Henrik Holm's homepage

University of Copenhagen

Publications

KU segl

Preprints

S. Gratz, H. Holm, P. Jørgensen, and G. Stevenson, Tilting in Q-shaped derived categories,
arXiv:2411.11412 (19 November 2024), 10 pp.
H. Holm and P. Jørgensen, Minimal semiinjective resolutions in the Q-shaped derived category,
arXiv:2404.14537 (22 April 2024), 21 pp.
     

Book

Book cover L. W. Christensen, H.-B. Foxby and H. Holm, Derived Category Methods in Commutative Algebra,
Springer Monogr. Math.
Springer, Cham, xxiii+1119 pp., ISBN: 978-3-031-77452-2
     

Survey Papers

Book cover H. Holm and P. Jørgensen, A brief introduction to the Q-shaped derived category,
Abel Symp. 17: "Triangulated Categories in Representation Theory and Beyond", 141–167.
Springer, Cham, 2024, ix+270 pp., ISBN: 978-3-031-57788-8.
     
Book cover L. W. Christensen, H.-B. Foxby and H. Holm, Beyond totally reflexive modules and back,
Commutative Algebra: "Noetherian and non-Noetherian perspectives", 101–143.
Springer, New York, 2011, viii+492 pp., ISBN: 978-1-4419-6989-7.
     

Journal Articles

[33] H. Holm and P. Jørgensen, The Q-shaped derived category of a ring – compact and perfect objects,
Trans. Amer. Math. Soc. 377 (2024), no. 5, 3095–3128.
[32] H. Holm and S. Odabasi, The tensor embedding for a Grothendieck cosmos,
Sci. China Math. 66 (2023), no. 11, 2471–2494.
[31] H. Holm and P. Jørgensen, The Q-shaped derived category of a ring,
J. London Math. Soc. (2) 106 (2022), no. 4 , 3263–3316.
[30] O. Celikbas and H. Holm, On modules with self Tor vanishing,
Comm. Algebra 48 (2020), no. 10, 4149–4154.
[29] H. Holm and P. Jørgensen, Model categories of quiver representations,
Adv. Math. 357 (2019), Article no. 106826, 46 pp.
[28] H. Holm and P. Jørgensen, Cotorsion pairs in categories of quiver representations,
Kyoto J. Math. 59 (2019), no. 3, 575–606.
[27] R. H. Bak and H. Holm, Computations of atom spectra,
Math. Nachr. 292 (2019), 694–708.
[26] G. Dalezios, S. Estrada, and H. Holm, Quillen equivalences for stable categories,
J. Algebra 501 (2018), 130–149.
[25] O. Celikbas and H. Holm, Equivalences from tilting theory and commutative algebra from the adjoint...,
New York J. Math. 23 (2017), 1697–1721.
[24] H. Holm, The structure of balanced big Cohen–Macaulay modules over Cohen–Macaulay rings,
Glasg. Math. J. 59 (2017), 549–561.
[23] H. Holm, The category of maximal Cohen–Macaulay modules as a ring with several objects,
Mediterr. J. Math. 13 (2016), no. 3, 885–898.
[22] H. Holm, A note on transport of algebraic structures,
Theory Appl. Categ. 30 (2015), no. 34, 1121–1131.
[21] H. Holm, Approximations by maximal Cohen–Macaulay modules,
Pacific J. Math. 277 (2015), no. 2, 355–370.
[20] H. Holm, K-groups for rings of finite Cohen–Macaulay type,
Forum Math. 27 (2015), no. 4, 2413–2452.
[19] L. W. Christensen and H. Holm, The direct limit closure of perfect complexes,
J. Pure Appl. Algebra 219 (2015), no. 3, 449–463.
[18] L. W. Christensen and H. Holm, Vanishing of cohomology over Cohen–Macaulay rings,
Manuscripta Math. 139 (2012), no. 3–4, 535–544.
[17] H. Holm and P. Jørgensen, Rings without a Gorenstein analogue of the Govorov–Lazard theorem,
Q. J. Math. 62 (2011), no. 4, 977–988.
[16] H. Holm, Construction of totally reflexive modules from an exact pair of zero divisors,
Bull. London Math. Soc. 43 (2011), no. 2, 278–288.
[15] H. Holm, Modules with cosupport and injective functors,
Algebr. Represent. Theory 13 (2010), no. 5, 543–560.
[14] L. W. Christensen and H. Holm, Algebras that satisfy Auslander's condition on vanishing of cohomology,
Math. Z. 265 (2010), no. 1, 21–40.
[13] H. Holm and P. Jørgensen, Cotorsion pairs induced by duality pairs,
J. Commut. Algebra 1 (2009), no. 4, 621–633.
[12] E. E. Enochs and H. Holm, Cotorsion pairs associated with Auslander categories,
Israel J. Math. 174 (2009), 253–268.
[11] L. W. Christensen and H. Holm, Ascent properties of Auslander categories,
Canad. J. Math. 61 (2009), no. 1, 76–108.
[10] H. Holm and P. Jørgensen, Covers, precovers, and purity,
Illinois J. Math. 52 (2008), no. 2, 691–703.
[9] H. Holm, Relative Ext groups, resolutions, and Schanuel classes,
Osaka J. Math. 45 (2008), no. 3, 719–735.
[8] H. Holm and D. White, Foxby equivalence over associative rings,
J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808.
[7] H. Holm and P. Jørgensen, Compactly generated homotopy categories,
Homology, Homotopy Appl. 9 (2007), no. 1, 257–274.
[6] H. Holm and P. Jørgensen, Cohen–Macaulay homological dimensions,
Rend. Sem. Mat. Univ. Padova 117 (2007), 87–112.
[5] H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions,
J. Pure Appl. Algebra 205 (2006), no. 2, 423–445.
[4] L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions...,
J. Algebra 302 (2006), no. 1, 231–279.
[3] H. Holm, Rings with finite Gorenstein injective dimension,
Proc. Amer. Math. Soc. 132 (2004), no. 5, 1279–1283.
[2] H. Holm, Gorenstein derived functors,
Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913–1923.
[1] H. Holm, Gorenstein homological dimensions,
J. Pure Appl. Algebra 189 (2004), no. 1, 167–193.
     

Miscellaneous

♦   H. Holm, Constructive alignment in the course 'Mathematics and Optimization',
Improving University Science Teaching and Learning, 4 (2011), no. 1–2, 51–62.
     

Citations

My citations on MathSciNet can be found here.
My citations are also mentioned on this webpage: Most cited mathematicians.

Last updated:   6 December 2024