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Abstract

This thesis consists of two parts, both being concerned with operads re-

lated to the ribbon braid groups.

In the first part, we define a notion of semidirect product for operads
and use it to study the framed n-discs operad (the semidirect product
D, =D, xSO(n) of the little n-discs operad with the special orthogonal
group). This enables us to deduce properties of fD,, from the correspond-

ing properties for D,,.

We prove an equivariant recognition principle saying that algebras over
the framed n-discs operad are n-fold loop spaces on SO(n)-spaces. We
also study the operations induced on homology, showing that an H(fD,,)-
algebra is a higher dimensional Batalin-Vilkovisky algebra with some ad-
ditional operators when n is even. Contrastingly, for n odd, we show that
the Gerstenhaber structure coming from the little n-discs does not give

rise to a Batalin-Vilkovisky structure.

We give a general construction of operads from families of groups. We then
show that the operad obtained from the ribbon braid groups is equivalent
to the framed 2-discs operad. It follows that the classifying spaces of

ribbon braided monoidal categories are double loop spaces on S!-spaces.

The second part of this thesis is concerned with infinite loop space struc-
tures on the stable mapping class group. Two such structures were discov-
ered by Tillmann. We show that they are equivalent, constructing a map
between the spectra of deloops. We first construct an “almost map”, i.e
a map between simplicial spaces for which one of the simplicial identities
is satisfied only up to homotopy. We show that there are higher homo-
topies and deduce the existence of a rectification. We then show that the

rectification gives an equivalence of spectra.



Acknowledgements

I would like to thank the many people I met in the last three years who
made me feel welcome in the mathematical community, the best encour-

agement for a thesis.

I want to thank my officemates, El, Lou, Alain and Ivan, the Elephant and
the Hedgehog, for answering my questions, bringing cakes and chocolates

and taking me to the pub.

And of course I wish to thank Ulrike, who has been what I want to call a

perfect supervisor. I am very happy to be one of her many daughters.



Introduction

This thesis is centred on two main topics: the first is to study and describe the
framed discs operad, and the second to compare the two infinite loop space structures
known on the stable mapping class group. The framed discs and the mapping class
group, as operads, have a common relative: the ribbon braid group operad. Hence
the title.

The little discs operad, created by Boardman and Vogt in the early seventies,
represents the first important application of the theory of operads, as it is relevant
to the study of iterated loop spaces. The framed discs operad, which carries an
additional rotational structure, had not been much studied. The original motivation
was to understand the following fact: algebras over the little discs operad are iterated
loop spaces, which are themselves algebras over the framed discs operad. So an extra
structure seemed to be coming for free. This led us to formulate an equivariant
recognition principle, to describe the operations induced on homology, and also to
show the equivalence between the two-dimensional framed discs and a ribbon braid
groups operad. Our main tool is a notion of semidirect products for operads.

The second part of this work answers a question left open in [40]. The mapping
class group I'y; of a surface Fj; of genus g with one boundary component is of
special interest as, when g > 0, the classifying space of Iy ; is homotopy equivalent to
the moduli space of Riemann surfaces of topological type Fy ;. U. Tillmann showed
the existence of an infinite loop space structure on BI'Y, the classifying space of
the stable mapping class group after plus construction in two different ways. The
first proof uses a disjoint union structure while the second relies on pairs of pants
multiplication. The first structure actually lives on the first deloop, which makes the
comparison less obvious. We construct a map between the spectra of deloops and

show that it is an equivalence.

In chapter 1, after reviewing the main definitions and examples used in the text,
we give in detail a construction of operads built out of families of groups. The outline
was given by U. Tillmann in [40]. We give here explicit conditions for families of
groups to give rise to an operad this way. When fed with symmetric groups, the
machinery produces Barratt and Eccles E,, operad I' [1]. We are interested in the

operads obtained from braid and ribbon braid groups (for chapter 1 and 2), and the



mapping class groups (for chapter 3). The construction provides categorical operads,

of which we take the classifying spaces to get topological operads.

In section 1.3, we define and study a notion of semidirect products for operads.
This notion arose naturally from studying the framed discs operad. We originally used
the name “twisted operads” (in [42]). However, it was independently discovered by M.
Markl [21], and he uses the more appropriate name of semidirect product operads, so
we follow his terminology. We define semidirect products in any symmetric monoidal
category S. If M is a cocommutative bimonoid in S (Hopf type object), the category
of M-modules is again a symmetric monoidal category. For any operad P in that
category, one can define a new operad P x M in S, the semidirect product of P and
M. For example, the framed discs operad is the semidirect product D, x SO(n),
where D,, denotes the little discs operad.

We will use throughout chapters 1 and 2 the following property of semidirect
products: an object X is a P x M-algebra if and only if it is a P-algebra in the
category of M-modules (proposition 1.3.5).

In section 1.4, we show that the algebras over the braided and ribbon braided cat-
egorical operads constructed in section 1.2, are precisely braided and ribbon braided
strict monoidal categories (theorems 1.4.4 and 1.4.7). We use Joyal and Street co-
herence results for braided and ribbon braided monoidal categories, as well as the

formalism of semidirect products to deduce the ribbon braid case from the braid one.

In section 1.5, we show that the topological ribbon operad is equivalent to the
framed little 2-discs operad. To show this, we follow Fiedorowicz’s ideas, extending
his similar result for the braid and little discs operad. We define a notion of R,
operads, which is a ribbon braid version of E., operads. As in the case of E
operads, one shows that any two R, operads are equivalent. The equivalence stated
above then follows from the fact that the universal covers of the framed discs (theorem
1.5.8) and ribbon operads are R, operad.

We also give a characterisation of fFE,; operads, i.e. operads equivalent to the
framed little 2-discs (theorem 1.5.16).

In the second chapter, we use the tools and results of the first chapter to give a
description of the algebras over the framed discs operad and the algebraic structure

of their homology.

i



May’s recognition principle says that algebras over the little n-discs operad are n-
fold loop spaces after group completion. In section 2.1, we show that algebras over the
framed n-discs operad are n-fold loop spaces on SO(n)-spaces (theorem 2.1.1). This
is done by setting the original recognition principle in the category of SO(n)-spaces,
and using our theory of semidirect products.

It follows then from sections 1.4 and 1.5 that the classifying space of a ribbon
braided monoidal category, after group completion, is a double loop space on an
S'-space (theorem 2.1.2).

In section 2.2, we give a description of the homology of the framed n-discs operad
(theorem 2.2.7). We show that in the even-dimensional case, one gets a Batalin-
Vilkovisky structure with some additional differential operators. In the odd case, the
Gerstenhaber structure coming from the little discs does not give rise to a Batalin-
Vilkovisky structure. Once more, the formalism of semidirect products allows us to
deduce the homology from the known results for the little discs. The homology of
SO(n) gives the new operators. The relations they satisfy with the Gerstenhaber
structure are obtained directly from the geometry, by analysing the action SO(n)
induces on the homology of the little discs. We give thus a conceptual proof of a

result which was known in the case n =2 [9].

In the first annex to chapter 2, we attempt and fail to construct fDs-structures
on Ds-spaces. The idea was to try to use the S'-action appearing in the recognition

principle, or the action existing on the free Dy-algebra on any space X.

In the second annex, we give a theory of twisted monads, which are a generalisation
of semidirect products of topological operads. The motivation is to construct a monad
“02%% x S1” which would be the group completion of fDy = Dy x S'. Double loop
spaces are algebras over 22¥.2 x S! and proposition 2.4.3 tells us that one can deloop
the S'-action existing on those algebras.

With this new monad, we formulate a framed recognition principle, which is a
variant of the equivariant recognition principle (theorem 2.1.1) and yields the same
result. It is obtained by working with fD, and Q22 x S! instead of Dy and Q2%2.

Some parts of chapters 1 and 2 appear in a preprint which is joint work with
Paolo Salvatore [29]. I include only results which I personally worked on. Chapter 1

and the equivariant recognition principle originate in my work, whereas section 2.2
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originates in Paolo’s work. My results were improved through my collaboration with
Paolo and I want to thank him for that.

In Chapter 3, we show that the two infinite loop space structures discovered by
Tillmann on the classifying space of the stable mapping class group are equivalent.
The first proof of the existence of an infinite loop space structure uses a cobordism
2-category &: the objects are one dimensional manifolds, the 7-morphisms are cobor-
disms between them and 2-morphisms are diffeomorphisms of the cobordisms. This
category has a natural symmetric monoidal structure given by disjoint union. The
result follows from the fact that QBS is equivalent to Z x BT'Z . The second proof
uses an operad M associated to this category, considering only the surfaces with n
“incoming” and one “outgoing” boundary components. This operad is an infinite

loop space operad.

In section 3.1, we describe the construction of the infinite loop space operad M,
following [40] and spelling out the details needed further on in the text. At the end
of the section, we give explicitly the spectrum of deloops we will work with and show

that it is equivalent to the one produced in [40] (proposition 3.1.4).

In section 3.2, we give a description of the category &, adapted to our needs. Our
category is a variant of [39], which we modify to make it more like M to help the

comparison.

In section 3.3, we compare the two infinite loop space structures. To do this, we
first construct in 3.3.1 an “almost map” between the spectra. The spaces defining
the spectra are realisations of simplicial spaces. We construct a map which is almost
simplicial in the sense that the relation 6, f, = f,—19, is satisfied only up to homotopy,
all the other required relations being satisfied (proposition 3.3.1).

In 3.3.2, we rectify the map obtained in the previous section using ideas of Dwyer
and Kan. A commutative diagram can be thought of as a functor from a discrete
category to Top. A “not quite commutative” diagram can then be thought of as
a functor from a thicker category to Top, i.e. with larger morphism spaces. We
construct the categories relevant to our situation and show in theorem 3.3.4 that the
data given in the previous sections provide a map from this category to Top. This
theorem shows the existence of higher homotopies. It follows (corollary 3.3.5) that
our map can be rectified, i.e. we obtain an actual map between spaces equivalent to

the ones we started with.
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These ideas and techniques of rectifications were kindly explained to the author
by Dwyer at the conference in Skye in June 2001.
In 3.3.3, we show that the rectified map is a map of spectra. Finally, in 3.3.4 we

show that it is an equivalence.

This last chapter is a first attempt to write up a new result. We believe that all
the important points are correct but the exposition and the technical details should

not be considered as in final form.
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Chapter 1

Operads, discs, braids and ribbons

1.1 Basic definitions and examples

This first section is meant as a reference section. Some of the main definitions and
examples used throughout the text are given here. In 1.1.1, we recall what symmetric
monoidal categories are and introduce notations for the main categories we use. We
begin 1.1.2 by an informal discussion of operads. It is followed by a formal definition
in a general context. However, the informal definition should be enough for the
understanding of the text. We also give details of some examples of operads relevant
to the text. In 1.1.3, monads and their algebras are defined. The monad associated
to an operad is constructed. We also recall the two-sided bar construction, which will

be used on several occasions.

1.1.1 Categories

Throughout the text, we will be working in various categories. Most of them will
be monoidal categories, often symmetric. Also, most of them have an internal Hom-
functor, i.e. the set of morphisms between any two objects of the category is again
an object of the category. For a category S, we will denote by S(A, B) the set of
morphisms from A to B. We recall here what a symmetric monoidal category is and
give a list of the main category we will be working with.

A monoidal category (S,X,a,1) is a category S equipped with a tensor product
X:S5x8—S, (A,B) — AX B,
which is associative, i.e. there is a natural isomorphism

a:(ANB)RC — AR (BX ()



satisfying a pentagonal condition [19], and unital, i.e. there are natural isomorphisms
AR =5 A< 1K A,

satisfying a triangular condition.

The triangular and pentagonal conditions are such that all diagrams involving the
associativity and the unit that should commute actually commute.

A strict monoidal category is a monoidal category for which the associativity and
unit morphisms are the identity.

A symmetric monoidal category is a monoidal category equipped with an involutive

natural isomorphism
AXB = BX A.

We will denote (symmetric) monoidal categories simply by (S,X) or even just S

when the product structure we are working with is clear.
Here is a list of most of the categories we will be using:

e Top=(Top, x) is the symmetric monoidal category of compactly generated
Hausdorff topological spaces, with x the product of spaces. It will be called the

category of topological spaces;
e Top, is the category of based topological spaces;

e GG—Top, for G a group, is the symmetric monoidal category of G-spaces, where

the G-action on a product of G-spaces is given by the diagonal action;

e Simp=(Simp,x) is the symmetric monoidal category of simplicial spaces with
(Xi X Ya)p = Xp x ¥p;

o CAT=(CAT,x) is the symmetric monoidal category of small categories;

e gVect=(gVect,®) and dgVect=(dgVect,®) are the symmetric monoidal cate-

gories of graded and differential graded vector spaces with tensor product;

e H—Mod, for H a graded Hopf algebra, is the category of (differential) graded
vector spaces equipped with an H-module structure. The comultiplication of

H induces a monoidal structure on H —Mod.



1.1.2 Operads

For this section, let (S, X) be a symmetric monoidal category. We think of S as being
Top, Simp, CATor dgVect.

An operad in S is a sequence P(k), k € N, of objects of S such that P(k) admits
an action of the symmetric group X for each k. One can think of P(k) as a set
of k-ary operations and the symmetric group action as permuting the entries. The

operad is then equipped with composition maps of the form
v:Pk)RPn)X...XP(ng) — Pl + -+ - + ng).

The k operations of arity nq,...,n; are “plugged in” the operation of arity k£ to give

an operation of arity ny+. ..+ ny (see figure 1.1).

_
_Z

ni

1
2

.nk nl—l-----i-nk

Figure 1.1: Composition in an operad

The basic example, of which operads are a generalisation, is the endomorphism
operad &ndx of an object X of §. It is defined by

Endx (k) = {f : X®* — X},

where the symmetric group acts by permuting the entries, and the maps v are given
by composition of morphisms. In the definition of an operad, we require the maps vy
to satisfy natural associative, unit and ¥-equivariance conditions which are properties
of this example. By X-equivariant, we mean equivariant with respect to the action of
appropriate symmetric groups.

The meaning of the life of an operad is in the existence of its algebras. An algebra
over an operad P is an object X for which the operations encoded by the operad

“make sense”, i.e. X is equipped with maps
O : P(k) R X¥ 5 X

which are again associative, unital and Y-equivariant in an appropriate sense.



For example, X is an &ndx-algebra. In fact, a P-algebra structure on a space X

is the same as a morphism of operads P — &ndx.

The simplest example of an operad in Top, the category of topological spaces, is
given by the operad Com, where Com(k) = {x} for all k, with trivial X;-action and
composition maps. An algebra over Com is a commutative monoid. The multiplication
is given by Com(2) x X2 — X and the unit by Com(0) — X. The commutativity is
a consequence of the Y-equivariance condition. The associativity and unit properties
of the operad map imply those properties for the multiplication defined above. The
associativity also implies that the operations coming from Com(k) for k > 2 are
actually induced by Com(2).

Similarly, we can consider the operad Ass = ¥ of (associative) monoids, where
Ass(k) = X(k) = Xy, with Yg-action by right multiplication. We give the operad
structure maps in example 1.1.2. This well-known operad is usually denoted Ass as its
algebras are associative, not necessarily commutative, algebras. Indeed, there are two
multiplications (i.e. two binary operations) pi, ge and the Y-equivariance condition
requires that pi(z,y) = pe(y,x). If X is an associative algebra with multiplication
p, define py = p and po(z,y) = p(y,xz). We will however refer to this operad as
Y because we want to emphasise the groups involved. We will in fact define similar

operads with braids and ribbon braid groups.

We give below a general definition of operads, valid in any symmetric monoidal cat-
egory. A reader not familiar with (heavy) diagrams, might want to skip the diagrams
involved in the definition below, which only express in details the natural associative,
unital and Y-equivariance properties mentioned above. On the other hand, a reader

who wants more details about this section (and more diagrams) should refer to [25].

Let (S,X) be a symmetric monoidal category with unit object 1.

Definition 1.1.1. An operad in S consists of a sequence of objects P(k), k > 0, a
unit map n : 1 — P(1), a right action of the symmetric group ¥y on P(k) for each

k, and product maps
v:Pk)XP(n) X...KP(ng) — Plng + -+ ng),

which are associative, unital and X-equivariant, i.e. the following diagrams commute:



(i) associativity:

P(k) & (K5, P(n,)) B (K2, P(Gr)) T P(n) ® (K, P(j,)
shufﬁel
Pk) R (KE_, (P(ns) B K, P(ji,_y4t))) g
idE(&s'y)l
P(k) & (X5, P(hs)) : P(),
where n =ny+...+ng, J =71+ .+ Jn, s = Jio_ 11+ ..+ Jin, With ts = J1+. ..+ Js.
(i) unit:  P(k) ¥ 1F ——P(k) 1R P(k) —— P(k)
id&nkl / n&idl /
P(k)XP(1)k P(1) X P(k)

(111) X-equivariance:

Pk)RP(ny) K ... KP(ny) —Z22—P(k) K P(npwy) X... K P(ngw)

|

Py + - + ng)

idX 7 K...K 7
—

P(k) R P(ny) K ... K P(ny) Pk)RP(ny) R ... BP(n)

d |

P(nl + -+ nk) N P(Tll + e 4 nk),

where 0 € L, T; € Ly, 0(N1,...,nk) € X, 4in, permutes k blocks as o permutes

k letters, and T\ @ -+ ® Tk € Ly qoin, 15 the block sum (see figure 1.2).

XX

ny nz N3

1M

AR e

Figure 1.2: Block sum and block permutation

7'1@7'2@7’3

A morphism of operads is a sequence of ¥ -equivariant maps, k > 0, which respect

the unit and commute with operad structure maps .
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NoTATION: We will sometimes write yp for the operad map v of P when we want to

make clear which operad we are using.

In May’s original definition of an operad, which was in the category of topological
spaces, P(0) was required to be trivial (P(0) = {*}). These operads are called unital
as their algebras come equipped with a base point or unit (P(0) — X).

Most of the topological operads we will encounter have this property, but not all

of them (the mapping class group operad defined in chapter 3 is not unital).

We give now a couple of examples of topological operads, selected for their rele-

vance to the text.

Example 1.1.2. The symmetric groups operad X

The symmetric groups {Xy }ren give rise to an operad X the following way :

and the operad map v : ¥j X X, X --- X X, — Xy, 4.4, 18 defined by
Y(oy 1,y k) = 0(Ny e ) (T D - D TR),
where o(ny,...,n) and (7, @ -+ B 7;) are defined as above (see figure 1.2).

The little n-discs operad, due to Boardman and Vogt, was one of the first impor-
tant example in the theory of operads. Its importance comes from its relevance to

the study of iterated loop spaces.

Example 1.1.3. The little n-discs operad D,,
Let D™ be the n-dimensional open unit disc (in R*). Define the spaces D, (k), for
k € N, to be the space of embeddings
f: [] pr— D"
1<i<k
of k disjoint discs in a disc, where f is a composition of translations and dilations
only.

The operad structure map is by composition :
n -l n f n
,Y(fJgIJ""gk): H D gl—>gk HD — D ,
ni+etng k

where LI denotes the disjoint union of the maps. Thinking of an element of D(k) as
a disc with k holes, the composition can be thought of as “sticking in the k discs g;
in the k£ holes of f”.



Operads encode operations. An algebra over an operad is an object having those

operations as part of its structure.

Definition 1.1.4. Let P be an operad in the category S. An algebra over P or
P-algebra is an object X of S together with maps

0:Pk)X X — X

for each k > 0 which are associative, unital and Y-equivariant in an appropriate
sense.

If § has an internal Hom functor, a P-algebra is precisely an object X together
with a morphism of operads P — &ndx, where Endx (k) = S(X®*, X) and Yeuay 18

the composition of morphisms in S.

So an algebra over an operad P is an element of the category S for which P(k)
encodes a set of k-ary operations, for each k, in a coherent way, i.e. coherent with
the composition of operations (associativity) and permutation of the variables (3-

equivariance).

We have already mentioned that X is clearly an algebra over &ndx. Also, we
explained how the Y-algebras are exactly the associative algebras. We explain here

what are the algebras over the little n-discs.

Example 1.1.5. Any n-fold loop space is an algebra over the little discs operad D,,:
thinking of Q™Y as {f : (D™, dD") — (Y, )}, the maps 0} : D, (k) x (Q"Y )k — QY
are obtained by evaluating the ith n-fold loop on the ith embedded disc and sending
the rest of D™ to the base point.

The recognition principle actually tells us that those are the only D,,-algebras.

Theorem 1.1.6. Recognition principle ([27], Theorem 13.1) If X is a D, -algebra,
the group completion of X is weakly homotopy equivalent to an n-fold loop space Q™Y ,

as D,,-algebras.

1.1.3 Monads

The concept of monad is related to the concept of operad in many ways. Operads
can be defined as monads in the category of ¥-collections [10]. We are interested
here in the free algebra functor associated to an operad, which has a monad structure
induced by the operad structure.

We are also interested in certain monads not coming from operads.

7



Definition 1.1.7. A monad (M, u,n) in a category S is a functor M : § — S
together with natural transformations u : MM — M and n : Id — M such that

the following diagrams commute:

nM Mn Mp
M—MM+——M and MMM ——MM

oA L

M MM —t— M

As for operads, we have a notion of an algebra over a monad:

Definition 1.1.8. An algebra over a monad M, or M-algebra, (X,§) is an object X
of S together with a map & : MX — X such that the following diagrams commute:

X MX and MMX - ux

RN S

X MX —X.
For an operad P in &, the free algebra over P in S is given by

FpX = [[ P(k) Ry, X*.

The operad structure of P induces a monad structure on Fp.

For topological operads with a pointed 0-space, i.e. with x € P(0), it is more
natural to consider a reduced version of this free monad. Indeed, algebras over a such
operads are pointed spaces via the map P(0) — X. We consider the free monad in

the category of pointed spaces (rather than spaces):

Example 1.1.9. Let P be a unital operad in Top. Define the monad P associated
to P as follows: for a space X with base point *x,

ano P(n) xz, X"

Y

PX =

~

where = is the base-point relation (o;c,z) ~ (¢, s;z) defined for all ¢ € P(j), z =
(z1,...,2; 1) € Xt and 0 < i < j, where ;¢ = y(¢,1,...,1,%,...,1) and s;z =
(@1, Ty %X, Tty - -, Tjo1).

The multiplication p and unit map 7 of the monad are induced by the maps v

and 7 of the operad.

Proposition 1.1.10. /25] Let P be a unital operad. Consider the category of P-
algebras as a subcategory of Top.. Then the identity functor on Top, restricts to an
isomorphism of categories between the category of algebras over the operad P and the

category of algebras over the monad P.



Not all monads come from an operad. Here is an example of a non-operadic

topological monad which will be used further on.

Example 1.1.11. We consider the following functors in Top,: let 2 be the based
loop functor and ¥ the (reduced) suspension. We think of the iteration of those

functors as
Q"X ={(D",0D") — (X, *)}

D" x X
OD" x X LU D" x %
For each n > 1, the functor Q"¥" is a monad with unit map n : X — Q"¥"X given
by n(z) = {t — [t, z]} and multiplication p : Q"¥"Q"E"X — Q"¥"X induced by the
evaluation of the “internal iterated loop” on the “external iterated suspension”:

p{t = [01(1), {s = [0a(t, 5), 2(t, 8)]}}) = {t = [02(t, 0:1(2)), 2(£, 01(1))]}-

Y'X =

1.1.3.1 Two-sided bar construction

This construction will be used several times in the text. We give here a summary of
May’s definition in [27].

Let S,S8’ be two categories and let (M, u,n) be a monad in S.
An M-functor (F,)\) is a functor F : S — &’ with a natural transformation
A: FM — F such that the diagrams

Fnnm

Fp
F™ ey and FMM Y~ FM
\ P AJ P
id
F FM—> > F

commute.

Note that any monad M is an M-functor. More generally, if M — M’ is a
morphism of monads, M’ is an M-functor.

We will also consider the following example: the iterated suspension " is an
Qm¥"-functor. The natural transformation A : X"Q"¥" — ¥" is defined similarly to
the multiplication of 27",

We will only be interested in the case S = &’ = Top. Consider a monad M in Top,
an M-functor F' and an M-algebra (X,¢). Define the simplicial space B,(F, M, X)
by

B,(F,M,X) = FM‘X,

9



with face and degeneracy operators given by
Oo=X\: FMX — FMI1X
O; = FM=ty, p:MITHIX - MI7X, 0<i<gq
0y =FMi¢ &:MX — X,
s;=FMn, n:MI'X — MIT*IX 0>i>q.
A morphism (7,9, f) : B.(F,M,X) — B,(F',M', X') is a triple consisting of a
morphism of monads ¢ : M — M’ a morphism of M-functors 7 : F' — ¢*(F’) and
a morphism f : X — ¢*(X') of M-algebras, where ¢* gives the natural pull-back

structure.

Definition 1.1.12. Let X, be a simplicial space, i.e. a simplicial set in Top. The

geometric realisation of X, denoted | X| is the topological space

| X| :ZXq AV

q>0

where A, is the standard topological q-simplex
Ag={to,... . t)0<t; <1,) t; =1} CRI™

and =~ is defined for x € X, by
(82'1’, (t(), .. ;tq—l)) ~ (CL’, (t(), R ;ti—h 0, e ,tq_l)), and
(SZ'JZ', (to, ce ,tq+1)) ~ (JZ’, (to, ot ti+1, e ,tq+1)).

The geometric realisation is functorial and respects the product of spaces:

Proposition 1.1.13. Let X,Y be two simplicial spaces. Then the map |m| X |ma] :
| X X Y| — |X| x |Y| is a natural homeomorphism.

Definition 1.1.14. We call
B(F,M,X) := |B.(F, M, X)|
the two-sided bar construction (or double bar construction) of F, M and X.

We will use the following properties of the bar construction:

Proposition 1.1.15. Let M be a monad, X an M-algebra, F' an M -functor and G

a functor. We have
(i) B.(GF,M,X) = GB.(F,M,X);

3R

(ii)) B(M,M,X) =— X is a strong deformation retract.
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1.2 Operads from families of groups

We construct operads from certain types of families of groups. The construction given
here is adaptable. In section 1.5, we will replace the symmetric groups by the ribbon
braid groups, and in chapter 3, we will replace groups by groupoids. This section
provides a detailed study of a construction given in [40].

The operads of this section are obtained through a categorical construction: from
groups, we construct categories, which form an operad in CAT. The classifying space

of those categories provides then a topological operad.

Let N : CAT — Simp be the nerve functor and | | the geometric realisation.

Proposition 1.2.1. Let CAT-Op, Simp-Op and Top-Op be the categories of categor-

ical, simplicial and topological operads respectively. Then N and | | induce functors
CAT—0p Y5 Simp—0Op 15 Top— Op.
Moreover, we have the following relations on the algebras:

Proposition 1.2.2. Let P be a categorical operad and A a category. Then A is a
P-algebra if and only if NA is a NP-algebra.
Let D be a simplicial operad and S a D-algebra. Then |S| is a |D|-algebra.

Let G be a group and H a subgroup of G. Let C§ denote the category with objects
G/H, the left cosets of H, and morphisms given by left multiplication by elements
of G. The set of morphisms C$%(aH,bH) is in one-one correspondence with H: an
element h € H can be identified with left multiplication by bha=!. We will think
of a morphism from o = aH to § = bH in G/H as an element g € G such that
7(g)a = 3, where m : G — G/H 1is the projection on the quotient. We will denote
such a morphism by 8 < a.

If H is a normal subgroup of G, G/H acts freely on the right by multiplication
on objects and on morphisms by (ap +— a1)f = agf < a1 f.

A p-simplex in NC§ is of the form ag <2 ... <%~ a,. Let BCG = |NC$| be the

classifying space of this category.

An example we have in mind is the braid group [ sitting over the symmetric

group g:

11



Example 1.2.3. Let C,(R?) be the configuration space of n points in the plane,
i.e. the space of unordered subsets of R? of cardinality n. The braid group B3, is
the fundamental group of C,(R?). It can be alternatively described as the set of

deformable strings from n points to n other points.

H

There is a natural projection 3, — 2,, sending a braid to the permutation it

induces on the points. We call pure braid group the kernel P, of this projection:
PBn = Bn — Y.

Taking G = By and H = Pp, the category Cg’“ﬁk has objects G/H = ¥;. A

morphism between two permutations o and 7 is a braid whose underlying permutation

is 7oL,

1.2.0.2 The category operad

Let (G, Hy), k € N, be pairs of groups as above, with Hy, < Gy and Gy/Hy = %.

Denote by 7, or simply 7 : G — X, the projections on the quotient spaces.

Suppose that for all k£, ny,...,n, € N, we have a map

w C‘rY]c X Gn1 X .- X Gnk — Gn1+--~+nk

which preserves the product on {Gj, X G, X -+ X Gy, |ny; € N} when it is defined,

nik

i.e. when the following product makes sense:

(fa gi, ... 7gk)'(flug/17 v Jg;c) = (f'flag(ﬂ'f’)(l)'gb s >g(ﬂ'f')(k)g;c)

Suppose that w satisfies the unit and associativity conditions of an operad struc-

ture map (definition 1.1.1, conditions (i) and (ii)) and that the following diagram is
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commutative :

w
Gi X Gy % -+ X Gy~ Gy soim,
7|'k><7Tn1><..-><7'rnkJ/ lﬁn1+...+nk

=
S X Dy X X T, Y i

where 75 is the operad map of the symmetric groups operad (example 1.1.2).

. oGk Gny Gy, Grytotny :
Define I' : Cp¥ ¥ CHn1 X X Can — CHn1+---+nk on objects by

Loy T,y k) = vs(0,T1, - oo Th);
and on morphisms by
f
T(oy < oo, 71 <& 70,...,7F & ) = w(/, Gosl(1)r - ,gaal(k)).

Proposition 1.2.4. T' is a functor inducing a categorical operad structure on the

sequence {Cg: tnen-
Corollary 1.2.5. {BCSZ}%N is a topological operad.

Remark 1.2.6. For any space X, ¥; acts on X’ by permuting the components,

(.’,L‘]_, R ,l'J) L> (x0*1(1)7 s 7'/'[0'71(.7.))'
It is a left action’ SO (xa._l(l), e ,l'a—l(j)) L) (xo-—l(r—l(l))a N 7xa—1(r—1(j)))-

Proof of the proposition.  The functoriality of T' is a consequence of the commuta-
tivity of the diagram above and the multiplication preserving property of w.

The group X acts (freely) on the right of cﬁ: The conditions for I' to be an
operad structure map are satisfied on objects as it restricts to the symmetric groups
operad. On morphisms, the unit and associativity conditions come as a consequence

of those properties for w, and the -equivariance so obtained using remark 1.2.6. [J

Example 1.2.7. The E-operad I' = {BC{%} (constructed by Barrat and Eccles in
[1]) is a special case of the above construction, taking the pairs of groups (X, {e}),

where {e} is the trivial group and with the map w = ~vs.

Example 1.2.8. The braid categorical operad C% = {Clﬁ,’“ﬂk} and its classifying space
BCP = {Bcﬁgk} are obtained from the pairs (S, PBk), with the map w defined by

w(a,by,...,bg) =a(ng,...,ng) (b ®--- B by),

where a(ny,...,ng) and (by @ - - D by) are defined as in the symmetric case (see figure
1.2).
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We will denote by Rpj the ribbon braid group on k elements, the fundamental
group of the configuration space of k unordered particles in RA* with label in S*.
One can think of an element of RS as a braid on k ribbons, where full twists of the
ribbons are allowed (see figure 1.3).

The pure ribbon braid group PRpj is the kernel of the surjection RSy — .

The groups RfB; and PRf3; are isomorphic to 8, x Z* and Pf, x ZF respectively,

where ZF encodes the number of twists on each ribbon.

Example 1.2.9. The ribbon categorical operad C#* = {Cﬁg’“ﬁk} and its classifying
space BC®? = {Bcgg%k} are obtained from the pairs (RSB, PRS), with the map w
defined by

wW(r, 81,y 8k) =r(ny, ... ,ng)(s1 D+ D Sk),
similarly to the symmetric and braid case.

We will describe algebras over the braid and ribbon braid operads in section 1.4.

Remark 1.2.10. For all n, we have functors

giving rise to morphisms of operads in the categorical and topological cases. Both
functors are the identity on objects. On morphisms I is the inclusion of the braid
group in the ribbon braid obtained by replacing the strings by flat ribbons, and II is

the canonical projection.
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1.3 Semidirect product of operads

Studying the framed discs operad fD,,, which is a variant of the little discs we already
encountered, lead us to consider a notion of semidirect product for operads. This
notion was introduced independently by Markl in [21]. We introduce the notion by

giving a detailed description of this first example.

Example 1.3.1. The framed discs operad, fD,, is defined similarly to the little n-
discs operad D,, (example 1.1.3), with the only difference that fD, (k) consists of the
embeddings from the disjoint union of £ n-discs to a discs, obtained by composing
translations, dilations and rotations. The composition of embeddings provides again

an operad structure.

One can think of an element of fD,,(k) as a configuration of k discs in a disc, each
of the k discs having a distinguished marked point (see figure 1.4). The composition
maps are then defined by “plugging in” the discs matching the marked points.

20) - [ (ED)une

Figure 1.4: Element of fDy(3) = Dy(3) x (S1)?

As spaces, fD,(k) = D,(k) x (SO(n))*¥, the ith element of SO(n) encoding the
rotation of the 7th disc. In fact, as operads, we have a structure of semidirect product.
We write fD,, = D, x SO(n). Indeed, the composition maps are twisted by an action
of SO(n) on D,:

7 (Da(k) x (SO(m))*) x (Da(ny) x (SO(m)™) x - - x (Du(ng) x (SO(m))™)
— Dn(nl + e+ nk) % (So(n))nl++nk

is given by

v((a,g), (b1, h), ..., (b, B*)) = (ya(a, gibi, - - ., gebr), g1k’ . .., gxh),
where h' = (hi,...,h% ) and gi.h' = (gihi,...,g1hi,). So each of the k copies of
SO(n) acts by rotation on the corresponding D, (n;).

A notion of semidirect product for operads, inspired by this example, can be

defined in a general context. In Top, one can define an operad P x G for an operad

15



P and a group G whenever P admits a G-action such that its structure maps are
G-equivariant. Studying the operad P x G is then made easier by the following fact: a
space X is a P x G-algebra if and only if X is a P-algebra in the category of G-spaces.
As a result, working with P x G comes down to working with P but in the category
of G-spaces. This is will allow us to deduce results for fD,, from known results for
D,..

In this section, we will define semidirect products for operads in the general setting

as we will need the notion in CATand gVectas well as in Top.

1.3.1 Definition and properties

Let S be a symmetric monoidal category and let (M, i, n, ¢, €) be a bimonoidin S. So
M is an object of S equipped with an associative, unital multiplication (u : M XM —
M, n:1— M) and a coassociative, counital comultiplication (¢ : M — M X M, € :
M — 1) which is a morphism of algebras, i.e. such that

MM —E M RMRMEIM —E L MR MR M

3 C [

M MX M

Example 1.3.2. (1) In Top, take G a topological group with ¢ : G - G x G
defined by c(g) = (g, 9)-

(2) In gVect, consider the homology of a topological group, H.(G), which is a
Hopf algebra and in particular a bimonoid. The comultiplication is defined by
clx) =1®z+2®1, where 1 € Hy(G) is the generator in the component of the
unit of G.

(3) In CAT, consider the category Z with one object and Z as set of morphisms.

The group structure of Z induces a bimonoid structure on Z (as in (1)).

For a bimonoid M, the category of M-modules, denoted M-Mod, is a monoidal
category. We will consider the case where M is cocommutative, so that the category
M-Mod is symmetric. We can thus consider operads and their algebras in M-Mod.
We will call those operads M -operads.

An M-operad P can be considered as an operad in § by forgetting the M-module

structures. The M-equivariance of the operad structure maps of P is given by the
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commutation of the following diagram:

idXey,

M XP(k) X X%k MXX
shufﬁeockJ(
MRPEKRMXXKX...XMXX 7
@@\yml
O

P(k) K X5k X.

Definition 1.3.3. Let P be an M -operad. Define P x M, the semidirect product of
P and M, to be the following operad in S: for k € N,

(P x M)(k) = P(k) X M=

with Xy, acting diagonally on the right, permuting the components of M™* and acting
on P(k), and the map

v (Px M) (k)R (P xM)(n)XR...&(PxM)ng) — (PxM)(ng+--+ng)
given by

(P(k) X MP) X (P(ny) R M) K ... K (P(ny,) K M=)
shuffleo((idXcPF)RidX...Kid)

(P(k)R (MR P(n))®... R (MXP(ng))) K (MR M K. KM K M)
(idROR* )R (B o shuffleo (c™1 Kid... Rk Kid))

(P()RP(n) X...KP(ng)) K (M XK. K M)

ypXid

P(nl S nk:) X M®n1+...+nk’

where ® : M X P(k) — P(k) gives the M-module structure of P and ~yp its operad
structure map. To see precisely what the shuffle does, see the description of v in

example 1.53.1, where it is given on elements.
The unit in P x M(1) is formed of the units of P and M.

The associativity of ypya follows from the associativity of u, yp and the M-
equivariance of yp. This can be seen in an enormous diagram which would not fit in

the margin.

Remark 1.3.4. Any monoid M gives rise to an operad M, where M(k) = M*
and the maps 7 are defined as the “right half” of ypyy. If G is a topological
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group, explicitly we have vg : GF x G™ x ... x G™ is defined by Ya (g, b, ... hF) =
(glh%a s >glh:rlz1a s 7gkh§k)

So, in a sense, Ypuy = Yp X Yum-

Proposition 1.3.5. Let P and M be as above. An object X of S is a P X M -algebra
if and only if X is a P-algebra in M-Mod, i.e. if and only if X is an M-module and

a P-algebra with M -equivariant structure maps.

Proof. Suppose X is a P-algebra in M —Mod with structure map 6p, and let ¥ :
M X X — X denote the M-module structure of X. Define

Oprans - PR MEE R XEE 2 D (17 3 xR Y p g Bk Oy x

The associativity of 6p, s is a consequence of the equivariance of the P-algebra struc-
ture maps.

Conversely, if X is a P x M-algebra, define the M-module structure on X by
TMRX 2 P)RMREX 7Y X
and the P-algebra structure on X by
Op : P(k) & X 0y p () 0 M g X P2y

where np and 71, are the unit maps of P as an operad and M as a monoid respectively.
The M-equivariance of 6p follows, with some efforts, from the associativity of Opy;.
Note also that this definition of ¥ and 6p gives again 6p,; = 0po(idX¥*)oshuffle. [J

Proposition 1.3.6. A morphism of P x M -algebras is a morphism of P-algebras

which is an M -equivariant map.

Proof. Let X, Y be P x M-algebras and f : X — Y be a P-algebra map and an

M-module map. Then f is a P x M-algebra map as the following diagram commutes:

i Xk
P(k) R Mk g x % ) PRRX* -2 x
lid& R Jid& Rk Jf
idX(Wy Bk 0p

P(k) X M R y R

Ph)RYR 2y

Conversely, suppose that f is a P x M-algebra map. Then, in particular, f is an
P-algebra map and an M-equivariant map as those structures on X and Y can be

expressed in terms of the P x M-algebra structure. O
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Let P be a topological operad with a base point * € P(0). If moreover P is an
M-operad with the M-action preserving *, we can describe the free monad associated
to a P x M in terms of the monad associated to P.

Let X A'Y denote the smash product of X and Y, i.e.

XxY

XANY =
(*XXY)U(XX*y)’

and let X, denote X with a formally added base point.

Proposition 1.3.7. For P and M as described above and for any space X,
(PxM)X = P(M,.NX).

In particular,  fD,X = D, (SO(n); N X).

Proof.

_ [1,P = M(k) xg, X*

NpPxM

(P x M)X

[L.(P(k) x M¥) xz, X* _ [1, P(k) Xz, (My A X)"

NpPxM ~p

The smash product occurring in the last equality comes from the base point rela-
tion (R pyy gives a relation whenever the base point of X appears, regardless of the

element of M associated to it). OJ

1.3.2 Examples

We first give a “trivial” example. Recall from remark 1.3.4 that any monoid M give
rise to an operad M with M (k) = M*. If P is the trivial operad, M is isomorphic
to P x M. We express this precisely in the topological case:

Proposition 1.3.8. Let M be a topological monoid and M its associated operad.
Then M = Com x M. In particular, an M-algebra is an M -space with an M-

equivariant commutative multiplication.

Our main example of semidirect product is the framed discs operad: fD, =
D,, x SO(n) defined in example 1.3.1. We will in fact consider a more general version

of this semidirect product.

Proposition 1.3.9. The natural action of the orthogonal group O(n) on D, (k), for

all k, is such that the operad structure maps are O(n)-equivariant.
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Proof. The group O(n) acts on D, (k) by the restriction of its action on R*. The
equivariance of the maps 7p, follows from the fact that the action restricts to the
same action on sub-discs of the disc (after rescaling). So one can act equivalently

before or after plugging in the discs. O

Example 1.3.10. Let G be a topological group and ¢ : G — O(n) an n-dimensional

orthogonal representation of G. One can construct the semidirect product
D, X G,

often just denoted by D, x G, where G acts on D,, through its orthogonal represen-
tation. A D,, x G-algebra is a G-space X which is a D,-algebra with structure maps
satisfying

gOk(c,xy, ..., zx) = Ok(P(9)c, gx1, . . ., gzy),
where ¢ € D, (k), z; € X and g € G.

We will use the following examples of algebras over D,, x4 G

Example 1.3.11. Let Y be a pointed G-space. Let D,Y be the free D, -algebra on
Y in Top., and let Q"Y = {(D",0D") — (Y,*)}. We already saw in example 1.1.5
that the space QmY carries a natural D,,-algebra structure.

Let ¢ : G — O(n) be a continuous group homomorphism. The spaces D,,Y" and
O"Y are D,, x4 G-algebras, with the action of g € G

on [¢;y1,. .., Yk € DY, where c € D,(k), y; € Y, given by

g[ca Yiy oo aykz] = [¢(g)cagyla s 7gyk]a

and on [y(t)] € Q"Y, where t € D™ and [y(¢)] denotes the n-fold loop ¢ — y(t),
given by

9ly(®)] = [gy((g) " (1))

If P is a topological operad, its homology H(P) := {H.(P(k))}ren, with any
coefficient, is again an operad. We consider here field coefficients because we want an

isomorphism.

Proposition 1.3.12. Let G be a topological group and P a G-operad. Then for any

field k, we have the following isomorphism:

H(P » G, k)= H(P) x H(G).
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This will allow us, in chapter 2, to identify the homology of the framed discs

operads.

Another example is given by the ribbon operad we constructed in section 1.2:
Example 1.3.13. In CAT, we have  CT =(CP x Z,
where Z is the category with one object and 7Z as set of morphisms.

(Clearly, Cﬁﬁgk = C%k x Z*. The action of Z on Cf;’“ﬁk is trivial on objects. On
morphisms, Z x C?(o,7) — CP(0o,7) is defined by z.b = t*b, where ¢t the full twist of
the k strings in Pf;. The braid ¢ is actually the generator of the centre of S.

We will use this fact to describe algebras over Cf8 in section 1.4.

Proposition 1.3.14. Let M be a cocommutative bimonoid in CATand C be an M-
operad. Then

B(C x M) = BC x BM.

In particular, BCT® = BCP x BZ.
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1.4 Braided and ribbon braided categories

Braided monoidal categories are “not quite symmetric” monoidal categories. More
precisely, they are equipped with a natural isomorphism c4 5 : AKB — BX A which
is not required to be involutive. Instead, c is required to satisfy braid type relations.

Braided monoidal categories arise in the theory of quantum groups and their
associated link invariants [30]. Braided categories also appear in higher dimensional
category theory. For example, a 3-category with only one object and one 1-morphism

is a braided monoidal category [17].

Ribbon braided categories are braided monoidal categories with an additional
twist, i.e. a natural isomorphism, 74 : A — A, compatible with the braiding. Those
categories give the right general setting for the introduction of dual objects in a

braided monoidal category [35].

It has been known for a long time that the group completion of the classifying
spaces of symmetric monoidal categories are infinite loop spaces ([34, 26]). In our
notations, symmetric (strict) monoidal categories are precisely the algebras over the
operad C* = {C{%} The result follows from the fact that I' = BC® is an E,, operad.
In particular, it detects infinite loop spaces.

In this section, we show that algebras over the operads C° and CF# are pre-
cisely braided and ribbon braided (strict) monoidal categories respectively. Following
Fiedorowicz’s ideas, we will use this later on to relate the classifying spaces of these
categories to double loop spaces.

We use Joyal and Street coherence results for braided and ribbon braided cat-
egories [15] as well as the formalism of semidirect products to deduce the ribbon
braided case from the braided one. Note that Joyal and Street call ribbon braided
categories “balanced categories”. Not knowing why these authors chose this termi-
nology, and being confronted with the fact that symmetric and braided monoidal
categories are what they are, we could not resist calling ribbon braided categories by

their obvious name, natural from our point of view.

1.4.1 Braided categories

Recall from section 1.1.1 that a monoidal category (A,X) is a category A equipped
with an associative, unital product X. We will denote by a the associativity isomor-

phisms and by 1 the unit.
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Definition 1.4.1. [15] Let (A,X) be a monoidal category. A braiding for A is a

natural family of isomorphisms
c=cap:AXB — BXA

in A such that the two following diagrams commute (see figure 1.4.1 for an illustration

of those relations):

RNA)RC—“>BX(ARC)

Xid 1dXc

%,
A

(AR B)RC B (CK A)

/
\

AR (BR(C)— (BRC)K A

AR (CKB)-“5(ARC)X B

=

R B)KC— CX(AK B)

We call (A,X,c) a braided monoidal category (or shortly a braided category). It is
called a braided strict monoidal category if the monoidal structure is strict, i.e. if

the associativity isomorphisms are all the identity.

AKX B AXBX(C AXBKXC AXBXC AXBKXC
) CL o\ oA\
/ CA,B = / = \
. X[ \ |
= BX(CXA BXRCKA CXAKXB CXAXB

Figure 1.5: Braiding and braid relations

Let 8 be the category with N as set of elements and (,, the braid group on n
strings, as set of morphisms from n to n.

Then ‘B is a braided monoidal category. The product is given by addition on the
objects, and by block sum on the morphisms, i.e. putting the braids “side by side”.
The braiding by, ,,, is given by the element of (3,1, shown in figure 1.6.
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/H ./////
NG

Figure 1.6: Braiding b,, ., of B

Now, for any category .4, one can construct a braided monoidal category
(B [A,®,b), which is a wreath product of A and B. The objects of B [A are finite
sequences of objects of A. An arrow (o, f1,...,fn) i A1... A, — B;...B,

A Ay ... A,

Figure 1.7: Arrow in B [ A

consists of a € 3, and f; € Hom (A, Bx(a)(i)), Where 7 : 3, — X, is the natural
projection. An arrow is thus a braid having its strings labelled by arrows of A (see
figure 1.4.1). The tensor product is defined on objects and morphisms by block sum.
The braiding of B [ A is defined by

l _ . . . .
Cayon By B = (Onmyiday, -, ida,,idp,, . .., idp,,).

So it is the braiding given in figure 1.6 with identity morphisms on the strings.

Let (A, X, ¢) be a braided strict monoidal category. By a result of Joyal and Street
(in [15]), there exists a unique strict monoidal functor T': B [ A — A such that the
following triangle commutes and T'(¢') = ¢, for ¢’ the braiding of B [A :
A—5B[A
T
4

A.

Let a be an element of 3,. For each A;... A, € B f A, « defines an arrow

id

fa = (O[, Zd, R ,’Ld) : Al R An — Aﬂ(a)—l(l) Ce Aﬂ.(a)—l(n)

24



where the strings are labelled by identities in A.

Define the following arrow in A :
da = T(fa) : Al X...K An — Aﬂ.(a)—l(l) X...X Aﬂ.(a)—l(n)

We will use the following properties of d,:

Since fa1 © faz = fa1a2 and T(fcu © faz) = T(foa) © T(focz)a we have the relation
o, 0 doy = dayay. (1.1)

Asin %fAv fao(ida g1, -- 7gn) = (Zdv Ir(a)=1(1)s - - - 7g7r(a)—1(n))ofa for 9i morphisms
in A, we have that

da 9 (91 . gn) = (gﬁ(a)—l(l) X...X gﬂ(a)—l(n)) o da. (1.2)

Another property of the maps f, is that
fa((AiX.. . WA ) (AR XWAS)) = fai,ge) (A1 - A4j),
where ¢ = j; +--- + ji—1 + 1. It follows that

And for o; € B;,, with j; + -+ + ji = j, we have that
farm.may (A1 Aj) = for @ @ fo, (A1 Ajy ® - @ Ajiypjp 41+ - 4j),

where X and ® are the products in 8 and B f A respectively. Since T' is a monoidal

functor, it follows that
do, ... Kd,, =dyR. Ra,- (1.4)
Let C? be the operad defined in section 1.2.

Lemma 1.4.2. Let (A,X,c) be a braided strict monoidal category. Then for all
J = 0 there exists a Xj-equivariant functor d; : ngﬁj x Al — A defined on objects
and morphisms respectively by

dj(O’, Al, cee ,Aj) = Aa—l(l) X...X Ag—l(-

b))

and
dj(T (i g, fl, ceey fJ) = da 9] (fg—l(l) X...X fa.—l(j))
where 0,7 € ¥, o € C}ijﬁj (0,7), A; € A and f; are arrows of A.

25



Proof. The functoriality of d; is a result of the two first properties of d, given above.
The X;-equivariance of d; on objects is a direct consequence of the remark 1.2.6.
We check here the equivariance on morphisms. Let p € X;. We have
di(p <% 0p, fiy ooy fi) = da o (Fopy-1) B oo B flop)-105))-

And

di(m =0, s forr) = daco (Fmiomiy B B fpmaomig)- o

Lemma 1.4.3. For A and d; as above, the following diagram is commutative for all
7 2>0,k>0andj; >0 with X3, =7J :

s xid

Cﬁk

B Bi, J Bj j
i, X Cpg,, X -+ X Cpf X A Cpp, X A

de
I

Cﬁ’“ﬁk x A

wdX @

P

idxdj, XX d;

B Bi j Bj j
Cpg, X Cpg, X A X - X Cps,, X AZ¥
where p is the shuffle and T is the operad functor of CP.

Proof. The commutativity on objects follows from the commutativity of certain per-
mutations. We check more precisely the commutativity on morphisms.
d;(Ts x (1 +— 0,1 <5—1,u1,...,1/k &"uk,fl,...,fj))
=d;(C <= N fi L f),
=dgo (a1 X... W fr-1p)),
where § = Ck(jgfl(l), ... ,jo-fl(k))((;o-fl(l) X...X 50*1(k))
and A =0 (j1,.. ., k) (1 D -+ D pg)-
dp((1 xdj x---xdj,)
(r < o, (1 <2 i fry oo Fi)e oo W 2 iy Frvoigunits - £3)))
= di(7 < 0,ds, © (furry B B fmr),
-y dg, © (fj1+"'+]'k—1+#1:1(1) X...Hf;
DL (10—1(1)))) X... X(ds, _,

o~1()

1+"'+J'k—1+l1):1(jk)))
=dy 0 ((dég—l(l) ° (fp, (k)

o(f. . - . . . - . .
(f]afl(l)+"'+]071(k),1+l14011(k)(1) = = fjo—*l(1)+"'+]a*1(k)—l_H“L[,il(k)(]afl(k:)))))
Using 1.3 and defining & = «(ji, - - -, j),

= dd @) ((déo'_l(l) & “ e g d(;a'_l(k)) (o] ((fl—’/;il(l)(l) & PN & fu—l (]1)) ’x{ e &

o—1(1)

-1
o=l

(fja—l(l)+"'+j071(k),1+ﬂa—1(k)fl(l) X... X fjafl(1)+"'+j(,—1(k)_l'HJ;ll(k)(jgfl(k)))))7
which, by 1.4,

=daods, 08851
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_ X X f. : - ;
O(fuail(l)(l) Va\ IR AN f]a_l(1)+"'+]0_1(k:)—lJr'ugil(k)(]0_1(16))))’

and by 1.1
= da(5, 1886, 14,) © (1) B B frma ) M

We then have the following result :

Theorem 1.4.4. Let A be category and CP = {Cﬁ’@_ }ien be the braid categorical
operad. Then A is a braided strict monoidal category if and only if A is a CP-algebra.

Corollary 1.4.5. If (A,X,c) is a braided strict monoidal category, then BA is a
BCP-algebra.

Proof of the theorem. If A is a braided strict monoidal category, then lemma 1.4.2
and 1.4.3 imply that A is a C-algebra, the maps d; giving the action of the operad
(the unit condition is clear, lemma 1.4.2 gives the ¥-equivariance and lemma 1.4.3
the associativity condition).

For the converse, let A be a category and 6 be the action of C on A :
0;: Cily x Al — A.

Define the product on A on objects by AX B = 6,(id, A, B), where id is the identity
element of X5, and on morphisms by f X g = 6,(id & id, f,g). The unit is given by
1 =6y(1).

The functoriality of 6; and its associativity property imply that (A, X, 1) is a strict
monoidal category.

The braiding is then defined by

cap = Oa(0 < id,idy,idg) : AR B — BR A,

where o is the non-trivial element of X5 and b is the generator of J,.
Using the functoriality, the Y-equivariance and the associativity property of 6, one

can show that the two diagrams of definition 1.4.1 commute. O

1.4.2 Ribbon braided categories

We want a similar result for ribbon braided categories, i.e. we want to prove that the
ribbon braid operad Cf# = {Cﬁg%n }nen detects ribbon braided monoidal category.

We will use the proposition 1.3.5 and the example 1.3.13 to deduce this result
from the result just obtained in the braid case.

We first recall from [15] the definition of a ribbon braided category.
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Definition 1.4.6. Let (A,X,c) be a braided monoidal category. A twist for A is a

natural family of isomorphisms
T=74:A— A

such that T, = idy and the following diagram commutes (see figure 1.4.2 for an illus-

tration of this relation):

ARB—2%,BX A

7'AIEBJ{ lTB X4

A@BEB&A

(A,X, ¢, 7) is called a ribbon braided monoidal category (or shortly ribbon braided
category). If the monoidal structure is strict, it is called a ribbon braided strict

monoidal category.

AX B

;Q

s
X
Sy

CA B

TARB 78 X T4

ng
AX B

AX B

e

Figure 1.8: Compatibility between the twist and the braiding

Theorem 1.4.7. Let A a be category and C* = {Cﬁ%j }ien be the ribbon braid cat-

operad. Then A is a ribbon braided strict monoidal category if and only if A is a
CRB_algebra.

Corollary 1.4.8. If (A,X,c) is a ribbon braided strict monoidal category, then BA
is a BCT#_algebra.

Proof of the theorem. Recall that Z denotes the category with only one object *
and with Z as set of morphisms.

Using proposition 1.3.5 and example 1.3.13, we have that
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A is an CfP-algebra
<~

A is a CP-algebra which has a Z-action commuting with 6.
Thus, using now theorem 1.4.4, the theorem 1.4.7 can be reformulated as

A is a ribbon braided strict monoidal category
<~

A is a braided strict monoidal category which has a Z-action commuting with 6¢s.

Suppose first that (A, X, ¢, 7) is a ribbon braided strict monoidal category. Define
U : Zx A — A to be the identity on objects, ¥(x, A) = A, and on a morphism
f:A— Bby

V(z, f) = fol(ra)”.

This defines an action of Z on A as (74)% o (14)* = (74)* 2.

We now have to check that this action commutes with 5. Note that
T4 = V(1,idy)
and
U(z, f) = f o W(z ida). (x)

We consider g5 : CP(k) x A¥ — A. In the case k = 1, the commutativity of
U and 6¢s is trivial because g5 is trivial. We study the case £ = 2. Observe that
we only have to worry about morphisms as the action is trivial on objects. As 7 is a

twist, we have that
Tamp = ¢4 © (TB W T4) 0 Ca B, ()
which translates in our case to
U(1,0cs(id,ida,idg)) = Ocs(b,idp,ids) 0 Ocs(id, T, Ta) © Ocs(b,ida, idR).

Using the Y-equivariance and the functoriality of .5, we deduce from the last equality
that

U(1, 005 (id, id, idp)) = Oes (B(1,id), U(1,4d), U(1, idg)),

29



where ® gives the action of Z on C®. This provides the commutativity required for
Ocs(id,ida,idg) and ¥(1,—). The equation (*x*) inverted gives the commutation for
U(—1,—). As ¥ is an action, we can deduce the commutativity above for all z € Z.

Now, if b is any braid in 5, and f : A — B, g : C — D any morphisms in A4,
we have by (%)

U (z, 0 (b, f,9)) = Ocs (b, f, g) 0 ¥(z,0cs(id, ida, idc))

= 0cs (b, f,9) © Ocs (B(2,id), U(2,ida), ¥ (2,idc))

= Ocs (2(2,0), ¥(z, f), ¥(2,9)).

Hence, the case k = 2 is proved. For k > 2, we first remark that any braid in 5 can be
obtained by compositions (internal and external) of the operad structure functor I'cs
with itself applied exclusively on element of 31 and (35 (this is a form of quadraticity
for the operad C?). This can be seen by writing a braid in terms of the canonical
generators of ;. The result follows then by remarking that

Ocs (Tes (', b1,02), f1,- -+, f3) = Oca (U, 0cs (b, f1,- - -, fi), 08 (b2, fivay-- -, f7))
and

U (z,008(bob,f,g9)) =V (z,008(b, f,9)) 0o V(z,008(b,ida,idc)).

Suppose now that (A4, X, ¢) is a braided strict monoidal category which has a Z-
action given by a functor ¥ and commuting with .s. We want to show that in this
case A is a ribbon braided monoidal category.

Define a twist on A € A by

T4 =V(l,idy) : A — A.
As W is an action, this is a natural family of isomorphisms. We have to check that
TarB = ¢B,A ° (T8 X 74) 0 ca B,

for all A,B € A. This is easily checked by translating it in terms of 6,5 and ¥ as

above, using this time the fact that we know that ¥ commutes with 6;5. O
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1.5 Framed discs and ribbons

This section gives an extension of results of Z. Fiedorowicz for the braid groups [7].

Fiedorowicz proved that the braid groups give rise to an operad equivalent to the
little discs. To do this, he defined “B,, operads”, which are braid equivalents of the
E, operads. By definition, E,, operads are operads with contractible spaces and a
free symmetric group action. They are equivalent to the infinite little discs operad
Dw- Any operad map between two FE,, operads is an equivalence of operads [26].
Considering the product P x Q of F,, operads, and the maps P < P x Q — Q,
one deduces that any two E, operads are equivalent. Algebras over E,, operads are
infinite loop spaces after group completion.

Fiedorowicz’s B, operads are braid operads, i.e. like usual operads but with braid
group actions instead of symmetric group actions, which have contractible spaces and
free braid group actions. By an argument similar to the above, he shows that any two
B, operads are equivalent. He then shows that Ds, the universal cover of the little
discs operad and a certain braid operad are B, operads. A corollary of the equivalence
thus obtained is that the classifying space of a braided monoidal categories is a double
loop spaces after group completion.

Fiedorowicz also uses B,, operads to characterise E» operads, i.e. operads equiv-
alent to the little discs Ds.

In this section, we extend these results to the ribbon braid groups, exhibiting
an equivalence between the framed discs operad and the ribbon operad BCT8. We
also provide a description of “fFEjy operads”, i.e. operads equivalent to the framed
little 2-discs. We will deduce a description of the classifying spaces of ribbon braided

monoidal categories in section 2.1.

1.5.1 Ribbon operads

Definition 1.5.1. A ribbon operad P is a collection of spaces {P(j)};en with P(0) =
{*}, an identity element 1 in P(1), a right action of the ribbon braid group Rf; on
P(j) for all j, and with maps

such that the unit and associativity conditions of usual operads are satisfied (defini-

tion 1.1.1, (i) and (ii)), as well as the following equivariance conditions :

’Y(CU, dl, ... ,dk) = ’Y(C, drr(r)*l(l); R ,drr(r)*l(k))T(jhm’jk)
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and
,Y(ca dil’ e ,dzk) — ’Y(C, dl, L. ,dk)(sl@."@‘gk)’

for all c € P(k),d; € P(ji),r € RBy,s: € RB,,, where m : RBy — ¥y is the natural
projection.

A ribbon operad P is called unital if P(0) = {x}.

A morphism of ribbon operads is a family of maps ¢; : P(j) — Q(j) which are

Rpj-equivariant and commute with yp and vg.

To avoid confusion, we will sometimes call the usual operads “symmetric operads”.
On the other hand, we will sometimes use “operad” for ribbon operad when it is not

confusing.

Remark 1.5.2. Asin the symmetric case, it is possible to define ribbon braid operads

in a more general context. We will actually encounter a categorical ribbon operad.

Note that any symmetric operad is a ribbon operad, with the ribbon braid groups
acting on the spaces through their projection to the symmetric groups. Remark that
the converse is not true, as there is no natural group inclusion of the symmetric groups
in the ribbon braid groups.

Hence, the symmetric operad of endomorphisms of X, &ndx, where &ndx(j) =
{f: X9 — X}, can be considered as a ribbon operad.

We can thus use it to define algebras over a ribbon operad like in the symmetric

case:

Definition 1.5.3. Let P be a ribbon operad. A P-algebra structure on a space X 1is
a morphism of ribbon operads ¢ : P — Endx .

As in the symmetric case, the last definition is equivalent to requesting that there
exist maps 6; : P(j) x X? — X satisfying unit and associativity conditions (exactly
the same as before) and such that 0;(c",z1,...,2;) = 0;(¢c, Trp)-11)s - - - s Tu(r)=1 (k)
for all r € Rp,;.

Example 1.5.4. The ribbon braid groups give rise to the following ribbon operad :

RB = {Rp;}jen,

with the action of Rf; given by right multiplication and with the operad maps defined
by 'y(r,sl,...,sk) :r(jl,...,jk)(sl@---@sk).
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Definition 1.5.5. A ribbon operad P is called an R., operad if the ribbon braid
groups act freely and properly on P and if each space P(k) is contractible.

Let ERB,, be the translation category of Rf,, i.e. Rf, is the set of objects and
there is only one morphism 70! from o to 7. In the notation of section 1.2, we have
the groups G,, = Rf, and H, = {e}, and ERB,, = Cfgn. Note that we now have
Gn/H, = Rf,, so the ribbon braid groups will play the role of the symmetric groups

in the construction.

Example 1.5.6. ERB = {BCfﬁ" }nen, the sequence of the classifying spaces of the

categories ERB,,, forms an R, operad.

It is well-known that the spaces ERB,, are contractible. Also, the Rf,-action,
defined by right multiplication, as the symmetric case, is free. The operad structure
is defined on the categorical level, i.e. by a functor I' on {ERB, }. We need to specify
I" only on objects, on which it is defined to be the operad map on the ribbon braid
groups given in example 1.5.4.

The categorical ribbon operad £RB acts on any ribbon braided strict monoidal
category (A, X, c,7) through the action of C®# (theorem 1.4.7) via the natural pro-
jection ERB — CFA.

Note that this projection induces a covering map on the classifying spaces.

Example 1.5.7. Let R be the set of the real numbers. As R is a group, we know
that it gives rise to a symmetric operad (see remark 1.3.4). We define here a ribbon

operad with R. Take again the collection of sets R = {R? };cy and the maps

v RF X RM x oo x R™ — RO

1 k 1 1 k k
(o, 2) = (T + 71y Ty 71X TRy, Ty TR,

and define the action of the ribbon braid groups by
(11, 16)° = (Tr(e)1) + 215 - - Tr(s) (k) T k),

where z; is the number of twists on the ith string.
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1.5.2 Framed discs

Let fDy(k) denote the universal cover of fDy(k). The proof of the following propo-
sition is an adaptation of Fiedorowicz’s proof for the universal cover of the little

cubes.
Theorem 1.5.8. The sequence of spaces fDy = {fD;(k)}keN forms an Rs.-operad.

Proof. Recall that Dy(k) is a K(PB,1). So fDy(k) = Dy(k) x (S1)* is a K(PRpy, 1)
and its universal cover fbg = 752 x RF is contractible.

We want to lift the operad structure of fD, to a ribbon operad structure on ff)2.
As there is no possible consistent choice of basepoints for the spaces fDs(k), we
consider instead the contractible subspaces defined by the horizontal inclusion of the
“non-symmetric operad” DY of unlabelled little intervals, in fD, shown in figure 1.9,
seeing DY as the component of D; with the intervals ordered in the canonical way,

from left to right.

Figure 1.9: Horizontal inclusion of DY(3) in fDy(3)

Denote by p : fDy(k) — fDs(k) the universal covering. We thus have that
p Y(DY(k)) C fDy(k) is a disjoint union of contractible components, each homeomor-
phic to DY(k) via p. For each k, choose one of these components and denote it by
DY (k).

Now, define 4 on fD, to be the unique lifting of v o p

FDa(k) X fDa(ng) X -+ X fDy(ng) ==~~~ 5 fDo(ny + -+ + 1)
fD2(k) X fDQ(TM) X o= X ng(nk) 7—)f’Z)z(nl + .- +nk)

which takes DY(k) x DY(n;) x - - x DY(ng) to DUny + -+ - + ng).

Define the unit element 1 € fD5(1) to be the unique element in 1 € 75?(1) such
that p(1) =1 € fDy(1).

We are now left to define an action of Rf; on fDs(k). We define the action of
each generator r;,t; € Rf, fori=1,...,k—1and j=1,...,k (see figure 1.10).
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- 08]- 1

Figure 1.10: Generators of Rf

For r;, consider the path a; in fDy(k), from a point x to its translate zo;, where

o; = 7(r;) € X, as shown in figure 1.11.

Figure 1.11: Path a; in fDs(k)

Let & be the point in 75?(]6) such that p(Z) = z and let @; be the lift of o,
starting at Z. Define the action of r; on fDs(k) to be the unique lift of the map
poo;: fDy(k) = fDy(k) which takes z to d;(1).

Simiarly, define the action of ¢; by considering the lift at & of the path 3; from x
to x shown in figure 1.12.

This data provides ff)2 with a ribbon operad structure as all commutative dia-

grams lift to commutative diagrams O

1.5.3 Ribbon monads

We want to show that R, operads are all equivalent in the sense that their categories

of algebras are equivalent. We do this by comparing their associated monads.

Definition 1.5.9. Let P be a unital ribbon operad. For any pointed space X, define

anop(”) X Rp, X"

Y

CX =

~
~
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Figure 1.12: Path §; in fDy(k)

where Rf, acts on X™ wia its projection to X, and the equivalence relation ~ 1is
defined as in the symmetric case by (o;c,y) ~ (c,s,y) for c € P(j), y € X'~ and
0<i<j, whereoic="(c,1,...,1,%,...,1) and s,y = (Y1, -, Yis %, Yit1,- - -, Yj—1)-

The ribbon operad structure of P induces a monad structure on P.
A morphism of ribbon operads induces a map of the associated monads.

Example 1.5.10. The monad associated to ff)2 as a ribbon operad is the same as

the monad associated two fD, as a symmetric operad:

FD2X = (Lo Daln) x BY) x5, X*) / ~
= (ps0(D2(n) x (SH™) x4, X")/ ~

— (ULaglPalrn) % (817) x5, X7) [ = = fDax

A similar equality holds for the ribbon operad ERS = {BC’%’"} and the operad
BCHB.
ERBX = (ano ERB(n) X pg, X") / ~

= (ano BCﬁ%&n X5, X”)/ ~ = BCFAX.

R, operads have essentially the same properties as E,, operads, having con-
tractible spaces carrying a free group action. The next result is an extension of a
result of J.P. May in the E,, case (proposition 3.4 p22 in [27]). The proof is essen-
tially identical to May’s proof .
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Proposition 1.5.11. Let ¢ : P — Q be a morphism of Ry -operads. Then the
induced map ¢ . PX — QX 1is a weak homotopy equivalence for any connected
pointed space X, with (X, *) an NDR-pair.

Now, remark that the product of any two R., operads P and @ is again an R,
operad. And the projection maps P <— P x Q — Q are morphisms of R, operads.

Proposition 1.5.12. Let P and Q be Ry, operads. For any P-algebra X, there exists
a Q-algebra X' with X' weakly homotopy equivalent to X .

Proof. Define X' to be the double bar construction B(Q,P x @Q,X) (see section
1.1.3.1). We have the following equivalences:

X+ BPxQ,PxQ,X)—BQPxQ,X)=X.

By example 1.5.10, we have the following corollary:

Corollary 1.5.13. If X is an fDs-algebra (respectively a BOFP-algebra), there exists
a space X' weakly equivalent to X such that X' is a BC®-algebra (respectively an
fDs-algebra).

1.5.4 fFE)-spaces

We want to characterise operads equivalent to the framed 2-discs. We consider the

following notion of equivalence:

Definition 1.5.14. An operad map A — B is an equivalence if each map A(k) —
B(k) is a Xg-equivariant homotopy equivalence.
An operad A is a E,-operad (respectively fE,-operad ) if there is a chain of

equivalences connecting A to D,, (respectively fD,,).
Fiedorowicz gave the following characterisation of the little discs operad:

Theorem 1.5.15. /8] An operad A is an Ey operad if and only if its operad structure

lifts to a Beo operad structure on its universal cover A.
We will prove here a similar statement for fFEs operads:

Theorem 1.5.16. An operad A is an fFEy operad if and only if its operad structure

lifts to an R., operad structure on its universal cover A.
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We have encountered two examples of operads having an R, structure on their
universal cover: fD,, which is clearly an fFEs operad, and the ribbon braid operad
BCHB,

Lemma 1.5.17. IfP is an R, operad, the sequence of quotient spaces {P(n)/PRS,}

forms a symmetric operad equivalent to the framed discs.

Proof. As the operad maps v are RfB-equivariant, they induce operad maps on the
quotient spaces having the same associative and unital properties. The Rf,-action on
P(n) induces an RfB,/PRf, i.e. ¥,-action on P(n)/PRf, and the maps 7 induced
on the quotient spaces are Y-equivariant.

The equivalences of R, operads are R(-equivariant and so induce equivalences

on the quotients:

T ———PxfDy—— D
P/PRB+—————P xppg f[Dy ———— [ D,

OJ

Proof of the theorem From the lemma, we know that if the operad structure of P lifts
to an R, structure on its universal cover, P is an fFE, operad. We are left to show
that if P is an fE, operad, one can lift its operad structure to its universal cover P.
This will then be an R, structure as P is Y-equivariantly equivalent to fD,.

To lift the operad structure, we need a consistent choice of base-points in {P(k)}.

As P is equivalent to fDs, we know that there exists an equivalence of operads
WfD, — P,

where W fD, is a cofibrant resolution of fDs constructed by Boardman and Vogt
[2, 41]. As the W-construction is functorial, using the map given in figure 1.9 we have

the following maps of operads
WD — WfDy — P,

where WDY(k) is a contractible space for each k. Now we can proceed as in theorem
1.5.8 with WD playing for P the role of DY for fD;. O
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Chapter 2

Equivariant recognition principle
and Batalin-Vilkovisky algebras

2.1 Equivariant recognition principle

Let ¢ : G — O(n) be an orthogonal representation of a group G and let X be a
grouplike D,, x G-algebra, i.e. the components of X form a group by the product
induced by any element of D, (2). By proposition 1.3.5, as X is a D,, x G-algebra, it
is in particular a D, -algebra.

Note that we dropped ¢ from the notation of the semidirect product.

May introduced a deloop functor B,, from D, -algebras to pointed spaces defined by
B,X := B(X", D,, X), where B is the double bar construction (see section 1.1.3.1),
and X the (reduced) suspension. May’s recognition principle (theorem 1.1.6) says
that X is equivalent to (2"B,X. The equivalence is a weak homotopy equivalence
and a map of D,-algebras. May also showed that, conversely, B,, applied to an n-fold
loop space Q2"Y provides an equivalent delooping (B,2"Y ~Y').

In what follows, we consider the behaviour of Q2™ and B,, with respect to G-actions

and provide a recognition principle for algebras over D,, x G.

Let D,, ©x G —Topy, D, ¥ G—Topy and G —Top;, be the categories of grouplike,
connected D,, x (G-algebras and n-connected pointed G-spaces respectively. Those
three categories are closed model categories with weak homotopy equivalences as
weak equivalences [31]. For a model category C, we will denote by Ho(C) its associated

homotopy category, obtained by inverting the weak equivalences.

For any G-space Y, we have seen in example 1.3.11 that QY has a D,, x GG-algebra

structure induced by the diagonal action of G. On the other hand, we will define a
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G-action on B, X for any D, x G-algebra X. Hence, Q)" and B, will be functors

between the categories of pointed G-spaces and of D,, x G-algebras.

Theorem 2.1.1. For each continuous homomorphism ¢ : G — O(n), we have

functors

OF = Q" G—Top’,_, — D, x G—Topy

B? = B, : D, x G—Top,; — G—Top}, ,
which induce an equivalence of homotopy categories
Ho(G—Top;, ;) ~ Ho(D,, x G—Topgy).
This equivalence restricts to
Ho(G—Top;,) ~ Ho(D,, x G—Topy).
Proof. May’s recognition principle is obtained through the following maps:
X +— B(D,,D,,X) > B(Q"Y",D,,X) — Q"B(X",D,,,X) = Q"B, X,

where all maps are D,-maps between D,-spaces. When X is a D, x (G-algebra,
we want to define G-actions on the spaces involved which induce D,, x G-algebra
structures and such that all maps are G-maps.

The functors D,, X" and " restrict to functors in the category of G-spaces,
where, for any G-space Y, we define the action on D, Y, ¥"Y and Q™Y diagonally as
in example 1.3.11. Hence for any G-space Y the G-action on Q"¥"Y is given by

glo(t),y(t)] = [6(g)o(¢(g) '), gy((g) 1)),

where g € G, t,0(t) € D" and y(t) € Y. One gets a D,, x G-algebra structure on
Q"¥"Y such that May’s map « : DY — Q"¥"Y is a G-map, and thus a D,, x G-
map, where the D,, x G-structure on D, Y is given in example 1.3.11.

We extend these actions on the simplicial spaces B(D,, D,, X), B(Q2"%", D,,, X)
and Q"B(X", D,,, X) as follows.

Recall from 1.1.3.1 that the double bar construction B(F,C,X) is defined sim-
plicially, for a monad C, a left C-functor F' and a C-algebra X by B(F,C,X) =
|B.(F,C,X)|, where B,(F,C,X) = FC?X, with boundary and degeneracy maps

using the left functor, monad and algebra structure maps. The group G acts then
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on B,(F,C,X) through its action on the functors F' and C, which comes to “rotate
everything”. For example, the action of ¢ € G on a 1-simplex of B(Q"%", D,,, X) is
given by glo(t), c(t), z1(t), ..., zk(t)]

= [¢(9)a((9)~"t), (g9)c(d(9)~'t), gz1(d(g9)~'1), - - -, gzi(d(g)~'t)].

With these actions, all maps above are G-maps between D,, X G-spaces and B, X
is equipped with an explicit G-action.

On the other hand, we have a weak homotopy equivalence [27, 5]

B.O"Y = B(S", Dy, "Y) 15 srgry <4y

for any (n — 1)-connected space Y. If Y is a G-space, then this composite is a G-map
with the actions on B,2"Y and X"Q"Y defined as above. O

Consider the monoid RS xz EZ C Fa(1) X pra, |R|(1). There are monoid maps
S' = (RB xz %) +— RBxzEZ — (x4 EZ) = BZ.

So any S'-space or BZ-space is canonically an R x; EZ-space. The above maps
are restrictions of the operad maps fD; +— Fy Xprg |R| — |R| in arity 1. Using

our recognition principle, theorem 1.4.7 and theorem 1.5.13 we obtain the following:

Theorem 2.1.2. The nerve of a ribbon braided monoidal category C, after group
completion, is weakly homotopy equivalent to a double loop space Q*Y on an S'-space
Y. The St-action on'Y is induced by the twist on C and the equivalence given by
RB Xz EZ-equivariant maps.

Proof. Let C be a ribbon braided monoidal category and let C’' be the strictification
of C as a monoidal category. The category C’ then inherits a ribbon braided structure
from the one existing on C. Its nerve |C'| is an |R|-algebra. The space |C| is not
necessarily an |R|-algebra, but it admits a BZ-action induced by the twist on C, and
the equivalence |C| — |C'| is BZ-equivariant.

Now the space X = B(fDs, fD, X PR |]~%|, |C’|) is weakly homotopy equivalent to
|C'| and is an fDs-algebra. The equivalence is obtained through the following diagram
of weak equivalences in R Xz EZTop.

B(fDs, fDy X prg |R|, IC'|) — B(fD2 X prg |R|,fb2 X PR3 |R|7 IC'])

B(|R|> |R|> |C,|) — |C,|v

The group completion of X is then equivalent to a double loop space Q%Y’, where
Y = B(X?, D,, X) and the S'-action on X now induces one on Y, as explained in
theorem 2.1.1. O
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2.2 Algebraic semidirect products and Batalin--
Vilkovisky algebras

We work for this section in dgVect, the category of chain complexes over a field k
(possibly with trivial differential). For an element z of a chain complex, we denote
by |z| its degree. We call operads in this category differential graded operads, or dg-
operads. We will consider only dg-operads P with P(0) = 0, which comes to working

without units for the algebras.

2.2.1 Semidirect products of algebraic operads

Let H be a graded associative cocommutative Hopf algebra over k. The category of
differential graded H-modules, denoted H-Mod, is a symmetric monoidal category
with product the ordinary tensor product. We call operads in this category operads
of H-modules.

For P an operad of H-modules, we have seen in section 1.3 that one can construct
a dg-operad P x H with (P x H)(n) = P(n) ® H®".

Recall from proposition 1.3.12 that if A is an operad in G—Top there is a natural
isomorphism of homology operads H(A x G) = H(A) x H(G).

Note that, in our convention, we consider H((A x G)(k)) only for k > 0, setting
H(A x G)(0) to be 0.

2.2.1.1 Quadratic semidirect products

Suppose now that P is a quadratic dg-operad, namely has binary generators and 3-
ary relations [11]. We will restrict ourselves to the case where P(1) = k, concentrated
in dimension 0. Explicitly P = F(V)/(R), where F (V') is the free operad generated
by a k[YXs]-module of binary operations V' and (R) is the ideal generated by a k[Xs]-
submodule R C F(V)(3).

Proposition 2.2.1. Let H be a cocommutative Hopf algebra and
P =F(V)/(R) a quadratic operad. Then P is an operad of H-modules if and only if

(i) V is a (H, k[Xs])-bimodule,
(ii) R C F(V)(3) is a (H, k[Xs3])-sub-bimodule.

In this case, we will call P a quadratic operad of H-modules.
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Proof. An element of the free operad on V' is described as a sum of trees with vertices
labelled by V' [22]. Define the action of H on such a tree by acting on the labels of the
vertices, using the comultiplication of H. This is well defined as H is cocommutative.
It induces an H-module structure on F'(V'), which induces one on P(n) for all n by

condition (ii). The operad structure maps are then H-equivariant by construction. [

Let ¢ : H - H ® H be the comultiplication. For ¢ € H we write informally
(c®id)(c(g)) = > 6 © g ® g

Proposition 2.2.2. Let P = F(V)/(R) be a quadratic operad of H-modules as above.
A chain complex X is an algebra over P x H if and only if

(i) X is an H-module
(i) X is a P-algebra

(iii) for each g€ H,v eV and z,y € X,

g(v(w,y)) = Y (=)D gl (o) (g7 (), 61" (1) ).
Proof. The H-equivariance of the algebra map 6, : P(2) ® X ® X — X is given by

the commutativity of the following diagram:

id®02

HeP2)eX®X Ho X
Jshufﬂeo(c@)id)oc
HRP2)OHRXQH®X $
Jw®¢®¢
P2)@ X ® X % X,

where ¢ and 1 give the action of H on X and P(2) respectively. This diagram
translates, for the generators of P(2), into condition (iii) of the proposition. The
H-equivariance of the structure maps 6, for k > 2 is a consequence of the fact that V'
generates P(k), that the operadic composition is H-equivariance and that the map 6

1S associative. O
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2.2.2 Batalin-Vilkovisky algebras

From now on we work over a field k of characteristic 0. As first application we give a
conceptual proof of a theorem of Getzler [9]. Recall that a Batalin-Vilkovisky algebra
X is a graded commutative algebra with a linear endomorphism A : X — X of degree
1 such that A? = 0 and for each x,y,2 € X the following BV-axiom holds.

Azyz) = Azy)z + (—1)PlzA(yz) + (-1)FFIFYyA(zz) — A(z)yz

(2.1)
—(=1)lzA(y)z — (—=1)lHzyA(2) = 0.

Theorem 2.2.3. [9] Let H(fD2) = H(D2)xH(SO(2)) be the homology of the framed
little 2-discs operad. An H(fDs)-algebra is exactly a Batalin-Vilkovisky algebra.

Proof. Let X be an algebra over H(fDs). By proposition 2.2.2 (condition (i)), X is
an H(SO(2))-module. As an algebra, H(SO(2)) = k[A]/A?, where A € H,(SO(2))
is the fundamental class. This provides X with an operator A of degree 1 satisfy-
ing A2 = 0. Condition (ii) of proposition 2.2.2 tells us that X is an algebra over
H(D,). The operad H(D,), called the Gerstenhaber operad, was identified by F.
Cohen [4]. This operad is quadratic, generated by the operations * € Hy(D2(2))
and b € Hi(Dy(2)), corresponding to the class of a point and the fundamental class
under the SO(2)-equivariant homotopy equivalence Dy(2) ~ S!. The class * induces
a graded commutative product on X, while b induces a Lie bracket of degree 1, i.e.
a Lie algebra structure on on ¥X, the suspension of X, defined by (X£X); = X; 1,
with bracket [z,y] = (—1)lb(x,y). Cohen proved that the product and the bracket

satisfy the following Poisson relation:
[,y * 2] = [, y] + 2+ (1) Dy s« o 2] (2.2)

In order to unravel condition (iii) of proposition 2.2.2, we must understand the
effect in homology of the SO(2)-action on Dy(2) ~ S'. Clearly A(x) = b because
the rotation of the generator in degree 0 gives precisely the fundamental 1-cycle.
Moreover A(b) = 0 by dimension. As A is primitive, condition (iii) (or the diagram
in the proof) applied respectively to (A, *,z,y) and (A, b, x,y) provides the following

relations:

Az xy) = Ax)(z,y) + Alz) xy + (—1)"lz = Ady) ; (2.3)

A(b(z,y)) = Ad)(x,y) — b(A(2),y) + (=) b(z, Ay)). (2.4)
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As A(x) = b, equation 2.3 expresses the bracket in terms of the product and A :
[2,y] = (~1)"A(z *y) — (~1)IA(2) xy — 2z Ay). (2.5)

If we substitute this expression into the Poisson relation 2.2 we get exactly the

BV-axiom 2.1. We can re-wright equation 2.4 as
Alz,y] = [A(z), y] + (=1)1 [z, Ay)] (2.6)

which says that A is a derivation with respect to the bracket. To conclude we must
show that 2.4 and the Lie algebra axioms follow from the BV-axiom. This is shown
in Proposition 1.2 of [9]. O

Figure 2.1: Lantern relation

Remark 2.2.4. The lantern relation, introduced by Johnson for its relevance to the
mapping class group of surfaces [14] is defined by the following equation: Tp, =
T, T, T, To,Te, Ty, where T denotes the Dehn twist along the curve C'. See figure
2.1 for the relevant curves on a sphere with four holes, or equivalently on a disc with
three holes. The mapping class group of a sphere with 4 ordered holes, is the group of
path components of orientation preserving diffeomorphisms which fix pointwise the
boundary. The group is isomorphic to the pure ribbon braid group PRf5. The lantern
relation is thus a relation in PRfs and gives rise to a relation in H;(fD2(3)) which is
the abelianisation of PRf3. It was noted by Tillmann that, with this interpretation,
one gets precisely the BV-axiom 2.1. Indeed, up to signs, the curve E; represents
the operation (z,y,z) — Az %y * z. Moreover Ey corresponds to x * Ay * z, E3 to
rxyx Az, By to A(z*xyxz), Cp to A(zkxy)xz, Co to zx Ay 2z) and Cs to yx A(z*2).
This geometric interpretation shows that any H(fD;)-algebra is a BV-algebra.
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We will use alternatively the notations e, and H(D,) for the homology of the
little n-discs operad, by which we mean

{ en(k) := H (D,(k)) k>1
en(0) = 0.

Algebras over the operad e,, n > 2, are called n-algebras. By assumption they
have no units. F. Cohen’s study of H(D,,) in [5] implies that an n-algebra X is a

differential graded commutative algebra with a Lie bracket of degree n — 1, i.e.
(L1) [,y + (= 1)tbeen Dm0 o,

(L2) Olz,y] = [0z, y] + (~1)¥ [z, 9y,

(L3) [, [y, 2]] = [[z,y], 2] + (=1) (== Dln=Dly [z, 2]],

satisfying the Poisson relation

(P1) [z,y * 2] = [z,y] * z + (=1)Wllel+n=Dg 5 (2 2],

Gerstenhaber algebras correspond to the case n = 2.

Note that D, (2) is SO(n)-equivariantly homotopic to S™ . In an n-algebra, the
product comes from the generating class x € Hy(D,(2)) = k and the bracket from
the fundamental class b € H,_1(D,(2)) & k, if we define [z,y] = (—1)"Vlp(z,y).
The operad e, is quadratic [10].

In order to determine the homology operad H(fD,,), we need to know the Hopf
algebra structure of H(SO(n)) and the effect in homology of the action of SO(n) on
D,(2). For dimensional reasons, one always has 6(b) = 0 for each § € H(SO(n)).
On the other hand 6(x) = m.(0) is the action in homology of the evaluation map
7:50(n) — S™ 1 by D,(2) = S™ L.

Let us give two further examples:

Example 2.2.5. (i) An H(fDj3)-algebra is a 3-algebra together with an endomor-
phism § of degree 3 such that 6> = 0 and & is a derivation both with respect to the
product and the bracket.

(1) An H(fD,)-algebra is a commutative dg-algebra together with two linear endo-
morphisms «, B of degree 3, such that a®> =0, 2 =0, a8 = —Ba, a and the product
satisfy the BV-axiom 2.1, and [ is a derivation with respect to the product.
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Proof. (i) H(SO(3)) = A(9) is the free exterior algebra generated by the fundamental
class § € H3(S0O(3)), and m.(0) = 0 by dimension. By proposition 2.2.2, X is
an H(fDj;)-algebra if and only if X is a 3-algebra admitting an H(SO(3))-module
structure, i.e. an operator § of degree 3 with 62 = 0, such that the following relations
hold:

S(zxy) =00z xy+ (—1)z sy (2.7)

oz, y] = [0z, y] + (=1)"![z, dy], (2.8)

where those equations are obtained by plugging (9, %, z,y) and (d,b,z,y) in turn in
the diagram of proposition 2.2.2. In this case the operator b is equal to the bracket
and lies in degree 2 and 6(b) = 0.

(i) The evaluation fibration SO(3) — SO(4) — S splits as a product. So
H(SO(4)) = N(o, B), with both generators in degree 3. The class o comes from the
basis, so m,(a) = b, whereas 8 comes from the fibre, so m.(5) = 0.

As in the previous case, we know that an H(fD,)-algebra X is a 4-algebra with
two operators « and 8 both in degree 3, satisfying o? = 0 = 3? and a8 = —B«a
and relations obtained by plugging (a, *, z,v), (a, b, z,y), (8, *,z,y) and (3,b,z,y)
in turn in the diagram. Using the identification b(z,y) = (—1)1*/[z, ], this gives the

following equations:

a(z*y) = (—1)z,y] + azxy + (=1)"z x ay (2.9)
afz,y] = laz,y] + (-1)* [z, ay] (2.10)
B(z*y) = Brxy+ (—1)z x By (2.11)
Blz,y] = [Ba,y] + (=1) [z, By]. (2.12)

Note that equations 2.9 and 2.10 correspond precisely to the equations we had for A
and the bracket in theorem 2.2.3. So, by the same calculations, we know that o and
the product form a Batalin-Vilkovisky algebra of higher degree, i.e. o and * satisfy
equation 2.1 but the operator « is now in degree 3. There is an additional operator
B of degree 3. Equation 2.11 says that [ is a derivation with respect to the product.
Using equation 2.9, one can rewrite equation 2.12 in terms of «, 8 and the product.

This shows that equation 2.12 is a consequence of equation 2.11. |
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2.2.3 General case

We need a lemma in order to state the general case.

Lemma 2.2.6. For n > 1, over a field of characteristic 0, the Hopf algebra
H(SO(2n)) = N(B1,-- -, Bn-1,@2n_1) is the free exterior algebra on primitive genera-
tors B; € Hy;—1(SO(2n)) and ag,—1 € Ha, 1(SO(2n)). Moreover, m.(8;) = 0 for all i
and 7, (1) = b € Hyp 1(S?"71) is the fundamental class.

The Hopf algebra H(SO(2n + 1)) = A(Bi,...,Bn) is the free exterior algebra on
primitive generators 5; € Hy—1(SO(2n + 1)), and m.(5;) = 0 for all i.

Proof. The homology Serre spectral sequence of the principal fibration
SO(n) — SO(n+1) — S™ collapses at the Ej term if n is odd; if n is even then there
is a non-trivial differential d(b) = o, [24]. O

If a Hopf algebra H acts trivially, via the counit, on an operad P, we call the
semidirect product just the direct product and denote it by P x H. Note that a P x H-
algebra is an H-module X with a P-algebra structure satisfying an H-equivariance
condition which is trivial only if H acts trivially on X. In particular, any P-algebra
is a P x H-algebra with the trivial H-module structure.

Let us denote by BV, for n even, the Batalin-Vilkovisky operad with the operator
A in degree n — 1. Hence a BV,,-algebra is a differential graded commutative algebra
with an operator A of degree n — 1 such that A* = 0 and the BV-equation (2.1)
holds.

Note that there is no non-trivial ¥s-equivariant map from Hy(Da,41(2)) to
H,(D2,11(2)). So (2n+1)-algebras do not give rise to BV -structures like in the even

case.
Theorem 2.2.7. For n > 1 there are isomorphisms of operads
H(fDypy1) = H(Dopy1) X H(SO(2n + 1))
and
H(fDs,) & BV, x H(SO(2n — 1)).

Hence an H(fDs,1)-algebra is a (2n + 1)-algebra together with endomorphisms
B; of degree 4i — 1 for i = 1,...,n such that 82 =0, 3;8; = —f,0; for each i, j, and
each (; is a (2n + 1)-algebra derivation, i.e. a derivation both with respect to the

product and the bracket.
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On the other hand, an H(fDy,)-algebra is a BVj,-algebra together with endo-
morphisms J; of degree 4i — 1 for ¢ = 1,...,n — 1 squaring to 0 and anti-commuting
as in the odd case, which moreover anti-commute with the BV operator A and are

derivations with respect to the product.

Proof. We have seen that the theorem is true for H(fD,), with n = 2,3,4. The
general case differs from example 2.2.5 (i) and (ii), for odd and even case respectively,
only by the presence of more operators, all of the same type in the odd case, and of
the type § in the even case. The degree of the operators varies, but they are all of
odd degree and so the equations they satisfy do not change.
More precisely, in the odd case, by lemma 2.2.6, we know that the

H(SO(2n + 1))-module structure gives operators f;, i = 1,...,n, squaring to 0 and
anti-commuting. Having the same properties as ¢ in example 2.2.5 (i), they all satisfy
equation 2.7 and 2.8, replacing 0 by ;.

The even case is similarly deduced from example 2.2.5 (ii). O

We already saw that iterated loop spaces are algebras over the framed discs operad.

We deduce the following example:

Example 2.2.8. The homology of an n-fold loop space H(2™(X)) is an algebra over
H(fDy).

Another interesting class of algebras over H(fD,,) is given by the space A"(X) of
unbased maps from S™ to a space X. Chas and Sullivan showed that the homology
of a free loop space AM on an oriented manifold M is a Batalin-Vilkovisky algebra
[3]. Sullivan and Voronov generalised it to higher dimension and have a geometrical

proof involving the so-called cacti operad.

Theorem 2.2.9. [36] Let M be a d-dimensional oriented manifold. Then the d-fold
desuspended homology X~4H(A"M) of the unbased mapping space from the n-sphere
into M is an algebra over H(fD,1).
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2.3 Annex 1: How D,-algebras are almost fD,-
algebras

Or attempts to construct S'-actions.

Consider the two following facts:

1) the group completion of any D,-algebra is an n-fold loop space, and n-fold loop
spaces are fD,-algebra.

2) the free D,-algebra on any space X is an fD,-algebra.

Our first attempt to understand the situation, before looking at an equivariant recog-
nition principle, was to try to use these facts to construct an fD,-structure on any
D,-algebra X, or at least on a space equivalent to X, without group completing. For
simplicity, we consider here only the case n = 2, thus trying to construct an S*-action
compatible with the existing Ds-structure.

In 2.3.2, using the first fact, i.e May’s recognition principle, we try to carry the
S'-action existing on the double loop space Q?B(%?, Dy, X) back to B(Dy, Dy, X),
which is a space equivalent to X. Extending the map DX — Q2¥Y? to a map
fDyX — Q%32 we first show how the pull back of the action naturally lives on
B(fDs, Dy, X) rather than on B(Dy, Dy, X). After this pessimistic observation, we
explain how the natural action one would construct on B(Ds, Dy, X) leads to requiring
the existence of an action on X precisely of the form we are trying to construct! In
other words, we arrive at the modest conclusion that if X is an fDs-algebra, so
is B(Dy, Dy, X). We actually construct the fDs-structure used in the equivariant
recognition principle (theorem 2.1.1).

In 2.3.3, we try to construct an S'-action on X using the second fact mentioned
above. The idea is to use the map DX — X. We show that finding any sec-
tion/splitting of this map is actually useless in the sense that the induced action on
X will not be of the right form.

We begin the section by giving an explicit description of fD; in terms of complex
numbers. It is followed by a detailed description of the situation.
As our two attempts failed, the question of finding, for any D,,-algebra, an equiv-

alent fD,-algebra, stays open.
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2.3.1 Detailed description

The framed little 2-discs operad fD, can be described explicitly as follows: Consid-
ering D? as the unit disc in the complex plane, an element of fD,(k) is determined
by a pair of vectors (s,a) € CF x C*, where (s,a) represents the embedding which
sends the ith disk D? to s;.D? +a;. So for each 7, s; encodes the dilation and rotation
applied to the ith disc and a; encodes the translation. Note that, of course, not any
couple (s,a) defines an element of fD,. In these notations, the operad structure map
is given by v((s,a), (¢',0"),. .., (*,0"))

= ((s1t1, 8101 + a1), ..., (sath ,s1by 4+ a1), ..., (sgth  spbf + a))

Note that Dy is the sub-operad consisting of the (s,a) € fD, with (s,a) € R x C.

As fDy = Dy x S, to construct an fD,-structure on a Ds-algebra, we need (and
it is sufficient) to give an action of the circle S* which is compatible with the existent
Ds-structure in the following sense : if X is a Dy-algebra, with structure maps 6p,,

for any ¢ € Dy(k), z; € X and s € S*, the action must satisfy

s(fp,(c,x1,...,xx)) = Op,(sc, sy, ..., sTk),

where the action of S! on an element of D, is by rotation of the discs around its

centre. In the above notations, for ¢ = (r,a) € R* x C*, s.(r,a) = (r, s.a).

We have such an action on Dy X, the free Dy-algebra on the pointed space X (see
example 1.3.11). For ¢ € Dy(k), s € S* and x; € X, the action is defined by

s(c,xy,...,x) = (s¢, 21, ..., Tk).

Also, any double loop space admits an fD,-structure. In this case, the S!-action

on f: D? — X is given by

sLf()] — [ftsTh)],

still considering D? and S as a subsets of the complex numbers.
Using May’s recognition principle, we deduce that the group completion of any
Ds-space X is weakly homotopy equivalent to an fDs-space.

2.3.2 May’s circle action

May defined a map of monads « : Dy — Q2?32 This map can be extended to fDs,
i.e. there exists a monad map 3 : fDy — Q?%? such that the following diagram
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commutes :

fDy— 2 ey

where ¢ is induced by the natural inclusion of Dy into fD;. The maps « and [ are

given by
a=0p, ongys: and [ =0;p, ongse,

where 0p, and 0sp, are the Dy- and fDs-algebra structure maps on 0°Y2X (as a
double loop space). Explicitly, 8 : fD; X — Q232X is given by
—1 . . . -th .
B 9 [s; "(t —a;),z;] iftisin the i"" disk
6((§ag)7x17"'7$k) - |:t€ D — { * otherwise
for (s,a) € fDy(k) and x; € X.
The map « is given by the same formula with s € R* (multiplication by s; ' being

then a dilation without rotation).

Note that a and 3 are injective.

Let C — D be a morphism of monads and let X be a C-algebra. A map
of double bar constructions B(D,C,X) — B(D',C',X') is given by a morphism
of monads ¢ : C — (', a natural transformation D — D’ and a morphism of

C-algebras X — 1* X’ such that the following diagram commute

DC ——D'C'

|

DD——D'D'".
In our case, this diagram will always commute because we work only with the inclu-
sions Dy = fDy < Q?%? and their composition. Also, we will always be in the case
X = X' and use the pull back structure on X (from X’ = X). In the case X = Q?Y,

the Ds- and f Ds-algebra structures we defined are in fact the pull back structure of
the Q2%2-structure on Q2Y.

Let X be a Dy-algebra. Recall from section 2.1 that, for the recognition principle,

May uses the following resolution of X:
B(DQ,DQ,X) ~ X.
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The map « defined above induces a map

B(a,1,1)
—

B(Dy, Dy, X) B(Q*%% Dy, X) — Q*B(X?% Dy, X),

the first map being a (weak) homotopy equivalence whenever X is group like.

On the simplicial level, B,(Q2X% Dy, X) = Q?B,(X% D,, X). The S'-action on
Q2?B(X?% D,, X), as a double loop space, is simplicial as the boundary maps are of
the form §;(f) = d6; o f, for f € Q*¥2DIX, while the circle action is of the form
f¢ = f or,, where ry denotes the rotation by s € S'. So we also have an action on
the space B(Q%X2% Dy, X). We would like to pull back this action on B(Ds, Do, X).

We explain how we fail miserably.

Note that the S'-actions in our setting are part of a richer structure, an fD,-

algebra structure. So S'-maps should actually be fDy-maps.

We have the following commutative diagram:

B(fD,, Dy, X)°5

B(D,, Dy, X) B(Q?%2, Dy, X)05".

This diagram suggests that we won’t be able to pull back the S'-action from
B(Q%%2 Dy, X) to B(D,, Dy, X), as the natural pull back of the action is on
B(fDs, Dy, X), not on B(Dy, D, X). The action is encoded in the framed discs and

the set of unframed discs, the discs with s € R¥, is not stable under this action.

In particular, our attempts to construct a circle action on B(Dj, Dy, X) respecting
or not respecting May’s map, all failed... The following phenomena happens: we
want to construct a simplicial action on B(Dsz, Dy, X). We think of B,(Dy, D2, X) =
Dg“X as having q + 2 “levels”, the first being the element of Dy coming from the
first Dy (counting from the left), the second being composed of the elements coming
from the second Dy, up to the last level which is formed of elements of X. If you want
to rotate the first component of an element of B(Ds, Dy, X), the boundary maps tell
you that you have to rotated the next level as well, and the next, etc. Eventually,
the last boundary maps tells you that you have to rotate the elements of X in a way

which is compatible with its Ds-structure, which is precisely the sort of rotation we
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are trying to construct! And we want to rotate the first component because it is
largely suggested by what the action is on B(Q2X2% Dy, X) or B(fD,, Dy, X).

The idea is that in the two last mentioned spaces, the rotation is “remembered”
by the first factor (f D, or 22%%), so that it does some sort of rotation to what follows
when you do the first boundary map. If the rotation is not recorded, as it is the case

with Ds, then you have to rotate what follows “in advance”.

2.3.3 Sl-action form D, X

We would want to think that it should be possible to use the S!-action on D2 X to
get one on X. More precisely, for x = 6(c,y1,...,yr) and s € S, we would want
to define z* as being 6(c®,y1,...,yx). This would become the problem of finding a
section X — Dy X. We know a section (z +— (1, x)), which induces the trivial action
of S! on X, which is not compatible with the Ds-structure. This is unfortunately
true in general. Whatever the section is —if ever we could find another one—, the
action induced would not be compatible. Indeed, we need z* = 6(c*,y;,...,y}),
not z° = 6(c®,y1,...,yk). Note also that a tricky sort of induction (deciding some

elements as fixed points and then induce the rest) sounds rather hopeless...
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2.4 Annex 2: Twisted monads and another recog-
nition principle

In this section, we work in the category of pointed topological spaces. “Twisted
monads” generalise the notion of semidirect product for topological operads. Recall
that any unital operad has an associated monad which has the same algebras as the
operad. Proposition 1.3.7 tells us that the monad associated to a semidirect product
operad is of the form P(G4 A X), where P is the monad associated to an operad and
G is a topological monoid. We know that the algebras over this monad are G-spaces
with a G-equivariant P-algebra structure. Now not all monads come from operads.
We give in this section a larger class of monads having a property of this type for
their algebras. We call these twisted monads, rather than semidirect products, for
historical reasons.

The motivation for extending semidirect products to more general monads is that
we wanted to define a monad “Q?%? xS which would correspond to fDy = Dy x S?.
Clearly, as a functor, we want (Q2X2x 51) X to be Q*X?(S1AX). We define its monad
structure through a general theory of twisted monads. Studying this particular monad
more closely, we obtain a characterisation of its algebras: on double loop spaces, we
show that we can “deloop” the S'-action induced by the (22%? x S')-structure.

Having constructed this twisted version of 2X2, we can now write a “framed
recognition principle”, which is a variant of the equivariant recognition principle. For
the equivariant recognition principle, we constructed group actions on the spaces used
in the original recognition principle. In this other version, we change the spaces so
that they come directly equipped with a framed discs algebra structure. In the bar
constructions, we replace Dy by fD, and Q2X2 by Q2¥2 x S'. As in the equivariant
principle, we obtain a double loop space with an explicit S*-action on the deloop.

We study only the case n = 2 for simplicity.

2.4.1 Twisted monads

Let G be a monoid. Note that we can consider G as a monad by defining G(X) =
G4+ N X, ug to be the multiplication of G (multiplication by the added base point
gives the base point) and 7ng the inclusion X — G, A X, mapping z to (e,z). A
structure of algebra over this monad A\ : Gy A X — X is then precisely a base point

preserving G-action on X.
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Let (M, pipr,mar) be a monad. Suppose that we are given a continuous homomor-

phism
p: G — Endyn(M),

from G to the monad endomorphisms of M. So, for each g € G, the map p(g) is a
natural transformation from M to M commuting with the structure map n,; and gy,

of M. In the case of py;, this means that

p(9)p(9)

MMX —MMX

/'LM\[ JMM
p(9)

MX————MX
commutes.

For any space Y we want an assembly map
a G+/\MY —>M(G+/\Y)

Such a map always exists but might not be continuous: each g € GG defines an inclusion
ig Y — G4+ ANY. Fitting the M(i,)’s together, this induces a map G A Y —
M(G4 ANY). We ask this map to be continuous. It is the case for example if M is a
continuous functor and M (k) = *.

The map a is natural in Y in the sense that for f : Y — Z, the following diagram

commutes:

G, /\MY—“>M(G+ ANY)
idAM fl lM (idNf)
G, /\MZ—“>M(G+ /\Z).

The diagram commutes as for each g € G, we have (idA f)oi, = i,0 f. The assembly

map also commutes with 7y, and pj, in the following sense:

G, AY MG AMY G ANMMY —%5 MM (G4 AY)
M Ja id/\le IUM
M(G4 AY) G.AMY —* 5 M(G, NY)

commute. This is obtained, for each ¢ € G, using the naturality of ny; and py,

respectively.
Define the functor
(MxG)(X) :=M(GLNX),
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and the natural transformations p and 7 via the following diagrams

M(GL AM(GLAX)) - MG AX)
M(ANid)
MG NG ANM(G4 NX))
M(idAa)

M(G4 AM(Gy A Gy A

MM(G, NGy A X),

X 2 M(Gy A X).

x%

G, AX

Note that, in the definition of u, using the naturality of p, we can reverse the order of
a and p. This is also the case for the multiplication maps py; and pg, a consequence

of the naturality of uj;, so that the notation usue is not ambiguous.
Proposition 2.4.1. This defines a monad structure on M xG.

Proof. The fact that 7 is a left unit for u is an easy consequence of the same property
for mpr and py, and of the naturality of ny,. To prove that it is also a right unit, we
need furthermore the commutation of @ and p with 7, as well as the commutation
of a with p.

The associativity of u follows from the associativity of s, pg, the fact that p is
a group homomorphism and p(g) is a morphism of monads (commutation with py),

and from the naturality of uys, a, and p. O
A monad map between twisted monads

MxG — M'xG'

consists of a group map G — G’ and a monad map M — M’ commuting with the
group actions on M and M’ and with the assembly maps. This is a straightforward

consequence of the definition of p and 7 for a twisted monad.

The twisted monad M x G was constructed so that its algebras are precisely the
algebras over M having a G-action which commutes with their M-algebra structure

in a sense we make precise in the following proposition.
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Proposition 2.4.2. (X,¢) is an M xG-algebra if and only if X is equipped with an
M-algebra structure A : MX — X and a G-action ¥ : G N X — X such that

& = AoV and the following diagram commutes:

GiAMX — @, ax) MY yx

| I

Gy ANX ¥ X,

where [ = po (id A a) o (A Nid) (see definition of u for M xG above).

Proof. Suppose first that A\ and ¥ are given and that the diagram of the proposition
commutes. Define £ to be A o U. We have to check that £ defines an M x G-algebra
structure on X. This follows easily from the fact that A is an M-algebra structure on
X, W is a group action and the maps are natural.

For the converse, we suppose that £ is an M x G-algebra structure map for X.
Define

A MX X.

M(ng) /

M(G. A X)

Using the map M(ng) : MX — M(G4 AN X), the required properties of A are
obtained as a consequence of the same properties for & with respect to M x G, the
fact that p(e) is the identity and the naturality of 1y, and .

Define

\IJ:G+/\X X

M(G4 A X)

The fact that ¥ is a G-action follows from the fact that £ is an algebra structure map
for X and from the naturality and unit property of n,,.

Mapping M (G4 A X) -5 M(G. A M(G4 A X)) and using the properties of &
(diagram involving p and &), and the fact that g on = id, one obtains that £ =
Ao W. |
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2.4.2 Some examples and their properties

From the operad case, we know already a few examples of twisted monads: fD, =
D, xS0(n), BC® = BCPx BZ. We are interested in the following —non-operadic—
examples: Q2%¥% x S!, with the endomorphisms of Q?%? defined in the first case as
being trivial (i.e. p;(s) is the identity for each s € S'), and in the second case as
pyt SEAQIZX s Q232X
(s,[o(t),z(t)]) +— [s.o(ts™h),z(t.s7h)],

where t € D? s € S', considering S' C D? C C, and [o(t), z(t)] denote the element
of 22%2X which maps t to [o(t), z(t)] € £>X. The S'-action on Q*%2X given by p,
is actually defined the make the map fDyX = (DyxSH)X — (22%2% % S1) X induced
by a : Do X — Q?¥2X into a monad map. In particular, o is an S'-map with this

action.

If X = Q%Y is a double loop space, it is an algebra over Q2X? with a canonical

map
A PEY — Q5 [o(t), [y(tu)]] = [y(t o ()],

where [y(t,u)] denotes for each t € D? the loop u + [y(t,u)]. If this structure extends
to an 2%2 x Sl-algebra structure, the circle action on X has to be of a specific form,

as stated below.

Proposition 2.4.3. If X = Q%Y is a double loop space whose canonical Q*%%-algebra
structure extends to an 2?%? x St-algebra structure, then the induced S*-action ¥ on
Q%Y factors in an action on D? followed by an action on'Y . In the first case (trivial

twisting of Q*%% and S*), the action on D? is trivial:

(s, [y()]) = [sy(®)];

and in the second case (monad structure obtained with py), ¥ rotates the disc before

acting on Y :

U(s, [y(t)]) = [sy(t.s™)].

In particular, the action on' Y can be trivial, so any double loop space is an algebra

over 22 x St in both cases.

Remark 2.4.4. We can formulate a similar statement for Q23? x G, where G is
any group acting on the disk D? for which Q?%? x G is well-defined. We could also

consider Q"X
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Proof. The commutativity of the diagram of proposition 2.4.2 provides, in the first
case, the following equality : ¥(s, [y(t,0(t))]) = (s, [y(t,u)])(o(t)), where the right
hand side is, for a fixed ¢, the image of the action of s on the double loop u — y(t, u),
evaluated at o(t). In particular, taking [y(¢,u)] = [y(u)], and o(t) = ¢y, we have

(s, [y(to)]) = W(s, [y(w]) (ko). (¥)

It follows that, if [y(u)] is a constant loop, ¥(s, [y(u)]) is also constant. We then have
a well-define S'-action on Y given by sy = ¥(s, [y])(0), where [y] denotes the constant
loop at y. Clearly, 1 acts as the identity. Moreover, s1s0y = ¥(sy, [¥(s2, [y])(0)])(0) =
U(s1,¥(s2,[y]))(0) as W(sq,[y]) is a constant loop. Now this is U(s;se, [y])(0) as ¥
is an action. Using (*) again, we obtain that U(s, [y(u)])(to) = ¥(s, [y(to)]) which is
[sy(to)] by definition of the action on Y.

In the second case, the diagram of proposition 2.4.2 gives ¥(s, [y(¢,0(t))]) =
(s, [y(t.s tu)])(s.o(t.st)). Again, taking [y(t,u)] = [y(u)], and o(t) = to, we

have

U(s, [y(to)]) = U(s, [y(w)])(sto). (k).

For the same reason as above, this allows us the define the same action on Y. The
equation (*) gives then that (s, [y(u)])(t,) = ¥ (s, [y(te.s 1)]), which is [sy(to.s )]
by definition of the action on Y. O

We have encountered the monads Dy, fDs = Dy xSt Q2¥2 and Q?¥2% x St
(considered here with the non-trivial twisted structure). They are related as shown

in the following commutative diagram :

fD: X L qeyry

] [s

Dy(SL A X) —2 PE2(SL A X)

] i

Do X —— 2 232X,

where o and 8 were defined in 2.3.2 and f is given by

All maps are monad maps but only the top diagram is composed of S'-maps.
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Remark 2.4.5. Except for Dy, all the monads involved have “their” circle action as
part of their monad structure, i.e of the form p(m(s),-), for m(s) “in the monad”. For
example, in the case of Q2?2 the action W(s,[o(t), z(t)]) = pazs:([u.s,[o(t), z(t)]])-
Thus, as we have monad maps, those circle actions are sent to circle actions. However,
there might be several circle actions of that sort for a monad and so a monad map is

not always an S'-map. This is the case for i : Q?X? — (252 % St

2.4.3 Framed recognition principle

If X is an fDs-algebra, we can consider two forms of “recognition principle”. One
form is by taking the recognition principle for Ds-algebras and define appropriate
circle actions on the spaces used in that case. This is what we did for our equivariant
recognition principle (theorem 2.1.1). The other possibility is to use more appropriate

monads to construct the spaces involved. We explain this other approach here.

Instead of using the monads D, and 922X2, we can rewrite the recognition prin-
ciple for fD,-algebras using the monads fD, and Q%%2x S!. The point is that the

equivalence o : Do X — Q?Y2X for X connected, provides an equivalence
o Dy(S1 A X) — °X%(SL A X),
ie. fDyX — (22%2xSY)X for X connected. Hence we have
X < B(fDs, fDy, X) — B(Q2?%%x S, fDy, X),

where both maps are fDs-algebra maps and weak equivalences for X connected. This

time, the fDs-actions are obtained by acting on the left factor of the bar constructions.

This provides the following double deloop of X:
B(Q*%2x 8, fDy, X) = Q*(B(X% xS, f Dy, X)),

where % x S! is the functor sending X to X?(S1 A X). Again, the circle action
on this double loop space is both by rotating the disc and by rotating the deloop
Y = B(X?x St fD,, X).

The inclusion B(X?, Dy, X) — B(X2x S, fD,, X) is an S'-map which provides
an equivalence of deloops. So we obtain a deloop equivalent as S'-space to the one

obtained in theorem 2.1.1.
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Chapter 3

Infinite loop space structures on
the stable mapping class groups

Let F,; be a surface of genus g with one boundary component. The mapping class
group I'y ; is the group of components of diffeomorphisms of F, ; which fix the bound-
ary pointwise. The groups I'y; are of special interest as, when g > 0, the classifying
space of I'y; is homotopy equivalent to the moduli space of Riemann surfaces of
topological type Fy ;.

By attaching a torus with two boundary components to Fj,;, one can define a
homomorphism I'y; — I'y111. A theorem of Harer [12] improved by Ivanov [13] says
that this map induces an isomorphism on homology groups in dimension less than
g/2. Tillmann used this fact to show the existence of an infinite loop space structure
on BT}, the group completion of the classifying space of the stable mapping class
group I'es = limg_,0.1'g 1.

She has two different proofs of this fact. The first one uses a cobordism 2-category
S: the objects are one dimensional manifolds, the 1-morphisms are cobordisms be-
tween them and 2-morphisms are diffeomorphisms of the cobordisms. This category
has a natural symmetric monoidal structure given by disjoint union. The result fol-
lows from the fact that QBS is equivalent to Z x BI'Z . The second proof uses an
operad M associated to this category, considering only the surfaces with n “incom-
ing” and one “outgoing” boundary components. This operad is an infinite loop space
operad.

We show that the two infinite loop space structures are equivalent by producing

an equivalence of spectra.
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3.1 The mapping class groups operads

We give in this section a summary of Tillmann’s construction of the mapping class
group operad M, as given in [40], spelling out some of the details we will need in

section 3.3.

Let F,, 1 denote an oriented surface of genus g with n+ 1 boundary components.
One of the boundary components is marked; we call the n other components free. Each
free boundary component d; comes equipped with a collar, a map from [0,€) x S*
to a neighbourhood of 0;; for the marked boundary component, there is a map from
(¢,0] x S* to a neighbourhood of the boundary. Let Diff*(F,,1;0) be the group of

orientation preserving diffeomorphisms which fix the collars, and let
g1 = mo(Diff" (Fyns1;0))

be its group of components, the associated mapping class group. There is a normal

extension
Lgni1 = Tgm)1 = .

The extension I'y )1 is the group of components of the orientation preserving dif-
feomorphisms that may permute the n free boundary components, preserving the
collars.

Consider the groupoids

Gn = HF97(”)71 and Hn = Hrg,n+1
920 g>0
for n > 0.
We want to construct an operad with those groupoids, using the techniques given

in section 1.2. There are maps

W Fg,(k),l X Fhl,(nl),l X ... X Fhk,(nk),l — Fg+h1+---+hk,(n1+---+nk),l

induced by gluing the marked boundary of the k surfaces Fj, 5,41 to the & free bound-
aries of the first surface. However, these maps cannot be made associative on the level
of the mapping class groups. In order to rectify this, we need to enlarge the groupoids

. . . Ly (n . . .
and so consider larger categories than the categories er T(L "' (in the notation of section

+1
1.2).
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3.1.1 Construction of the categories &, 1

Pick three atomic surfaces with fixed collars of the boundary components: a disc
D = Fy, a pair of pants surfaces P = F{ 3 and a torus T' = F} » with two boundary

components (see figure 3.1).

@D@

T

Figure 3.1: Basic surfaces

Define a connected groupoid &, ,, 1 with objects (F, o), where F' is a surface of type
F, ,+1 constructed from D, P and T' by gluing the marked boundary of one surface
to one of the free boundaries of another using the given parametrisation, and o is an
ordering of the n free boundary components. Note that each boundary component of
F comes equipped with a collar. The set of morphisms from (F, o) to (F’,¢") are the
homotopy classes I'(F, F') = moDif f*(F, F';0) of orientation preserving diffeomor-
phisms preserving the collars and the ordering of the boundaries. The group ., acts

freely on &, ,1 and there is a homotopy equivalence BE;, 1 ~ Bl'g 1.

By construction, gluing of surfaces induces now an associative and Y-equivariant

structure map on the categories. Thus on the classifying spaces, we have maps
v ng,k,l X thl,nl,l X ... X thkankvl — ng+h1+---+hk,n1+---+nk,l7

which are associative and Y-equivariant. However, {]] 450 BE&, 1 nen does not pre-
cisely form an operad yet as there is no unit.

The operad M is obtained by applying two quotient constructions on the cat-
egories &£, ,1 and taking the classifying spaces of the modified categories. Those
constructions provide M with a unit and make the product induced by the gluing of
a pair of pants associative and unital. This ensures compatibility with the operads
I', BC? and BCT¥ constructed in section 1.2 and gives an actual monoid structure to
M-algebras.

For the first quotient construction, fix isotopies ¢, : y(P;D,.) — ~(P;_, D),
and ¢y : y(P;_, P) — ~(P;P,.). Define two surfaces F and F’ to be equivalent
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if F' can be isotoped to F’ by applying ¢, ¢» and their inverses to its subsurfaces.
Let F° be the unique representative in each equivalent class having no subsurfaces of
the type v(P; D, _) or y(P; _, P) and consider the full subcategory generated by these
surfaces. The isotopies ¢; and ¢, define a isotopies ¢r : F' — F° for every F to the
representative of its equivalent class. Define the new structure maps ° on objects by
taking the unique representative of the image of v on the surfaces. On morphisms,
VO, ab1, k) = dpy (0,91, ... k)dp", where F and F' are the images by 7 of
the sources and target surfaces of the maps 1. The map 7° is again associative.

For the second quotient construction, choose an isotopy ¢ : y(P; _, D) — S x[0,1]
and denote by ¢ its composition with the projection map S'x[0, 1] — S*. Now replace
every occurrence of v(P;_, D) by S!, yielding surfaces F, and identify the mapping
class groups I'(F, F') and I'(F, F') via the homotopies ¢ : F — F and ¢p : F' — F’
generated by ¢. The structure maps +° induce maps 70 on this new category as we
are working on the level of the mapping class groups. The map 7° has now a unit,
the only object S* in & 1 (with automorphism group Z thought of as generated by
the Dehn twist around S*).

There are operad maps
BCP — BC® — M 55T,

where 7 is given on objects by the projection on the labels.

3.1.2 Infinite loop space structure

U. Tillmann showed in [40] that M is an infinite loop space operad, i.e. that the
group completion of any M-algebra is weakly homotopy equivalent to an infinite
loop space. She first identified the free M-algebra on any space X.

Let G denote the group completion functor, let M denote the monad associated
to the operad M (definition 1.1.9) and let Q(X) = lim,,,,,2"E". Barrat and Eccles
show in [1] that GT'X is naturally homotopy equivalent to Q(X).

Theorem 3.1.1. [/0] The maps M(X) — M(x) and M(X) — ['(X) induce a natu-

ral homotopy equivalence on group completion:
GM(X)~ (Z x BI'Y) x 9(X).

In particular,

GM(x) ~ Z x BT,
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The map 7: GM (X) — GM (%), induced by X — *, is a map of simplicial groups
and hence a Kan fibration. Let GF(X) be its fibre. The inclusion * — X induces
a splitting GM (x) — GM(X) of 7 which is also a map of simplicial groups. Thus
GM (X)) splits as a simplicial set.

Corollary 3.1.2. [40] GM(X) = GM (%) x GF(X) and GF(X) — GT(X).

Theorem 3.1.3. [40] If X is an M-algebra, G(X) is weakly homotopy equivalent to

an infinite loop space.

The theorem is proved by constructing a space equivalent to G(X) for which one
can give explicit deloops. We give here a precise description of the deloops we will
use for the comparison.

Consider the space |GM (M*(Y'))|, which is equivalent to Y. On each simplicial
level, we have GM (M™(Y')) = GM (%) x GF(M™(Y')). The space |GM (M*(Y'))| carries

a free GM (x)-action which gives rise to the principal fibration
GM (x) — [GM(M"(Y))| — |[GF(M"(Y))],

where the simplicial space GF(M*(Y)) is defined to be GM(M*(Y'))/GM(x). We
know that on each level, (GF(M*(Y))), = GF(M™(Y)). It inherits a simplicial
structure from GM (M*(Y)), with &y induced by GFMX % gMX 2+ GFX. Now

consider Y = M (*) x X and compare the above fibration to
GM(x) — GM (%) x GX — (GM (%) x GX)/GM (%),

where GM (k) acts diagonally on GM (%) x GX, acting on GX via the map GM (x) —
GM(X) — GX. The equivalence |GM (M*(Y))| — Y, induces a map of principal

fibrations:

GM (%) —— |GM (M (M () x X))| = |GF (M*(M(x) x X))|

R JA
GM(¥) ———— GM (%) x GX ————— (GM (%) x GX)/GM (%)
\gj};

We deduce that A is an equivalence. Furthermore, the map GX — GM (x) xGX AN
(GM(M*(M(x) x X))| == [GF(M*(M(x) x X))| —> (GM(x) x GX)/GM(x) —
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GX is the identity. It follows that the map p o j o4, which sends z to (1,D,z) €
|GF(M*(M(*) x X))|, where D is the disc, induces the equivalence

GX — |GF(M*(M(x) x X))|.

The ith deloop of GX is then given by |GF(S* A M*(M(*) x X))|. We give below
in details the simplicial structure of the case X = M(x). This is the case we are
interested in as the group completion of M (x) is equivalent to Z x BTl . We will
in fact consider a slight variant of the deloops because of base point problem in the
map we construct in the next section. We will also work with GI' rather than GF to
simplify the comparison map.

For ¢ > 0, define

E' = [GI(S* A M*((M(x) x M(x));))]-

Proposition 3.1.4. The map |GF(S* A M*(M(x) x M(x)))] — E" induced by
GF(X) — GI'(X) and M(x) x M(x) — (M(x) x M(x))s, gives an equivalence

of spectra.

Proof. Counsider first the group completion of (M (%) x M (x)),.

As M(*) = ],50 Bl'g,1, the monoid of components of (M (x) x M (x))+ is (NxN) . Its
group completion is Z x Z. Also, since the limits on the components of (M (x) x M (x))
and (M (x) x M(x)), are the same, a calculation similar to the calculation of GM (%)

yields
G((M (%) x M(%));) ~ Z x Z x BT, x BT ~ G(M(x) x M(x)).
We have again a principal fibration
GM (x) — [GM(M*((M (%) x M(%))1))| — [GF(M*((M(x) x M(x))+))|-

Comparing this fibration to the fibration GM (x) — GM (%) x GM (x) — GM (%), we
deduce that |GF(M*((M(x) x M(x))4))| = GM (). Comparing it in addition to the
fibration for |GM (M*(M (x) x M(x)))|, we deduce that the map |GF(M*(M (%) x
M) = |GF(M*((M(*) x M(x))4))|, induced by the inclusion, gives the equiva-
lence.

Now |GF(S* A M*(X))| — |GT(S* A M*(X))]| is a map of spectra. So the map

given in the proposition is a map of connective spectra which induces an equivalence

X
X

on the first spaces. Hence it is an equivalence of spectra.
O
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Let par,my and pp,nr denote the monad structure maps of M and I' (induced
by the operad structure) and let § denote the M-algebra structure map of (M (%) X
M (*))4+. Let 7 : M — T be the projection of operads.

For any operad P, there is a map ¢ : A x P(X) — P(A x X), sending an element
(a,p,x1,...,x) to (p,(a,x1),...,(a,zg)). As ['(x) = {x}, the sequence of maps

T(A x M(X)) -% T(M(A x X)) = TT(A x X) 2% T(A x X)
induces a map on smash products
AMT(AANM(X)) —T(ANX).
The simplicial structure on E*, i > 0, is defined as follows.
E;, = GI(S* A MP((M (%) x M(%))4)

and

=GB E
6 = GU(S* A M up)) - B, —E,  forl<i<p;
6, = GL'(S* A MP1(0)) : E; — E'_;

. . . P
s; =GL(S*ANM*(nm) : B, — E;

i1 for 0 <i <p.

3.2 Infinite loop space structure via disjoint union

U. Tillmann’s first proof of the existence of an infinite loop space structure on BI'l
was through the construction of a symmetric monoidal 2-category. A 2-category is a
category whose sets of morphisms are again categories and composition is given by
functors. Taking the classifying spaces of those morphism categories yields a category
enriched over Top. We denote by BS the resulting category for S. As we will not use
the structure of 2-category of S, we will only give here a precise description of BS.
We will actually construct a variant of the one given in [39], which was itself a variant
of [38]. The 2-category S has the natural numbers as set of objects, thought of as
the set of closed one-dimensional manifolds. The “l-morphisms” in § are cobordisms
between them, and the “2-morphisms” are diffeomorphisms of the cobordisms which
preserve the boundaries (in [39]) or elements of the corresponding mapping class
group (in [38]). We use here the mapping class groups as 2-morphisms. Also, we
will apply to the morphism categories the same quotient constructions we applied to
the categories &;, 1 when constructing the operad M in 3.1.1. This is to help the

comparison of the two infinite loop space structures.
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Tillmann showed that QBS ~ Z x BI'l |, where BS denotes the classifying space
of BS. As disjoint union induces a symmetric monoidal structure on BS, BS is an

infinite loop space, which yields the second infinite loop space structure on BT'L .

The monoidal category BS is defined as follows. The objects of S are the natural
numbers 0, 1,2, ..., with monoidal structure given by addition.

To define the morphism spaces, we first construct categories £(n,m) for each
n,m € N with m # 0. An object of £(n,m) is a couple (F,o) where F' is a surface
with n ‘in-coming’ and m ‘out-going’ boundary component, obtained from the basic
surfaces D, P and T (see figure 3.1), as in 3.1.1, by gluing the marked boundary of
one surface to a free boundary of another, with the additional possibility here to take
disjoint union, and o is a labelling of the n free boundary components and of the m
marked components (see figure 3.2). So F' = Fy [[--- ][ F,» where F; is an object of
Egi ki for some g;, k; with Xk; = n.

Figure 3.2: Object of £(5,2)

The set of morphisms between F' and G in £(n,m) is empty unless F' and G
are diffeomorphic. In that case, it is the group of components mDiff"(F, G, ) of
orientation preserving diffeomorphisms which fix the boundaries preserving the labels.
In particular, £(n, 1) = [ 5 Egn,1-

Now apply to £(n,m) the quotient constructions defined for the categories &, 1
in 3.1.1. So we apply the quotient on each component of the objects and take the full
subcategory containing the chosen reprensentatives. Note that the modified version
of £(n,n) now contains the symmetic group, represented by disjoint copies of the
circle with labels “on each side”.

The morphism space BS(n,m), for m # 0, is defined to be the classifying space

of the resulting quotient category. BS(n,0) is empty unless n = 0, in which case it is
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just the identity. Composition in BS is induced by gluing the surfaces according to
the labels, which can be done using the operad map 7y on each component. This is

well-defined as v is well-defined on the quotient categories.
Disjoint union of surfaces induces a symmetric monoidal structure on BS.

Let BS denote the classifying space of BS:
BS := B(BS).
Theorem 3.2.1. [39] QBS ~ Z x BT'L.

The proof of [39] can be applied to our modified version of BS. Indeed, our
morphism spaces are equivalent to the ones constructed in [39], except for BS(n,n),
which has an added base point in [39]. However, the telescopes of BS(1,1) and
BS(1,1), are equivalent and this is enough to adapt the proof.

As BS is a symmetric monoidal category and BS is connected, we know that BS
is an infinite loop space [34]. Thus Q2BS is an infinite loop space. So we get another

proof of the existence of an infinite loop space structure on the stable mapping class

group:
Corollary 3.2.2. Z x BT'L is an infinite loop space.

In this case, we use Barrat and Eccles machinery to get the deloops of Z x BI'L

[1]. They are given, in our notations, by the following formula:
F' = |GT(S" ' AT*(BS))| fori>1,
where the simplicial structure is defined similarly to the one of E¢, which is given in

detail at the end of section 3.1.

3.3 Comparison of the two structures

The existence of an infinite loop space structure on Z x BT} is a surprising fact.
The existence of two such structures would be even more surprising! U. Tillmann
showed in [38] that the first deloops are the same. We construct here a map of
spectra from the “pair of pants” spectrum to the “disjoint union” spectrum, which is

an equivalence. The map we construct is different from the map constructed in [38].
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The deloops are given as realisation of simplicial spaces E% and F!. We will first
construct maps f, : £} — F; on the p-simplices. The maps f, almost form a simplicial
map. All commutations required for f, to be a simplicial map are satisfied except
that 0, f, is homotopic to f, 19, rather than equal. Thanks to the existence of higher
homotopies, we will show how this map can be rectified. Once the map rectified, we

show that it gives an equivalence of spectra.

3.3.1 Construction of the maps f}ﬁ

We want to construct a map from E} = GI'(S* A MP((M(x) x M(x))4)) to Fj =
Gr(S=t Are(BS)) for i > 1. By construction, to an element of M(x) = M/(0)
precisely corresponds a morphism from 0 to 1 in the category BS. In particular, two
such elements define a loop in BS. This is what we will use fact to construct our

map.

I

Y1 Y2

Zo

Figure 3.3: Map from S' A (M (x) x M(*)), to BS
We construct first a bisimplicial map

Q;p,q : S, % (My(x) X My(*)) — By,

p

where S is viewed as a simplicial space with two 0-simplices zg, ; and two non-
degenerate 1-simplices yi, yo (see figure 3.3), and BS is viewed as the bisimplicial
space B, ,S = B,(B,S), where the second simplicial dimension is from the simplicial
structure of the morphism sets. Let F' = Fj J & F,and G =G| &
G, be g-simplices of M(x).

Define
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éO,q(l’i,E, G)= i for i =0,1;
5 F
¢17Q(y17E7Q) — 0 ;) 1’

7 G
b1.4(y2, F,G) = 0 — 1.
This induces a map

¢:STA(M(¥) x M(%)), — BS,
where ¢, = ¢~>q,q is given explicitly by
¢Q(qu—i SR Sj1Z7E7 Q) = Sjg_i- - Sjléi,q(zvﬂv Q):

for any i-simplex z of S* with i = 0,1, and s; : S; — S, on the left hand side and
s; : Bp(ByS) — Byy1(B,S) on the right, with 1 < p < g — .

The basepoint of M (%) x M(x) is (D, D) and its image under ¢ is a contractible
loop, but it is not actually the trivial loop. This is why we work with (M (%) x M (%))
rather than M (x) x M(x).

Recall from [1] that for I" there is an assembly map
a: ANT(X) = T(ANX).
Combining a, ¢ and the projection of operads 7, we get a map
. £ .
GIL'(S* AN MP((M(*) x M(x))1)) Gr(S=1 AI?(BS))
QF(S"/\TFP)l TQF(S“AF”(@)
GL(S* ATP((M(x) x M(x)))) GU(ST 1 ATP(S! A (M(x) X M(x),))

Gr(Si-!na

Proposition 3.3.1. Let d; and s; denote the boundary and degeneracy maps of both
simplicial spaces E% and F'. Then the maps f; : E;, — Flf satisfy

5jf;;: ;715]- for 0<j5<p
and
sjf;: ;Z;+15j for 0 <7 <np.

Proof. The boundary maps §;, for 0 < i < p, and the degeneracies for E¢ and F! are
defined in terms of the operad structure maps of M and I'. The map f, commutes

with all of those maps because f maps M to I' via an operad map. O
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The last commutation relation necessary to have a simplicial map, 6,f, = fp—10,
is not satisfied in our case, but it is satisfied up to homotopy. What happens is more
easily understood by looking at figure 3.4. The last boundary map uses the M-algebra
structure of M (*) x M () in E* and the I-structure of BS in F. When doing first d,,
the elements of each copy of M (x) are glued together by a surface F' (the same in each
component, shown as a pair of pants in the figure). If one starts by applying f;;, the
surface F' is sent to an element of I' which will act by disjoint union. So we get two
different loops in BS, one going along morphisms defined by disjoint unions of the
surfaces, the other going along the morphisms where the disjoint surfaces are glued
to F. Now F also defines a morphism in BS which provides a homotopy between
the two loops in BS. Indeed, the loops are seen to be the boundaries of a couple of

2-simplices.

The other reason why this map is promising is that it would be a map of spectra
if it was a map. We explain this in more details.

The spaces F; and F; for ¢ > 1 form two spectra. This means that there are
equivalences €5, : E' — QE" and €, : F* — QF*!. We will denote both maps

simply by €. Both adjoints € can be expressed simplicially by maps

€ SGL(S A MP((M(%) x M(x))+)) — GL(S™H A MP((M(x) x M(%))))

€ : XGL(S" ' AT?(BS)) — GI(S' AT?(BS)),

where both maps are induced by Barrat and Eccles assembly map A A GI'(X) —
GI'(A A X). Note that this is possible because for any simplicial space X,, we have
IZX.| = XX,

The following proposition is a direct consequence of the definitions of f;; and of

the spectrum structure maps.

Proposition 3.3.2. Forp >0 and i > 1, the following diagram commutes:

SGT(ST A MP((M(x) x M(+)),)) — 22— $G(S"1 A TP(BS))

= =t
i+1

GT (S A MP((M(%) x M(%)),)) 22— GI(S* AT?(BS))
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3.3.2 Rectification of the maps f]ﬁ

We show in this section how one can rectify the maps f;, to get simplicial maps (f’)%.
For this, we use a special case of the theory of rectification of diagrams of Dwyer
and Kan [6]. The idea is to look at a commutative diagram as a functor from a
discrete category D to Top, and a not quite commutative diagram as a functor from
a category D to Top, where the maps in D are “thicker” than in D. The construction
they use to rectify the functor is actually a form of double-sided bar construction.
The same construction was used by Segal in [34] to compare his I'-spaces to the
operadic approach to infinite loop spaces. We give here a proof of the result we use
(proposition 3.3.3) as we need to know more about it than what is spelled out in [6]
or [34].

We then construct the categories D and D relevant to our situation and show in
theorem 3.3.4 that we do have a functor from D to Top. The existence of a rectification

follows immediately.

Formally, let D be a discrete category and let D be a category enriched over Top,
which has the same objects as D and such that Zs(x,y) ~ D(z,y) for any pair of
objects x,y.

The projection functor p : D — D, which projects D(z,y) to D(x,y), induces a

functor
DTop P_*> ﬁTop
from D-diagrams to D-diagrams. The functor p* has a left adjoint:
DTop & ﬁTOp,
where (p.F')(x) is defined as the realisation of a simplicial space whose nth space is

(pF)(@)n = ] Flyo) X D(yo,41) X - X D(Yn-1,Yn) X D(p(yn), @),

(y07'--7yn)

where the y;, 0 <@ < n, are objects of D and z is in D.

Two functors F' and G are said to be equivalent, denoted F' ~ G, if there is a chain
of natural transformations F' <— ... — G inducing an equivalence F'(z) ~ G(x) on
each object z.

There is an equivalence of functors
p'pyF ~ F
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for any F in D™P. As D and D have the same objects, it means in particular that
p«F(z) ~ F(z) for any object x. The functor p,F' is thus a “rectification” of F'.

The equivalence above can be given by the following maps:

Proposition 3.3.3. For a functor F : D — Top, define the functor p*p,F from D
to Top simplicially by

EPpF) W= [ F@wo) x Dlyo, 1) X .. X DYn-1,Yn) X D(Yn,y),

(yO:-"ayn)

where the y;’s and y are objects of D. Then there are natural transformations
p'puF — p*p F — F

inducing equivalences p*p,F(y) ~ p*p.F(y) ~ F(y), for all y in D.

Moreover, the natural transformations are natural in F.

Proof. The equivalence p*p,F — p*p,F is clear because it is induced by the projection
functor D — D which is a homotopy equivalence on the space of morphisms.

Now p*p, F is of the form of a two-sided bar construction B(F, D, DX), which gives
a resolution of FF.X. May gives an explicit simplicial homotopy for the equivalence
B(F,D,DX) ~ FX in [27]. It can be adapted to our case. Indeed, consider the
inclusion i : F(y) < p*p.F(y) defined by y — (y,id,) € F(y) x D(y,y), and the
map d : p*p.F(y) — F(y) defined by “doing all the boundary maps” and evaluating
F(yo) x D(yo,y) — F(y), using the fact that F is a functor from D to Top. Clearly,
d ot =1d. We are left to show that ¢ o d is homotopic to the identity. This can been
done by giving simplicial homotopies. Explicitly on g¢-simplices, the homotopies h;

for i =0,...q are given by

hi:Sq---3i+lo7705i+l---5q7

where 1 : (p"poF); — (0" poF )iz is defined by adding id, € D(z,z) on the right of
the simplex.

Both natural transformations are natural in F' as the first one “doesn’t touch
F” and the second is by applying F' to a morphism of D, which is natural in F by

definition of natural transformations. O

Note that the inclusion i : F(y) — p*p.F(y) is not natural in y.
Let A denote the simplicial category, i.e. the objects of A’ are the natural

numbers and there are maps d; : p - p—1lands; : p -+ p+1foreachi=0,...,p,
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satisfying the simplicial identities. So A is such that (A°)TP is the category of
simplicial spaces. Note that any morphism in A% (p, q) can be expressed uniquely as
a sequence s, ...8;j,0;, ...0; with 0 <i; <--- <4 <pand0<j; < <j <¢q
and ¢ —t + s = p [28].

We will consider the category D whose D-diagrams are precisely a couple of sim-

plicial spaces with a simplicial map between them. Informally, we write
D =[AP? — A%).

More formally, D has two copies of the natural numbers as set of objects. We will
denote those objects E, and F, for p € N (E, and F, will be mapped later on
to the spaces E; and F;; defined earlier, hence the notation). The full subcategory
of D containing E, for each p is isomorphic to A”®. So D(E,, E,) = A%(p,q), and
similarly for the F,’s. Finally, there is a unique map f, € D(E,, F},) which satisfies the
simplicial identities 6; f, = f,—10; and s;f, = fp11s; for i = 0,...,p. So any morphism
in D from E, to F, can be written uniquely as a sequence sj, ... s;,0;, ...0;, f, where
the indices are as above.

We now define a category D whose diagrams are a “relaxed” version of D-diagrams.
D is in fact defined in such a way that the data given at the beginning if this section
will induce a functor from D to Top.

Informally,

D = [A® — A%,
by which we mean that we have again two copies of AP as full subcategories, but now
we have “thicker” maps between the two sides. Formally, D has the same objects as
D and we will again denote them by £, and F,. The spaces of morphisms between the
E,’s and the F,’s are as before: D(E,, E,) = D(E,, E,) and D(F,, F,) = D(F,, F,).
To define ﬁ(Ep,Fq), we first define the degeneracy degree d(g) of a morphism g €
D(E,, F,). Let g = sj,...5;,0i,...0i, f,. Then d(g) is the biggest k such that i, =
p—k+1, and d(g) = 0 if no such k exists. In other words, d counts the number of
“bad” maps, i.e. last boundary maps, occurring in g.
Now define

ﬁ(EquQ) = H Ad(ﬂ)’

QED(EP7FQ)

where Ay is the standard d-simplex
Ad = {(td, e 7t0)|tz Z 0, Etl — 1}’
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which we write backwards to fit with the indices of the §;’s. For each g € D(E,, F}),

there is a bijection
g: Ad(g) — ﬁ(Ep, Fq)

whose image is p~!(g), the space of morphisms “sitting over g”.

Composition in D is simplicial and is best understood by describing what happens
on the vertices.

Recall that all the simplicial identities between ¢;'s and s;’s are satisfied in D.
Also, note that there is a unique map (0-simplex) between E, and F), sitting over
the simplicial map f, € D(E,, F,,). We denote this map again by f, and we set the
relation s;f, = fp18; for 0 < i < p and §;f, = fp—10; for 0 < i < p. Because the
last relation, when i = p, does not hold in D, there are exactly d(g) + 1 maps formed
of compositions of J;’s, s;’s and an f projecting down to g = s;,...5j,0i, ...0; fp
in D. We define those compositions to be the vertices of Ay). More precisely, for

0 <k <d(g), define

gk = Sj; - - sj15,~s e 5ik+1fp—k5ik e 5@'1 = g((O, ey ]., e ,0)),

where 1 is in the kth position counting backwards.

Note that the edges of the simplex then represent the homotopies between those
maps, i.e. the relations d;, ., fo—x = Op—rfp—r = fo—rk—10p—&. The rest of the simplex
give the higher coherence, making the space of maps over g contractible.

Now composition in D is determined by the vertices of the simplices. Indeed, a
map in ﬁ(Ep, F,) can only be pre-composed by a map in ﬁ(Er, E,) or post-composed
by a map in Zs(Fq, Fy). Using the identities given above, we know how those compo-
sitions are defined on the vertices of the simplices of D(E,, F,). We then extend the
composition simplicially. We give here more details of what happens, in a case by
case description.

Consider g, g and g, as above and set d = d(g).
Composition with s; : B, | — E,,.

By definition,
gkS; = Sjp - - - Sjléis ce 5ik+1fp—k:5ik .. 5@'18]';
= Sj; .- sj15is Ce 5id+15p—d—|—15p—d—|—2 e 5p—k:fp—k5p—k+1 Ce 5p8]'.
We want to write g;s; in canonical form to know in which simplex it lies.

CASE 1: j > p—d.
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As 0;8; = 50,1 for @ > 5+ 1, 0;415; = id and fs; = s;fr—1, we can move s; to
the left until it meets d;41, which it kills, having changed all the previous d; to d;_;.
We thus have

GkSj = Sjy -+ 85104, . 03y Op—ay10p-dr2 - OpkfprOp ki1 ---Op1
if j > p—k, and

GkSj = 8j, -804y . 03y, Op—dy10p—dt2 - - - Op—k—1fp—k—10p—k - - - Op—1
iftp—d<j<p—k.

Hence the map §(Ag) —2 975j(A41) is the jth degeneracy Ay — A4y (if j =
p — 1, g and g;_; have the same image). In our example, pre-composing by s; will

actually give a degenerate d-simplex, so the map will be the obvious one.

CASE 2: j <p—d.

In this case, while moving s; down to the left, either s; will meet J; or d;41 and
kill it, or it will take its place with the other s;’s. Thus

GkSj = Sjt, - - - Sjiéi’s, e 6i&+15p,d5p,d+1 e Op k1 fpk—10p—k - - - Op_1,
where either ¢/ =t and s =s—1ort =t+1 and s = s. Note that d(gs;) = d
as iy, = (tgy1 — 1 or iqy2). So the map G(Ag) Rl g5j(Ag) is the identity on the

d-simplex.
Composition with §; : E, 1 — Ej,.

CASE 1: j >p—d+1.

In this case, §; brings one more “bad” map, so the degeneracy degree increases.
The map g(Aq) SN 90;(Agy1) is the jth face map (if j = p —I, the map does not hit
(99;)1)-

CASE 2: j<p—d+1.

Now gid; = sj, ... 8,011, ... 0

i:i+15p—d+2 o 5p—k+1fp—k+15p—k+2 v 5p+17

where 7, , is either j or ig4; + 1, so the degeneracy degree does not increase. The

8
map §(Aq) — gd,;(A,) is the identity on the d-simplex.
Composition with s; : Fy, — Fyyq.
One gets §(Ag) ~2» 5;9(Aq) is the identity on the d-simplex.

Composition with 6; : F, — Fy_1.
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Here, while moving J; to the right, two things can happen: either J; gets killed
by an s; before reaching its place among the §;’s, or it reaches its place. In the last
situation, either the degeneracy degree go up by one, or it does not. Hence either one

gets an identity on the d-simplex, or a face map.

Theorem 3.3.4. Let D be the category defined above. For each i > 0, there is a

functor
L;:D—> Top

such that L;(E,) = E!, L;(F,) = F¢, where E, and F, denote the two subcategories
of D isomorphic to A?, and Li(f,) = f;

Proof. As Ei and F! are simplicial spaces, the restriction of L; to each copy of A
in D is a well-defined functor. As the map f;, satisfies the identities satisfied by f,
with the boundary and degeneracy maps, L; is also well defined on the vertices of the
simplices of the morphism spaces ﬁ(Ep, F,). We have to show that we can extend
the definition of L; to the whole simplices. To do this, we will exhibit the edges of
a generic simplex. It will then be clear from the structure of BS that we can fill in
the simplex: as BS is the realisation of the nerve of a category, it is made out of
simplices. We will just map simplices to simplices.

Let d = d(g) and consider
Gk = Sj, .- 8,05, ... 04, fp—r0iy ... 05 and
91 =85, -804, - Oy Oy - Oy fp10iy -+ 0y
To simplify the writing, set

X = (M(x)x M(x)); and A(Y) = GI(S™ ATF4(Y)).
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Consider the following diagram:

E,
GI(SiAmP—d)
GT(Si A TP~9M4(X))
A(S* A MA(X))

8iy6iy

aOTrd

A(SY A M) 24T, a5t p x)) RO ATi-i(BS))

Sif iy s Sig iy 1
1 dek( 3y \YA@TY) ik o AL(¢) d—k
A(S' A MAF(X)) ) AR (8T A X)) A(DH(BS))
Aigeabi )
A(BS) = Fi
Sjt""sidJrl
F.

The maps g and g; are obtained by following the bottom and the top of the square
respectively. So for each k, g, can be factorised as

gk BE = A(S* A MYX) ™ aBs) = Fi_, 2 F

p

with o and [ independent of k.
We first construct a simplex of maps S A M%4(X) — BS having the maps hy, as
vertices. For 0 < [ < k < d, hy and h; are given by the two sides of the following

diagram:

SUA MEFMEHX) —— DA (ST A X) —— T4 FTH4(BS)

Jaik...(sml Pik Bip

MaF(SYA X) ———— T4 k(S A X) ——— T4 *(BS) — BS

Note that in what follows, when we say “surface”, we generally mean a chain
of surfaces and morphisms between them, which are elements of the mapping class
groups. As earlier, we use the notation F for such a chain. Gluing surfaces then
means “gluing” those elements of the mapping class group as well. This operation
induced on the mapping class group by gluing the surfaces gives both the operad

structure map of M and the composition in BS.
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We think of M%(X) as being formed of d + 1 levels d, ...,0: level d having the
surface coming from the M the most on the left, level d — 1 being composed of m4_;
surfaces coming from the second M, and so on up to level 0 which is composed of

mg elements of X. In the above diagram, we start with the levels [,...,0 glued to
X. The map 9;, ...9

i., on the left then glues similarly the levels k,...,l + 1, then,
following the bottom of the diagram, h; takes the disjoint union of the surfaces thus
obtained, producing a couple of morphisms F o, Gy o from 0 to my in BS. If, on the
other hand, we follow the top of the diagram, we obtain the map h; which, once the
levels [,...,0 glued to X, sends the surfaces to their disjoint union, producing two
morphisms F, 5, G, from 0 to my; in BS.

Now the surface H,; obtained by gluing together the levels k,...,l + 1 gives a
morphism from m; to my in BS which is such that H; ;0 F;, = F'; y and Hy ;0 G, =

G- This produces two 2-simplices in BS (see figure 3.4).

mg

Figure 3.4: Homotopy Hy

Now all the surfaces H,,, for 0 <[ < k < d, fit together as the edges of the
d-simplex in BS

Ed El
Mg <— Mg—1 <— ... <— My,
where F'; is the disjoint union of the surfaces of level ¢. Define

by I x S'ANMYX) — BS
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hkl(l Zo, ) = 0,

hia(L, 21, F) = Hy,

hi (0, S F) = gk(Sl,F) = Fko() GkO
hea(1,SLF) = g(SLF) = Fi,() G,

where F = (F,,...,F,,(F,,G,)), and extending simplicially (by filling the two 2-
simplices as in figure 3.4).
Now all the images of the maps hy; are 2-dimensional faces of a couple of (d+1)-

simplices:

and
F F e
Mg &= ... & my <= 0.
So we can extend the above to a map

h:AgxS'AMYX)— BS

with the 1-skeleton of A, given by the maps hy,; (we are forming a simplex of maps
ha—1.4 h1,9

hg —% ... —= hy) and with

W(Agyy1, F) = ma 2 . Emy €20

- G
h(Ag, y2, F) :md£ ...ém()(io.

The is determined by the image of the 1-skeleton of A,.
We finally obtain the map

g:Agx El — F,
by composing
Ay x BLES Ay x A(ST A MA(X)) % A(Ag x ST A MAX)) 2 A(BS) 25

where a is the assembly map for A, defined pointwise (each point of Ay defines a map
A(SYA M4(X)) — A(Ag x ST A M?4(X))). This gives a continuous map as A is a

continuous functor. ]

Using proposition 3.3.3, we have the following corollary:
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Corollary 3.3.5. There exist simplicial spaces (E'). and (F'). equivalent to the sim-

* *

plicial spaces Ei and F! and a simplicial map (f')% : (E'). — (F')% such that the

*

following diagram commutes:

. fp .
B F

p
(E,)p — (F,)p

In particular, |(E').| ~ |Et| and |(F")L] ~ |FY|.

Proof. Let L, = p.(L;) : D — Top be the rectification of the functor L; defined
in theorem 3.3.4. Denote by (E'),, (F'); and (f'); the images of E,, F, and f;

via L. By definition of the category D, IEE’ )i and (F”)! are simplicial spaces and
(f)%: (E"). — (F')! is a simplicial map.

We know that p*L} ~ L; : D — Top. Now note that p*(L}) nor = (Li)| op 1 AP —
Top, for each copy of A in D and the corresponding one in D, as p is the identity
, . por = L A .
spaces (E'). and (F"). are equivalent to E! and F} respectively.

on those subcategories. So L which precisely says that the simplicial

Lastly, as p*Li(f,) = (f' );',, the diagram given in the corollary commutes by nat-

urality of the equivalence. O

3.3.3 Map of spectra

We have now constructed maps (f')* : (E')* — (F')* for ¢ > 1, where the families of
spaces (E')" and (F')! are equivalent to families of spaces E' and F*, both of which
form a spectrum. In this section, we will give a spectrum structure on the (E’)"’s and
(F")"s, and show that the maps (f')" give a map of spectra. To obtain this result, we
use proposition 3.3.2 and the naturality of the rectification. We need two lemma.

We denote by the same letter € the maps ' — QFE*! and F' — QF*! and
denote by € both adjoints, which are given simplicially by

€ :YE — B and @ : SF — i
(see definition before proposition 3.3.2).

Lemma 3.3.6. For each i > 1, the two sequences of maps E;, induce a natural trans-

formation of functors
Ei : ELZ — Li+1-
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Proof. Recall that X L; and L;,; are functors from D to Top, and D is the category
[A? = A°]. We already know that the E; form a couple of simplicial maps and
commute with the maps f, (proposition 3.3.2). So we just need to check that the E;

commute with all the homotopies. This is clear because the map €, is induced by an
assembly map XGI'X — GI'Y X, which is natural in X [1]. O

The last result will give us a first step towards constructing the spectrum structure
on the (E')"s and (F")"’s, as well as showing that the rectification of f gives a map
of spectra. We need however another lemma which will allow us to go from the

rectification of ¥ L; to the suspension of the rectification of L;.

Lemma 3.3.7. For any functor F', there are natural transformations

B X(p'peF) — p'pu(XF)

B 2(p*p.F) — p*p«(EF)
such that the following diagram is commutative

* () -
Y(p'p.F) —— Z(p*p.F)

ﬁl Bl o)

p*p*(EF) ép*p*(ZF) = 5 YF,

where p*p. F was defined in proposition 3.5.2.

In particular, B is an equivalence.

Proof. There is an obvious map (X(p.F)(z))n — (p«(XF)(x))n inducing § as
(S(F)@)a = LIS A (F(go) X ... X D(ya, 2)) and

(p«(ZF) (7)) = JT(S* A F(yo)) X ... X D(yn,)). The map collapses a contractible
subspace of the first space. A map £ is defined similarly.

One then checks that the diagram commutes. O
We can now prove the following theorem:

Theorem 3.3.8. There are maps (\) : (E') — Q(E')* and (N : (F')) —
Q(F')™*! giving a spectrum structure on both (E')" and (F')" for i > 1 such that the
maps (f')' : (E')" — (F')* form a map of spectra.
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Proof. The map p, is a natural transformation Topﬁ — Top?. By lemma 3.3.6, we
have a natural transformation ¥L; — L;,;. We denote by (XL;)’ N L; ., its image
under p,.

Define the maps A below to be & o 3 and consider the following diagram:

(B, S

fp_}Ft—Q—l
o /
\ /
it+1 (' it+1
(E)," (F"),"

This diagram commutes by proposition 3.3.2 for commutation of the square in the
centre, proposition 3.3.3 (naturality in F' of the equivalence p*p,F ~ F) for the
commutation of the left and right squares, because the equivalence is a natural trans-
formation of functors for the top and bottom squares, and by lemma 3.3.7 for the two
triangles.

Now the adjoint of \ are equivalences as

2(~)

X(E"), —— XE; = (B, ——— E}
b
(B)irt = Eit QB 22, qEin

the commutation of the left diagram implies the commutation of the right one, and
the maps €' are equivalences. O
3.3.4 Equivalence

We want to show in this section that the map of spectra f’ is an equivalence. As our

spectra are connective, it is enough to show that the first (')’ is an equivalence. We

defined f!, and so (f’)', on the first deloop of Z x BI'. Define (f’)° to be
(1 = Q) 5 (B) = QE) — (F) = (P

Note that Q(E')! ~ Z x BT'Y, ~ Q(F")'. We will show that (f’)° induces an equiva-

lence.
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Lemma 3.3.9. There are maps ¢, : M(x) = GI'(MP((M(x) x M(x))y)) and ¥ :
M (x) — QBS such that the following diagram commutes.

(B} T (F);
E! = GI(S* A MP((M(x) x M(x)),)) — Gr(I?(BS)) = F
EGI(MP((M(*) x M(x))+)) BS
M /
Y M (%)

Proof. Define ¢, : M(x) — GT(MP((M(*) x M(x));)) by F — (1,...,1,(F, D)),
where D is the disc. And define ¢ to be the map which sends an element F' of M (%)
to the loop in BS going from 0 to 1 along the morphism defined by F', and back to
0 along the morphism defined by D, taking it backwards. So

1
Y F s E()D.

0

One then checks that the bottom part of the diagram commutes. The top part

commutes by naturality of the equivalence. O
Theorem 3.3.10. The map of spectra f': (E') — (F') is an equivalence.

Proof. Thinking of M (x) as a constant simplicial space, lemma 3.3.9 yields a commu-
tative diagram of simplicial spaces (with no map from E! to F!). Taking adjoints,

we get a commutative diagram

f)p

QB! QF')!
Q(~)I IQ(N)
Q" = QIGT(S" A MP((M(x) x M(%)),) QIGT(I7(BS))| = QF"
= Q)
QF(M*((M(J) X M(x))4))] Q£$
x /
M(x)

Now the map ¢ induces the equivalence GM (¥) — GT(M*((M(x) x M(%))4))
(see 3.1.2).
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Also, 1 1 M(x) =~ [[,59Blgy — QBS ~ Z x BI'J, induces the equivalence
GM (¥) — QBS. Indeed, ¢ sends the gth component to the gth component (this
can be calculated by adding up numbers involving genus and boundary components
as explained in [37]). And it is the group completion map, generalised to categories.

So we get a commutative diagram

(E/)O ("° (F/)O

1 T

Gs—— M(x) —— H

| AT

GM (%)

where G and H are group completed spaces. Hence (f')° is an equivalence. Now
the spectra (E') and (F') are connective. Indeed, E* and F**! are connected for
i > 1 because GI'(X) is connected when X is connected and in both case we have a
suspension. Also, F'' ~ BS is connected. The result follows from the fact that a map

of connective spectra is an equivalence if it is an equivalence on the Oth spaces. [J
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