[34]


H. Holm and P. Jørgensen,
A brief introduction to the Qshaped derived category,



The Abel Symposium 2022, Abel Symp. 17 (2024), 23 pp.

  
[33]


H. Holm and P. Jørgensen,
The Qshaped derived category of a ring – compact and perfect objects,



Trans. Amer. Math. Soc.,
377 (2024), no. 5, 3095–3128.

  
[32]


H. Holm and S. Odabasi,
The tensor embedding for a Grothendieck cosmos,



Sci. China Math.,
66 (2023), no. 11, 2471–2494.

  
[31]


H. Holm and P. Jørgensen,
The Qshaped derived category of a ring,



J. London Math. Soc. (2),
106 (2022), no. 4 , 3263–3316.

  
[30]


O. Celikbas and H. Holm,
On modules with self Tor vanishing,



Comm. Algebra
48 (2020), no. 10, 4149–4154.

  
[29]


H. Holm and P. Jørgensen,
Model categories of quiver representations,



Adv. Math.
357 (2019), Article no. 106826, 46 pp.

  
[28]


H. Holm and P. Jørgensen,
Cotorsion pairs in categories of quiver representations,



Kyoto J. Math.
59 (2019), no. 3, 575–606.

  
[27]


R. H. Bak and H. Holm,
Computations of atom spectra,



Math. Nachr. 292 (2019), 694–708.

  
[26]


G. Dalezios, S. Estrada, and H. Holm,
Quillen equivalences for stable categories,



J. Algebra 501 (2018), 130–149.

  
[25]


O. Celikbas and H. Holm,
Equivalences from tilting theory and commutative algebra from the adjoint...,



New York J. Math. 23 (2017), 1697–1721.

  
[24]


H. Holm,
The structure of balanced big Cohen–Macaulay modules over Cohen–Macaulay rings,



Glasg. Math. J. 59 (2017), 549–561.

  
[23]


H. Holm,
The category of maximal Cohen–Macaulay modules as a ring with several objects,



Mediterr. J. Math.
13 (2016), no. 3, 885–898.

  
[22]


H. Holm,
A note on transport of algebraic structures,



Theory Appl. Categ. 30 (2015), no. 34, 1121–1131.

  
[21]


H. Holm,
Approximations by maximal Cohen–Macaulay modules,



Pacific J. Math.
277 (2015), no. 2, 355–370.

  
[20]


H. Holm,
Kgroups for rings of finite Cohen–Macaulay type,



Forum Math.
27 (2015), no. 4, 2413–2452.

  
[19]


L. W. Christensen and H. Holm,
The direct limit closure of perfect complexes,



J. Pure Appl. Algebra
219 (2015), no. 3, 449–463.

  
[18]


L. W. Christensen and H. Holm,
Vanishing of cohomology over Cohen–Macaulay rings,



Manuscripta
Math. 139 (2012), no. 3–4, 535–544.

  
[17]


H. Holm and P. Jørgensen,
Rings without a Gorenstein analogue of the Govorov–Lazard theorem,



Q. J. Math. 62 (2011), no. 4, 977–988.

  
[16]


H. Holm,
Construction of totally reflexive modules from an exact pair of zero divisors,



Bull. London Math. Soc. 43 (2011), no. 2, 278–288.

  
[15]


H. Holm,
Modules with cosupport and injective functors,



Algebr. Represent. Theory 13 (2010), no. 5, 543–560.

  
[14]


L. W. Christensen and H. Holm,
Algebras that satisfy Auslander's condition on vanishing of cohomology,



Math. Z. 265 (2010), no. 1, 21–40.

  
[13]


H. Holm and P. Jørgensen,
Cotorsion pairs induced by duality pairs,



J. Commut. Algebra
1 (2009), no. 4, 621–633.

  
[12]


E. E. Enochs and H. Holm,
Cotorsion pairs associated with Auslander categories,



Israel J. Math. 174 (2009), 253–268.

  
[11]


L. W. Christensen and H. Holm,
Ascent properties of Auslander categories,



Canad. J. Math. 61 (2009), no. 1, 76–108.

  
[10]


H. Holm and P. Jørgensen,
Covers, precovers, and purity,



Illinois J. Math. 52 (2008), no. 2, 691–703.

  
[9]


H. Holm,
Relative Ext groups, resolutions, and Schanuel classes,



Osaka J. Math. 45 (2008), no. 3, 719–735.

  
[8]


H. Holm and D. White,
Foxby equivalence over associative rings,



J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808.

  
[7]


H. Holm and P. Jørgensen,
Compactly generated homotopy categories,



Homology, Homotopy Appl.
9 (2007), no. 1, 257–274.

  
[6]


H. Holm and P. Jørgensen,
Cohen–Macaulay homological dimensions,



Rend. Sem. Mat. Univ. Padova 117 (2007), 87–112.

  
[5]


H. Holm and P. Jørgensen,
Semidualizing modules and related Gorenstein homological dimensions,



J. Pure Appl. Algebra 205 (2006), no. 2, 423–445.

  
[4]


L. W. Christensen, A. Frankild, and H. Holm,
On Gorenstein projective, injective and flat dimensions...,



J. Algebra 302 (2006), no. 1, 231–279.

  
[3]


H. Holm,
Rings with finite Gorenstein injective dimension,



Proc. Amer. Math. Soc. 132 (2004), no. 5, 1279–1283.

  
[2]


H. Holm,
Gorenstein derived functors,



Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913–1923.

  
[1]


H. Holm,
Gorenstein homological dimensions,



J. Pure Appl. Algebra 189 (2004), no. 1, 167–193.



