[33]
|
|
H. Holm and P. Jørgensen,
The Q-shaped derived category of a ring – compact and perfect objects,
|
|
|
Trans. Amer. Math. Soc.
377 (2024), no. 5, 3095–3128.
|
| | |
[32]
|
|
H. Holm and S. Odabasi,
The tensor embedding for a Grothendieck cosmos,
|
|
|
Sci. China Math.
66 (2023), no. 11, 2471–2494.
|
| | |
[31]
|
|
H. Holm and P. Jørgensen,
The Q-shaped derived category of a ring,
|
|
|
J. London Math. Soc. (2)
106 (2022), no. 4 , 3263–3316.
|
| | |
[30]
|
|
O. Celikbas and H. Holm,
On modules with self Tor vanishing,
|
|
|
Comm. Algebra
48 (2020), no. 10, 4149–4154.
|
| | |
[29]
|
|
H. Holm and P. Jørgensen,
Model categories of quiver representations,
|
|
|
Adv. Math.
357 (2019), Article no. 106826, 46 pp.
|
| | |
[28]
|
|
H. Holm and P. Jørgensen,
Cotorsion pairs in categories of quiver representations,
|
|
|
Kyoto J. Math.
59 (2019), no. 3, 575–606.
|
| | |
[27]
|
|
R. H. Bak and H. Holm,
Computations of atom spectra,
|
|
|
Math. Nachr. 292 (2019), 694–708.
|
| | |
[26]
|
|
G. Dalezios, S. Estrada, and H. Holm,
Quillen equivalences for stable categories,
|
|
|
J. Algebra 501 (2018), 130–149.
|
| | |
[25]
|
|
O. Celikbas and H. Holm,
Equivalences from tilting theory and commutative algebra from the adjoint...,
|
|
|
New York J. Math. 23 (2017), 1697–1721.
|
| | |
[24]
|
|
H. Holm,
The structure of balanced big Cohen–Macaulay modules over Cohen–Macaulay rings,
|
|
|
Glasg. Math. J. 59 (2017), 549–561.
|
| | |
[23]
|
|
H. Holm,
The category of maximal Cohen–Macaulay modules as a ring with several objects,
|
|
|
Mediterr. J. Math.
13 (2016), no. 3, 885–898.
|
| | |
[22]
|
|
H. Holm,
A note on transport of algebraic structures,
|
|
|
Theory Appl. Categ. 30 (2015), no. 34, 1121–1131.
|
| | |
[21]
|
|
H. Holm,
Approximations by maximal Cohen–Macaulay modules,
|
|
|
Pacific J. Math.
277 (2015), no. 2, 355–370.
|
| | |
[20]
|
|
H. Holm,
K-groups for rings of finite Cohen–Macaulay type,
|
|
|
Forum Math.
27 (2015), no. 4, 2413–2452.
|
| | |
[19]
|
|
L. W. Christensen and H. Holm,
The direct limit closure of perfect complexes,
|
|
|
J. Pure Appl. Algebra
219 (2015), no. 3, 449–463.
|
| | |
[18]
|
|
L. W. Christensen and H. Holm,
Vanishing of cohomology over Cohen–Macaulay rings,
|
|
|
Manuscripta
Math. 139 (2012), no. 3–4, 535–544.
|
| | |
[17]
|
|
H. Holm and P. Jørgensen,
Rings without a Gorenstein analogue of the Govorov–Lazard theorem,
|
|
|
Q. J. Math. 62 (2011), no. 4, 977–988.
|
| | |
[16]
|
|
H. Holm,
Construction of totally reflexive modules from an exact pair of zero divisors,
|
|
|
Bull. London Math. Soc. 43 (2011), no. 2, 278–288.
|
| | |
[15]
|
|
H. Holm,
Modules with cosupport and injective functors,
|
|
|
Algebr. Represent. Theory 13 (2010), no. 5, 543–560.
|
| | |
[14]
|
|
L. W. Christensen and H. Holm,
Algebras that satisfy Auslander's condition on vanishing of cohomology,
|
|
|
Math. Z. 265 (2010), no. 1, 21–40.
|
| | |
[13]
|
|
H. Holm and P. Jørgensen,
Cotorsion pairs induced by duality pairs,
|
|
|
J. Commut. Algebra
1 (2009), no. 4, 621–633.
|
| | |
[12]
|
|
E. E. Enochs and H. Holm,
Cotorsion pairs associated with Auslander categories,
|
|
|
Israel J. Math. 174 (2009), 253–268.
|
| | |
[11]
|
|
L. W. Christensen and H. Holm,
Ascent properties of Auslander categories,
|
|
|
Canad. J. Math. 61 (2009), no. 1, 76–108.
|
| | |
[10]
|
|
H. Holm and P. Jørgensen,
Covers, precovers, and purity,
|
|
|
Illinois J. Math. 52 (2008), no. 2, 691–703.
|
| | |
[9]
|
|
H. Holm,
Relative Ext groups, resolutions, and Schanuel classes,
|
|
|
Osaka J. Math. 45 (2008), no. 3, 719–735.
|
| | |
[8]
|
|
H. Holm and D. White,
Foxby equivalence over associative rings,
|
|
|
J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808.
|
| | |
[7]
|
|
H. Holm and P. Jørgensen,
Compactly generated homotopy categories,
|
|
|
Homology, Homotopy Appl.
9 (2007), no. 1, 257–274.
|
| | |
[6]
|
|
H. Holm and P. Jørgensen,
Cohen–Macaulay homological dimensions,
|
|
|
Rend. Sem. Mat. Univ. Padova 117 (2007), 87–112.
|
| | |
[5]
|
|
H. Holm and P. Jørgensen,
Semi-dualizing modules and related Gorenstein homological dimensions,
|
|
|
J. Pure Appl. Algebra 205 (2006), no. 2, 423–445.
|
| | |
[4]
|
|
L. W. Christensen, A. Frankild, and H. Holm,
On Gorenstein projective, injective and flat dimensions...,
|
|
|
J. Algebra 302 (2006), no. 1, 231–279.
|
| | |
[3]
|
|
H. Holm,
Rings with finite Gorenstein injective dimension,
|
|
|
Proc. Amer. Math. Soc. 132 (2004), no. 5, 1279–1283.
|
| | |
[2]
|
|
H. Holm,
Gorenstein derived functors,
|
|
|
Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913–1923.
|
| | |
[1]
|
|
H. Holm,
Gorenstein homological dimensions,
|
|
|
J. Pure Appl. Algebra 189 (2004), no. 1, 167–193.
|
|
|
|