definition of T using
punctured surfaces.

2. Cobordism category with graphs

The (1 + 1)-cobordism 2-category has objects 1-dimensional manifolds, 1-
morphisms cobordisms between these manifolds and 2-morphisms diffeomorphisms
of cobordisms restricting to the identity on the boundary. We define here a 2-
category T, modifying Tillmann’s model of the cobordism category in by adding
an extra 1-morphism from the circle to itself, and replacing diffeomorphisms by
homotopy equivalences.

2.1. Objects

The objects of T are the natural numbers n ∈ N, where n can be thought of as
a disjoint union of n circles.

2.2. 1-morphisms

To define the 1-morphisms of T, consider the following directed building blocks,
called pieces:

(1) a pair of pants P, a torus with two discs removed T and a disc D with
respectively 2, 1 and 0 incoming boundary components and each with 1
outgoing boundary;
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Figure 2. Pieces and example of a 1-morphism from 4 to 2.

(2) a graph-like piece G � G1,1 ∨ D2, with incoming boundary the boundary
circle of G1,1 and outgoing boundary the boundary of the disc (see Figure 2).

We fix a parametrization [0, 2π[ of the boundary circles, with 0 at the end point
of the attaching edge for the incoming boundary of G. We then allow the following
gluing operation on the pieces: an incoming circle of one piece can be identified
(using the parametrization) with the outgoing circle of another piece. The boundary
of the glued object is defined to be the union of the boundary of the two pieces,
minus the two identified circles.

A 1-morphism in T from n to m is a couple (T, σ), where T is a 2-dimensional
CW-complex obtained from the above pieces by gluing and disjoint union, with
n incoming and m outgoing boundary components, and σ is a labelling of these
boundaries. (See Figure 2 for an example.) One can moreover take disjoint union
with copies of the circle, thought of as a morphism from 1 to 1. These circles are
thus to be labelled on both sides. The n! morphisms from n to n given by n disjoint
copies of the circle correspond to the permutations of the labels, with the identity
permutation representing the identity morphism on n.

One should think of (T, σ) as a combinatorial object, to which a topological space
is associated.

For simplicity, we will drop σ from the notation in (T, σ). Note that the building
blocks of T are defined in such way that a 1-morphism T : n → m has exactly m
connected components.

2.3. 2-morphisms

A 2-category is a category enriched over categories and the 1-morphisms of
T are the objects of the categories of morphisms T(n,m). The 2-morphisms are
the morphisms in these categories. Given two 1-morphisms T and T ′, objects of
T(n,m), the set of 2-morphisms between T and T ′ is π0 Htpy(T, T ′; ∂), the group
of components of the space of homotopy equivalences from T to T ′ which fix the
boundary, that is which map the boundary of T to the boundary of T ′ via the
identity map according to the labels. By [10, Proposition 0.19], any homotopy
equivalence T → T ′ which fixes the boundary is a homotopy equivalence relative
to the boundary. (The pair (T, ∂T ) is a CW-pair and hence satisfies the homotopy
extension property, in which case the proposition applies.) In particular, every 2-
morphism is invertible, but more importantly we will be able to glue homotopy
equivalences along the boundaries.
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Remark 2.1. We consider homotopy classes of homotopy equivalences relative
to the boundary. By homotopy classes, we mean path components in Htpy(T, T ′; ∂).
Two elements f and g are in the same path component if and only if they are
homotopy equivalent relative to the boundary. Note that here, it would not be
equivalent to forget the ‘relative to the boundary’ !

Note that if T and T ′ are permutations, the set of 2-morphisms is empty unless
T = T ′ in which case it is just the identity. If T and T ′ are surfaces, that is if they
are built out of P, T and D only, then

π0 Htpy(T, T ′; ∂) ∼= π0Diff+(T, T ′; ∂)

(see [15, Section 2]). We describe in Lemma 2.2 below the 1-morphisms with
automorphism group given by automorphisms of free groups with boundaries.

2.4. Composition

The composition of 1-morphisms is defined by gluing according to the labels. We
will denote this composition by T1�T2 : n → p for T1 : n → m and T2 : m → p.

For f1 : T1 → T ′
1 and f2 : T2 → T ′

2, define the horizontal composition f1�f2 :
T1�T2 → T ′

1�T ′
2 by applying f1 to T1 and f2 to T2. This defines a homotopy

equivalence as f1 and f2 are homotopy equivalences relative to the boundary.
Finally, vertical composition of 2-morphisms is given by the composition of

homotopy equivalences.
All compositions are associative and this defines a 2-category. We write all

compositions in T in the left-to-right order.

We have seen that surface 1-morphisms in T have automorphism group given by
mapping class groups. We now describe the 1-morphisms with automorphism group
given by automorphisms of free groups with boundary. They play an important role
in determining the homotopy type of T.

Let Gn,k be the graph given in Figure 1 and consider Gn,k ∨ D2, where the
basepoint of the disc is its centre. The boundary of Gn,k ∨ D2 consists of k + 1
circles: the k boundary circles of Gn,k together with the boundary circle of the disc
D2. The graph G0,0 is just a point so G0,0∨D2 ∼= D. Note also that G1,1∨D2 = G.

Recall that An,k = π0 Htpy(Gn,k ; ∂), where ∂Gn,k is the basepoint of Gn,k union
its k boundary circles.

We call a surface component of an object T of T(k, 1) any connected component
of surface pieces P, T, D and the disc of G glued together in T . For example, the
object of T(2, 1) in Figure 3 has two surface components: a torus with three holes
and a disc. The outgoing surface component of T is the surface component whose
outgoing boundary is the outgoing boundary of T . In the example, it is a disc.

1

1

2
�

Figure 3. G3,2 ∨ D2 homotopic to an object of TD (2, 1).
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Lemma 2.2. An object T of T(k, 1) is homotopic relative to the boundary to
Gn,k ∨D2 for some n, if and only if the outgoing surface component of T is a disc.
Moreover, if this is the case, we have π0 Htpy(T ; ∂) ∼= An,k .

Let TD (k, 1) be the full subcategory of T(k, 1) generated by the objects with a disc
as outgoing surface component, and let TS (k, 1) be the full subcategory of T(k, 1)
generated by the other objects, that is the objects with outgoing surface component
of higher genus or with more boundary components, or the object represented by
the circle in T(1, 1). By the lemma, there can be no morphisms in T(k, 1) between
the objects of TD (k, 1) and the objects of TS (k, 1). Hence we have the following.

Corollary 2.3.

T(k, 1) = TD (k, 1)
∐

TS (k, 1) and BTD (k, 1) �
∐
n�ε

BAn,k ,

where ε = 0 when k = 0 and ε = 1 otherwise.

Proof of Lemma 2.2. Every surface component of an object T has exactly one
outgoing boundary by construction. Suppose that T is an object of T(k, 1) with
outgoing surface component a disc. Then the outgoing boundary of any other
surface component in T will be free, that is not fixed by the homotopy equivalences –
as it cannot be the outgoing boundary of T . One can thus homotope each of these
surface components S to a graph G2m,l lying in S, with basepoint 0 of the outgoing
boundary of S, its l boundary circles on the l incoming boundaries of S and where
m is the genus of S, and this can be done while keeping the boundary of T fixed.
Such a homotopy can easily be constructed by considering the surface component as
a polygon with appropriate identifications of the edges and with l+1 discs removed.

Suppose on the other hand that T does not end with a disc component and let S
be the outgoing surface component of T . If S has incoming boundary components,
then they have to be incoming boundaries of T because the only non-surface piece
one can glue to S is G and this closes the incoming boundary it is glued to. Hence
all the boundary components of S are boundary components of T and S cannot be
homotoped to a graph while fixing the boundary of T . (Recall that π0 Htpy(S; ∂) ∼=
π0Diff+(S; ∂) for a surface S.)

Finally, we want to see that if T is homotopic to Gn,k ∨ D2 relative to the
boundary, then π0 Htpy(T ; ∂) ∼= An,k . It is equivalent to show that π0 Htpy(Gn,k ∨
D2; ∂) ∼= An,k . Let X := Gn,k ∨ D2.

Note first that An,k
∼= π0 Htpy(X; ∂̃), where ∂̃X consists of the k boundary circles

of Gn,k together with the basepoint ∗ = 0 ∈ ∂D2. There is an inclusion

Htpy(X; ∂) ↪→ Htpy(X; ∂̃)

and we want to show that it induces an isomorphism on π0.
Surjectivity: Let f ∈ Htpy(X; ∂̃). Then f maps ∂D2 to a trivial loop in X. It is

then easy to homotope f relative to ∂̃X to a map fixing ∂D2. (One can also use
the homotopy extension property of (X, ∂X).)

Injectivity: Suppose that f, g ∈ Htpy(X; ∂) are homotopic relative to ∂̃ by a
homotopy H : X × I → X. Consider the restriction of H

H∂D2 : ∂D2 × I → X.
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Let Ĥ∂D2 be a lift of H∂D2 to the universal cover of X, which is contractible.
As H∂D2(0× I) = ∗ and H∂D2(∂D2 × 0) = H∂D2(∂D2 × 1) = ∂D2, we have
Ĥ∂D2(∂D2 × 0) = Ĥ∂D2(∂D2 × 1) is a fixed lift ˆ∂D2 of ∂D2. Hence Ĥ∂D2 is
homotopic to the constant map i∂D2 : ∂D2 × I → ˆ∂D2 relative to ∂D2 ×{0, 1}.
Let h : (∂D2 × I)× I → X be the projection of this last homotopy and extend it to
h∂ : ((∂X × I) ∪ (X ×{0, 1}))× I → X using the constant map on ∂X\∂D2 and f
and g on (X × 0)× I and (X × 1)× I. Hence h∂ is a homotopy from the restriction
H∂ of H to (∂X × I)∪(X ×{0, 1}) to the map i∂X ∪f∪g : (∂X × I)∪(X ×{0, 1}) →
X. Now (X × I, (∂X × I) ∪ (X ×{0, 1})) has the homotopy extension property as
it is a CW-pair, so we get a homotopy h : (X × I)× I → X from H to a homotopy
H ′ : X × I → X with H ′(X × 0) = f(X), H ′(X × 1) = g(X) and H ′(∂X × I) is
the constant map on ∂X. Hence f and g are homotopic relative to ∂X.

By a ∆-category, we mean a category enriched over simplicial sets.
Let T denote the ∆-category obtained from T by taking the nerve of the categories

of morphisms, that is T has the same objects as T, and T (n,m) := N•T(n,m).

Proposition 2.4. The ∆-category T is symmetric monoidal under disjoint
union and its classifying space BT is an infinite loop space.

Proof. Taking disjoint union T1 � T2 and shifting the labels of T2 induces a
monoidal structure on T . The symmetries are then given by the block permutations
n + m → m + n in T (n + m,n + m).

Now BT is connected as there is a morphism from any object to 1. It follows that
BT is an infinite loop space [17, 21].

The cobordism ∆-category S defined in [23] is the subcategory of T generated
by the surface pieces P, T and D, that is it has the same objects as T and the
morphism space S(n,m) is the nerve of the full subcategory of T(n,m) generated
by the surface objects. (To be precise, the above model for S is a mix of [22] and
[23]: we use the combinatorial description of [23] but work with mapping class
groups as in [22], instead of spaces of diffeomorphisms. This is equivalent because
the components of the diffeomorphism group of a surface are contractible when the
genus is large enough [5, 6].)

The ∆-category S is symmetric monoidal under disjoint union and

ΩBS � Z× BΓ+
∞

[22, Theorem 3.1].
As the inclusion respects the symmetric monoidal structure, we have the following

proposition.

Proposition 2.5. The inclusion of categories S → T induces a map of infinite
loop spaces BS → BT .

Theorem 4.1 states that ΩBT � Z× BAut+∞. The map of infinite loop spaces
ΩBS → ΩBT is then the map announced in Theorem 1.1.
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3. A T -diagram

In this section, we work with simplicial sets and bisimplicial sets – the latter
coming from homotopy colimits of functors to the category of simplicial sets. We
use the following fact about bisimplicial sets: to any bisimplicial set X•,•, one can
associate the diagonal simplicial set dX• by taking dXp = Xp,p . Let f : X•,• → Y•,•
be a bisimplicial map. If fp,• is a homotopy equivalence on the vertical simplicial
sets Xp,• and Yp,• for each p � 0, then the induced map f : dX• → dY• is also a
homotopy equivalence [8, IV Lem. 2.6].

When we consider a bisimplicial set as simplicial set, we mean its associated
diagonal simplicial set.

Given a small ∆-category M, an M-diagram is a functor X :Mop → Simp, from
the opposite category of M to the category of simplicial sets. It is thus a simplicial
set X =

∐
i X (i) where i runs over the objects of M, with a simplicial action

M(i, j) ×X (j) −→ X (i)

for all objects i, j of M. An example of an M-diagram is given by taking X (i) =
M(i, i0) for a fixed object i0 of M.

We denote by T1 the T -diagram with T1(k) := T (k, 1) and by T∞ the T -diagram
with

T∞(k) = Tel(T (k, 1) �G−→ T (k, 1) �G−→ . . . ),

with the maps in the telescope defined by composition with G ∈ T (1, 1), and the
T -diagram structure, as for T1, obtained by pre-composition in T .

Let A∞,k := colim(An,k → An+1,k → . . . ), where the map An,k → An+1,k is
given by wedging with an S1 and extending the homotopies via the identity.

Theorem 3.1. T∞(k) � Z× BA∞,k .

Proof. Recall from Corollary 2.3 that T(k, 1) = TD (k, 1) � TS (k, 1), where
TD (k, 1) is the full subcategory of T(k, 1) generated by objects with a disc
as outgoing surface component. Let TD (k, 1) := N•TD (k, 1) and TS (k, 1) :=
N•TS (k, 1) denote their nerves.

Let TD,∞(k) ⊂ T∞(k) be the restriction of the telescope T∞(k) to the space
TD (k, 1). As TD (k, 1) �

∐
n�ε BAn,k (Corollary 2.3), we have

TD,∞(k) � Z× BA∞,k .

The theorem then follows from the fact that there is a retraction

r : T∞(k) �−→ TD,∞(k)

as the maps defining the telescope take TS (k, 1) to TD (k, 1):

T∞(k) = Tel
(

TS (k, 1)
∐ �G

������������
TS (k, 1)

∐ �G

������������
TS (k, 1)

∐

������������
. . .

TD (k, 1) �G �� TD (k, 1) �G �� TD (k, 1) �� . . .

)

Explicitly, r is a bisimplicial map defined vertically by rp : (T∞(k))p =∐
n0�...�np ∈N

(TS (k, 1) � TD (k, 1)) → (TD,∞(k))p =
∐

n0�...�np ∈N
TD (k, 1) which
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maps TS (k, 1)× (n0, . . . , n0, n1, . . . , np−i) with n0 < n1 to TD (k, 1)× (n0 + 1,
. . . , n0 + 1, n1, . . . , np−i) using the map �G and maps TD (k, 1)× (n0, . . . , np) to
itself via the identity.

For an M-diagram X , we can consider the Borel construction EMX of the action,
that is the homotopy colimit of the functor X . Thus EMX is the bisimplicial set
whose simplicial set of p-simplices is given by

(EMX )p :=
∐

i0,...,ip ∈Ob(M)

M(i0, i1)× . . . ×M(ip−1, ip)×X (ip)

with boundary maps d0 by dropping, d1, . . . , dp−1 by composition in M and dp

using the M-diagram structure.

Lemma 3.2. ET T∞ is contractible.

Proof. By [22, Lemma 3.3], ET T1 is contractible, where T1 is the T -diagram
with T1(n) = T (n, 1). Then ET T∞ � Tel(ET T1 → ET T1 → . . . ) is a telescope of
contractible spaces and thus is itself contractible.

4. Homotopy type of T

We use the T -diagram T∞ and the homological stability of the automorphisms
of free groups with boundary An,k [13] to prove the following theorem.

Theorem 4.1. ΩBT � Z× BAut+∞.

Lemma 4.2. The vertices of the simplicial sets of morphisms in T act by
homology isomorphisms on T∞.

Proof. The vertices of T (n,m) are the objects of the category T(n,m), so they
are 2-dimensional CW-complexes built out of the pieces P, T, D and G by gluing
and disjoint union. It is enough to show that each of these building blocks acts
by homology isomorphisms. An element of T∞(k) � Z× BA∞,k is a colimit of
morphisms from k to 1 and T acts by precomposing, that is by gluing on the
k incoming boundary circles. Acting one piece at a time means precomposing
with that piece disjoint union with k − 1 circles. We show that the corresponding
operations on the groups An,k induce homology isomorphisms stably.

By [13], we know that the maps

An,k
G1,0−→ An+1,k

An,k
G0,1−→ An,k+1

obtained by wedging a circle (that is the graph G1,0) and a boundary circle (that
is the graph G0,1), induce homology isomorphisms on the stable groups:

(G1,0)∗ : H∗(A∞,k )
∼=−→ H∗(A∞,k ) and (G0,1)∗ : H∗(A∞,k )

∼=−→ H∗(A∞,k+1).
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This implies that gluing a disc D also induces a homology isomorphism stably
since the composition

An,k−1
G0,1−→ An,k

D−→ An,k−1,

gluing D on the boundary circle of the added G0,1, is the identity.
Thus gluing a pair of pants P induces a homology isomorphism stably as the

composition with gluing discs on the incoming boundaries of P is the same as
gluing a disc D where P was glued.

Gluing a torus T also induces a homology isomorphism stably as the composition

An,k−1
G0,1−→ An,k

T−→ An+2,k

gluing T on the boundary circle of G0,1, is the same as wedging the graph G2,1.
Indeed, the two maps add two extra circles and a boundary circle and prolong the
homotopy equivalences via the identity on the added pieces. Similarly, gluing G

induces a homology isomorphism stably as the composition with wedging G0,1 is
the same as wedging G1,1.

Note that the three maps An,k → An+2,k induced by gluing T, gluing G�G

or wedging G2,0, are all different. However, by freeing a boundary circle (which
induces a homology isomorphism stably) one can show that the compositions F ◦T

and F ◦G0,2 : An,k → An+2,k → An+3,k−1, gluing a torus or wedging two circles
and then freeing the appropriate boundary circle, are conjugate, and hence induce
the same map on homology. This is another way to see that gluing T induces a
homology isomorphism stably.

Proof of Theorem 4.1. Consider the following square.

T∞(k)

��

�� ET T∞
p

��

k �� BT
By the generalized group completion theorem [22, Theorem 3.2] (see also [19, 20])
and using Lemma 4.2, this square is homology cartesian, which means that the
fibre of p at any vertex is homology equivalent to the homotopy fibre. As ET T∞
is contractible (Lemma 3.2), the homotopy fibre is ΩBT . Considering the fibre of
p at 0, we thus have a homology equivalence T∞(0) → ΩBT , and hence again a
homology equivalence after plus-construction with respect to any perfect subgroup
of π1T∞(0). Now T∞(0) � Z× BAut∞ by Theorem 3.1 and the commutator
subgroup [π1T∞(0), π1T∞(0)] is perfect [18, Remark 2]. Thus we can plus-construct
with respect to this subgroup and we get a homotopy equivalence by Whitehead’s
theorem for simple spaces [3, Example 4.2].

5. Two infinite loop space structures on Z× BAut+∞

Consider the category TD (0, 1). Its classifying space is homotopy equivalent
to

∐
n�0 BAut(Fn ) by Corollary 2.3. We claim that the pair of pants defines

a symmetric monoidal structure (up to homotopy) on TD (0, 1) equivalent to
the symmetric monoidal structure induced by wedging circles on

∐
n�0 Aut(Fn ),
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thought of as a category with objects {∨nS1 |n ∈ N} and morphism sets
π0 Htpy∗(∨nS1,∨m S1). To be able to remove the ‘up to homotopy’ in the above
claim, but also for the comparison to the infinite loop space structure of ΩBT , we
need to work with a quotient of the 2-category T.

To make the pair of pants multiplication unital, we need to collapse the 1-
morphisms D�iP to the circle, where i = 1, 2 represents the two possible gluings of
D and P. To make it associative, we need to identify P�1P and P�2P. We define a 2-
category Tr whose objects are the natural numbers as in T, and whose 1-morphisms
are the 1-morphisms of T with no occurrence of the sequences D�iP for i = 1, 2, or
P�2P. The 2-morphisms of Tr are as in T except that the circle is thought of as a
small cylinder, having thus automorphism group Z. As shown in [25, Section 3.1.1],
for each object T of T(n,m) there exists a canonical quotient object T r of Tr (n,m)
and a homotopy equivalence T → T r which can be used to define composition
in Tr . (The argument in [25] extends immediately from S to T as the quotient
construction only affects the pieces P, T and D.) We have ΩBT r � Z× BAut+∞ by
the same argument as for T . We chose to work with T rather than Tr in the first
part of the paper to stay as simple as possible.

The pair of pants induces a monoidal structure on Tr
D (0, 1), where Tr

D (0, 1) is
defined in an analogous way to TD (0, 1). (Note that the quotient construction only
affects the disc D and not the disc component in G.) The twist on the pair of pants
defines a symmetry as it squares to a Dehn twist along the outgoing boundary of
the pair of pants, which is homotopically trivial once the incoming boundaries of
the pair of pants are closed by discs.

Theorem 5.1. The equivalence ΩBT � Z× BAut+∞ is an equivalence of
infinite loop spaces, where the left infinite loop structure is induced by disjoint
union in T and the right one by wedging circles in

∐
n∈N

Aut(Fn ).

Proof. The proof of this theorem is totally analogous to the proof of the
main result in [25], which says that the infinite loop space structure on Z× BΓ+

∞
coming from ΩBS is equivalent to the one coming from the M-algebra structure
of S(0, 1) �

∐
g�0 BΓg ,1, where M is the mapping class group operad defined in

[24]. We will only sketch the main steps for the case of interest here.
We have an equivalence of infinite loop spaces

ΩBT �−→ ΩBT r ,

where T r denotes the ∆-category associated to Tr , and we have an equivalence of
symmetric monoidal categories

Tr
D(0, 1) �−→

∐
n∈N

Aut(Fn ).

We give here an equivalence between the spectra of deloops of ΩB(T r
D (0, 1)) and

of ΩBT r .
Let Σ be the standard E∞ operad with Σ(k) = EΣk for Σk the symmetric

group. (This operad is denoted Γ+ in [1, 2] and Γ in [25].) As Tr
D (0, 1) and T r

are symmetric monoidal categories, the operad Σ acts on their classifying spaces
T r

D (0, 1) and BT r .
We want to relate ΩBT r and T r

D (0, 1), which is a subspace of T r (0, 1). To a
morphism from 0 to 1 in T r corresponds a 1-simplex with boundary points 0 and
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0
1

2

Figure 4. Homotopy.

1 in BT r , by definition of the nerve. There is thus a natural map

φ : T r
D (0, 1) → ΩBT r

taking the path from 0 to 1 in BT r defined by the element of T r
D (0, 1) and going

back to 0 along the path defined by the disc, also thought of as a morphism from
0 to 1. The crucial observation is that this map respects the multiplication up to
homotopy, as show in Figure 4. The figure shows the loop obtained by multiplying
D�T�G and D�G in T r

D (0, 1) and then mapping to ΩBT r , producing a loop
following (D�T�G � D�G)�P from 0 to 1, and then following the disc-morphism
back to 0. The other loop, going from 0 to 2 and back to 0, is the one obtained
by mapping first D�T�G and D�G to ΩBT r and then multiplying, that is taking
loop on disjoint union. The two loops are homotopic in BT r because the operad
Σ acts on T r

D (0, 1) by taking disjoint union and composing with P as a morphism
in T r . This means that the top triangle in the figure commutes in T r , and hence
defines a 2-simplex in BT r . On the other hand, we have defined composition in T r

so that the bottom triangle also commutes. (This is a place where we need the disc
to be a strict unit.)

This argument extends to give all necessary higher homotopies, parametrized by
the elements of Σ. (Considering higher multiplications will give higher simplices in
BT r .)

More concretely, we consider Barratt and Eccles’ model for the spectra associated
to the action of Σ on T r

D (0, 1) and on BT r . These are realization of simplicial spaces,
where the ith space of the spectrum has q-simplices given by GΣ(Si ∧Σq (T r

D (0, 1)))
and GΣ(Si∧Σq (BT r ))) respectively, where G is the group completion functor on free
simplicial monoids, Σ denotes now the monad associated to the operad Σ, and Σq

means iterating the monad q times. The simplicial structure is given by the monad
multiplication for d0, . . . , dq−1 (using the assembly map S1 ∧ Σ(X) → Σ(S1 ∧ X)
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for d0) and by the Σ-algebra structure of T r
D (0, 1) and BT r for the last boundary

map. The spectrum structure comes from the equivalence

GΣ(X) �−→ ΩGΣ(S1 ∧ X)

[1, 2].
The map φ defined above gives a map on the level of q-simplices from the ith

deloop to the (i − 1)th deloop.

GΣ(Si ∧ Σq (T r
D (0, 1)))

f i
q

��

��

GΣ(Si−1 ∧ Σq (BT r ))

GΣ(Si−1 ∧ Σq (S1 ∧ T r
D (0, 1)))

φ
��������������������

The maps {fi
q}q�0 do not quite form a simplicial map as φ respects the algebra

structure only up to homotopy, as explained above. However, as in the case of the
mapping class groups, one can use the explicit homotopies sketched above to rectify
fi
∗ to a simplicial map, while respecting the spectrum structure. The rectified map

gives the equivalence of spectra.

Proposition 2.5, Theorem 4.1 and Theorem 5.1 combine to prove Theorem 1.1.

6. Punctured surfaces

We have constructed a 2-category T which is adequate for proving Theorem 1.1.
There are of course many possible versions of T. M. Weiss suggested the following
modification of T, which has the advantage of being a little more natural to
construct, but the disadvantage of losing basepoints, thus making the comparison
to the original infinite loop space structure on Z× BAut+∞ more difficult.

Let D be the 2-category obtained from T by replacing the 1-morphism G by
a punctured cylinder C = (S1 × I)\{∗}, with one incoming and one outgoing
boundary circle. The 1-morphisms of D are (possibly punctured) cobordisms built
out of P, T, D and C, and the 2-morphisms are homotopy equivalences which fix the
boundary circles, but not the punctures.

As soon as a surface is punctured, it is homotopy equivalent to a basepoint-free
graph Gn,k , relative to the boundary circles. Let A0

n,k = π0 Htpy(Gn,k ; ∂̃) denote
the group of components of the space of homotopy equivalences of Gn,k which fix
its k boundary circles. Let Dp(k, 1) denote the subcategory of D(k, 1) generated by
the punctured surfaces. We have

Dp(k, 1) := BDp(k, 1) �
∐
n�0

BA0
n,k+1.

As the groups A0
n,k have the same stable homology as An,k [13], one can run

through Sections 2–4 above replacing T by D and G by C, and show that ΩBD �
Z× BAut+∞. Only Section 5 does not have a straightforward extension.

Let M denote the mapping class group operad of [24]. One can define M in terms
of the cobordism category by taking M(k) = S(k, 1) and the operad composition
induced by composition in S. It is shown in [24] that M-algebras are infinite loop
spaces after group completion. The pair of pants multiplication does not define a
symmetric monoidal structure on Dp(0, 1), but it extends to an action of M. One
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can adapt the proof of Theorem 5.1 (or rather the proof of the main theorem of
[25]) to show the equivalence between the infinite loop space structure of ΩBD,
induced by disjoint union on D, and that of ΩBDp(0, 1), induced by the M-algebra
structure of Dp(0, 1). However, the only method I can see for comparing the infinite
loop space structure of ΩBDp(0, 1) and the ‘usual’ structure of Z× BAut+∞ is going
through ΩBD and ΩBT via a middle category with both G and C as 1-morphisms.

ΩBDp(0, 1) �� ΩBD

��

ΩB
∐

n∈N
BAut(Fn )

ΩB(D ∪ T ) ΩBT�� ΩBTD (0, 1)��

��

Note that Dp(0, 1) is a sub-M-algebra of D(0, 1), and one can show that they
have the same group completion, namely Z× BAut+∞. We thus have a map of M-
algebras

S(0, 1) −→ D(0, 1)

which after group completion gives another model for the infinite loop map

Z× BΓ+
∞ −→ Z× BAut+∞ .
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Marcel Böcksted, Søren Galatius and Ib Madsen for many helpful conversations.
I would also like to thank Allen Hatcher and Craig Jensen for their collaboration
on the related papers [13] and [15], and Benson Farb and Ulrike Tillmann for
conversations at the early stages of this paper. Finally, I would like to thank the
referee for suggesting a nice improvement to the paper.

References

1. M. G. Barratt and P. J. Eccles, ‘Γ+-structures. I: A free group functor for stable homotopy
theory’, Topology 13 (1974) 25–45.

2. M. G. Barratt and P. J. Eccles, ‘Γ+-structures. II: A recognition principle for infinite
loop spaces’, Topology 13 (1974) 113–126.

3. E. Dror, ‘A generalization of the Whitehead theorem’, Symposium on Algebraic Topology
(Battelle Seattle Research Center, Seattle, WA, 1971), Lecture Notes in Mathematics 249
(Springer, Berlin, 1971) 13–22.

4. W. Dwyer, M. Weiss and B. Williams, ‘A parametrized index theorem for the algebraic
K -theory Euler class’, Acta Math. 190 (2003) 1–104.

5. C. J. Earle and J. Eells, ‘A fibre bundle description of Teichmüller theory’, J. Differential
Geom. 3 (1969) 19–43.

6. C. J. Earle and A. Schatz, ‘Teichmüller theory for surfaces with boundary’, J. Differential
Geom. 4 (1970) 169–185.

7. S. Galatius, ‘Mod p homology of the stable mapping class group’, Topology 43 (2004) 1105–
1132.

8. P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics 174
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